
October 30, 2008 7:46 WSPC - Proceedings Trim Size: 9in x 6in s98028571

1

Evaluation of Fitness Functions for Evolved Stock Market
Forecasting

J. F. Nicholls∗, A. P. Engelbrecht, and K. M. Malan

Department of Computer Science, School of Information Technology,
University of Pretoria,

Pretoria, 0002, South Africa
∗E-mail: nicholls.jason@gmail.com

cirg.cs.up.ac.za

This article investigates the impact of different fitness functions on the invest-

ment return of a genetically evolved trader. Four different fitness functions are

studied and compared. Using historical market data, a population is trained by
a simple genetic algorithm using crossover, mutation, elitism and creationism.

Four genetic algorithms have been used to evolve an agent to trade, where each

genetic algorithm used a different fitness function. The best individual from
each evolved population is compared using an out-of-sample data set. Results

show a significant difference in performance between the four fitness functions.

Populations evolved using the total area under the asset value graph as a func-
tion of fitness, produced a higher return on investment on volatile stocks than

those populations evolved using the final asset value as a function of fitness.

Agents subjected to complexity penalization (Ockham’s razor) did not produce
significantly better results than agents that were not penalized.

Keywords: Evolutionary Computing; Fitness Function; Market; Forecast; Tech-

nical Analysis.

1. Introduction

Technical analysis has become a widely used market analysis tool made fa-
mous by the editor and founder of the Wall Street Journal, Charles Dow.1,2

Technical Analysis employs statistical functions on current and historical
stock data to find the current trend or signal a change in the trend. A
change in the trend may indicate a buy or sell signal. Technical analysis
requires specific parameters that may change for any given stock. Each pa-
rameter has an effect on the forecast ability of the function. The number
of combinations of parameters and functions creates an NP complete prob-
lem. This large search space is ideal for stochastic search algorithms such

October 30, 2008 7:46 WSPC - Proceedings Trim Size: 9in x 6in s98028571

2

as evolutionary algorithms.3,4

Schoreels et al.5 showed that a simplistic genetic program using technical
analysis performs comparably to investment funds run by human profes-
sionals. In 2007 Papadamou et al.6 successfully produced an evolved trading
tool called GATradeTool that out-performed two leading stock tools Meta-
Stock and FinTradeTool. Lam,7 Li and Tsang8 showed that a genetic algo-
rithm in-conjunction with technical analysis could out-perform a buy and
hold strategy. Mahfoud and Mani9 showed that a genetic algorithm using
technical analysis could out-perform a neural network and a buy and hold
strategy. Ghandar et al.10 showed that genetic algorithms and technical
analysis could be used on a portfolio of stocks to successfully out-perform
the benchmark indices. Different approaches are used to calculate the fit-
ness of individuals in evolutionary algorithms. Schoreels et al.5 implemented
an accumulated return on investment (AROI) as a fitness function, while
Lam7 and Papadamou et al.6 used the final return on investment (ROI).
Mahfoud and Mani9 introduced a more complex fitness function, using a
credit system that penalizes complexity and poor performance while re-
warding generality. Ghandar et al.10 implemented the AROI but penalized
individuals for the number of active rules.

The aim of this paper is to evaluate these different fitness functions.
Four functions are used: ROI, AROI, ROI with a complexity penalty and
AROI with a complexity penalty. These four fitness functions are tested
against a selection of stocks to see which fitness function yields the greatest
profit. The rest of the paper is divided into three sections. The first section
covers the design of the genetic algorithm. The second section highlights
the experimental set-up and results, followed by the conclusion.

2. System Design

A simple genetic algorithm is used to determine the parameter values of
thirteen technical analysis functions. Functions may be enabled or disabled
by the genetic algorithm. Using the enabled technical analysis functions,
each individual examines the current market information (volume, closing,
highest and lowest price of the day) to determine an action (buy, hold or
sell). The action is executed by a virtual banker. Each purchase and sale
incurs charges (brokerage fee: 0.006% - min of R70, strate fee: R10.92, in-
sider trading fee: 0.000007% and Value Added Tax: 14%, where R is the
symbol for the South African Rand). All individuals are rated using one of
four fitness functions. The higher the fitness value, the higher the proba-
bility an individual has of being selected for crossover. The best individual

October 30, 2008 7:46 WSPC - Proceedings Trim Size: 9in x 6in s98028571

3

survives to the next generation. New individuals are introduced during each
generation. After a set number of generations the evolutionary process is
stopped. The best individual from a population is then tested against an
out-of-sample test set.

2.1. Genetic Algorithm Representation and Operations

Genotypic information is encoded such that each individual (genome) is
made up of an array of nodes (chromosome). Each node (gene) is linked to
a technical analysis function listed in Table 4. A node has a list of variables
(DNA) used as input to the function. The functions return a value that may
indicate a change in the trend. This change results in a buy, hold or sell
action (encoded as a floating point number). The actions of all the enabled
nodes are summed resulting in a single action for any individual.

Four simulated evolutionary operations are implemented: elitism,3,4 cre-
ationism, crossover3,4 and mutation.3,4 Elitism is the selection of the best
individual within a generation and transferring that individual un-altered
to the next generation. Creationism introduces a specific number of new
randomly created individuals into the next generation. Crossover selects a
set of the best individuals, selected from a randomly selected set of indi-
viduals. Two individuals are randomly selected as the parents from this set
for crossover. Nodes from the parents are randomly selected at a specified
selection probability to take part in crossover. A randomly selected vari-
able within each of the selected nodes of one parent is swapped with the
corresponding variable in the other parent, resulting in two new offspring
that share the genotypic information of their parents. Based on a mutation
probability, offspring are mutated by altering a single variable within a sin-
gle node. The variable type will denote the change. A number becomes a
new randomly selected number and a boolean state is switched.

2.2. Fitness Functions

The fitness function represents the probability of, or propensity for, survival
of an individual or population.3 Those individuals that maximize profit will
have a greater probability of genetic survival. Profit is generally seen as the
final ROI of the stock. Schoreels et al.5 argued that by using the final ROI,
the genetic algorithm may evolve an over-fitted individual that will per-
form poorly on unseen data. Schoreels et al. therefore suggested to rather
use an AROI. This conflict produces two potential fitness functions: ROI
(F1) or AROI (F2). Ghandar et al.10 suggested that the more complex the

October 30, 2008 7:46 WSPC - Proceedings Trim Size: 9in x 6in s98028571

4

make-up of an individual the higher the chance of over-fitting the train-
ing data. They suggested penalizing those individuals that have a higher
complexity (Ockham’s razor). Using the two fitness functions above (F1

and F2) and adding a complexity penalization adds two additional fitness
functions, namely AROI with penalty (F3) and ROI with penalty (F4). The
four fitness functions are expressed in Table 1.

3. Experimental Set-up and Results

Fifty populations with 100 individuals in each were evolved using 50 unique
random seeds. Ten parents were selected from each iteration to create 89
offspring. Fifty percent of the function parameters were crossed over. One
out of 2 individuals were selected for mutation. In addition to the 89 off-
spring, 10 randomly created individuals were added to the new generation.
The best performing individual from the current generation was carried
over to the new generation. The result was a new generation with 100
individuals. Populations are evolved over 50 iterations. The process is re-
peated for each fitness function defined in Table 1. The entire experiment
was repeated for a number of different stocks collected from different sec-
tors within the Johannesburg Stock Exchange (JSE), namely Anglo Amer-
ican (AGL), ABSA (ASA), BHP Billiton (BIL), Gold Fields (GFI), MTN
(MTN), Murray and Roberts (MUR), Remgro (REM), Richmond (RCH),
Standard Bank (SBK), SASOL (SOL) and Satrix 40 Index Fund (STX40).
Each genetic algorithm was trained on data from the 3rd of April 2007 to
the 22nd of January 2008 which included 200 trading days. Testing was
done on data from the 22nd of January 2008 to the 18th of June 2008 which
included 100 trading days.

The results from the 11 stock runs are depicted in Table 2. Each run
started with an initial cash value of R100,000. Trades were made on the
stock market using a virtual banker. At the end of the 100-day test period
all stocks were sold resulting in the final asset value. The table shows the
stock code followed by the mean final asset value of 50 runs using one
of the four fitness functions (highest means are marked with an asterisk).
The buy and hold column shows the final asset value after purchasing the
stock at the start of the period and selling it at the end. The final column
shows the p-value result of a Kruskal-Wallis statistical test comparing the
mean values of the four fitness function tests. A 95% significance has a
0.05% chance of rejecting the null hypothesis. This results in an α value
of 0.05. Using Kruskal-Wallis, a significant difference (p-values less than
the α value is obtained) in 6 (AGL, ASA, MUR, RCH, SOL, STX40) of

October 30, 2008 7:46 WSPC - Proceedings Trim Size: 9in x 6in s98028571

5

the 11 experiments. Further investigation found that stocks with a higher
significant difference had higher volatility.

Stocks which showed a significant difference using the Kruskal-Wallis
test were analysed further using the Mann and Whitney U test. Results
are shown in Table 3. Bonferroni correction was made for the Mann and
Whitney U tests resulting in an α value of 0.0125. Those stocks that showed
a significant difference in the Kruskal-Wallis test, showed in the Mann and
Whitney U test that F1 and F4 are not significantly different and F2 and F3

are not significantly different. This means that the use of Ockham’s razor to
penalize complexity had no significant effect on the performance of stocks.
Most of the stocks that showed a significant difference (AGL, MUR, RCH,
SOL and STX40) performed better in the case of F2 or F3. Only the ASA
stock performed significantly better in the case of F1 and F4.

4. Analysis and Conclusion

Stocks with a lower volatility showed no significant difference in the use of
different fitness functions. This is expected as the stock does not change
a lot resulting in less opportunity for large profit or loss. The stocks that
showed a significant difference showed that using the area under the asset
graph (F2, F3) as a fitness function in most cases out-performed those
stocks that used the final asset value (F1, F4). Using the final asset value
as a function of fitness on a volatile bullish stock would result in an evolved
trader that capitalises on the ups but makes larger losses on the downs. If
the stock ends in the green the trader would appear to have done well. If
the stock was bearish the trader would have lost more. Using a function
of area forces a trader to remain constant. Any great gains or losses are
averaged and reflected in the final fitness value. Fitness functions penalizing
complexity (F3, F4) did not produce significantly different results to those
functions that did not (F1, F2). This could mean that the functions were
not complex enough for a complexity penalization or the penalty value was
not high enough. Further work is required to test if different penalization
values would produce a significant difference. In conclusion a fitness function
that incorporates the entire performance of an evolved trader, such as the
accumulated asset value produces a significantly better performing trader
on volatile stocks than a fitness function that focuses on the final result or
final asset value of a trader.

References

1. A. Cowles, Econometrica 1, 309 (1933).

October 30, 2008 7:46 WSPC - Proceedings Trim Size: 9in x 6in s98028571

6

2. W. I. King, Journal of the American Statistical Association 29, 323 (1934).
3. D. B. Fogel, Evolutionary Computation, Toward a New Philosophy of Ma-

chine Intelligence (IEEE, 2006).
4. A. P. Engelbrecht, Computational Intelligence, An Introduction (Wiley,

2003).
5. C. Schoreels, B. Logan and J. M. Garibaldi, Agent based genetic algorithm

employing financial technical analysis for making trading decisions using,
historical equity market data, in Proceedings of the IEEE/WIC/ACM Inter-
national Conference on Intelligent Agent Technology , (3)2004.

6. S. Papadamou and G. Stephanides, Mathematical and Computer Modelling
46, 189 (2007).

7. S. S. Lam, Evolutionary Computation 1, 410 (2001).
8. J. Li and E. P. K. Tsang, Improving technical analysis predictions: An appli-

cation of genetic programming., in Proc. Florida Artificial Intelligence Re-
search Symposium, USA, 1999.

9. S. Mahfoud and G. Mani, Applied Artifical Intelligence 10, 543 (1996).
10. A. Ghandar, Z. Michalewicz, M. Schmidt, T. To and R. Zurbrugg, accepted

for IEEE Transactions On Evolutionary Computation 2008 (2007).

Table 1. Fitness Functions implemented

Function Formula Description

F1 ROI = AssetV aluei Final asset value

F2 AROI =
∑n
t=1 AssetV aluei−t Accumulated asset value

F3 AROI = (
∑n
t=1 AssetV aluei−t) − Pen% F2 with complexity penalty

F4 ROI = AssetV aluei − Pen% F1 with complexity penalty

Note: i is end of the period. n is the number of days and Pen is the penalty percentage.

(Each enabled node increments the penalty by 0.00001)

Table 2. Comparison of Fitness Functions using Kruskal-Wallis

Stock F1 (Mean) F2 (Mean) F3 (Mean) F4 (Mean) Buy & Hold Kruskal-Wallis

AGL 119,500 130,000 130,800∗ 121,200 136,373 3.848x10-10

ASA 99,160 92,220 92,420 99,900∗ 82,654 4.237x10-11

BIL 142,100 148,700 151,100∗ 146,000 160,094 0.09327

GFI 94,930 92,020 91,170 95,220∗ 77,787 0.4728
MTN 121,200 122,100∗ 120,600 117,500 120,294 0.2799
MUR 99,770 103,800∗ 102,000 102,100 100,449 0.009018

REM 107,700 107,500 108,800∗ 106,600 113,929 0.1475

RCH 116,400 119,900 120,100∗ 117,100 121,958 0.004632
SBK 88,640∗ 87,400 87,100 87,210 82,539 0.4147

SOL 128,000 136,200 139,100∗ 127,300 146,443 9.978x10-7

STX40 111,500 117,500∗ 116,600 112,500 126,337 0.002105

October 30, 2008 7:46 WSPC - Proceedings Trim Size: 9in x 6in s98028571

7

Table 3. Comparison of each Fitness Function using Mann and Whitney U

Stock F1 vs F2 F1 vs F3 F1 vs F4 F2 vs F3 F2 vs F4 F3 vs F4

AGL 9.783x10-7 1.754x10-7 0.5786 0.4099 1.339x10-5 2.849x10-6

ASA 4.781x10-6 3.948x10-7 0.5876 0.7774 6.143x10-7 3.433x10-8

MUR 0.001465 0.1477 0.07692 0.02534 0.1410 0.539

RCH 0.008196 0.0008165 0.4319 0.4503 0.1536 0.03431

SOL 0.003606 9.301x10-5 0.8013 0.1807 0.0001887 3.273x10-6

STX40 0.0009033 0.007346 0.6537 0.7069 0.01039 0.04292

Table 4. Technical Analysis Functions

Node Name Function

1 Bollinger +BB(n) = SMA(n) +MD(n)

Bands −BB(n) = SMA(n) −MD(n)

2 Simple Moving Average SMA(n) =
Pt+Pt−1+···+Pt−n+1

n
3 Exponential α = 1 − 2

n+1

Moving Average EMA(n) =
αnPt+α

n−1Pt−1+···+α2Pt−n+2+αPt−n+1
αn+αn−1+···+α2+α

4 Weighted Moving Average WMA(n) =
ωPt+(ω−1)Pt−1+···+2Pt−n+2+Pt−n+1

ω+(ω−1)+···+2+1

5 Relative TG =
∑n
t=1(Pt+1 − Pt) for all t where Pt+1 − Pt > 0

Strength Index TL =
∑n
t=1(Pt − Pt+1) for all t where Pt − Pt+1 > 0

RSI(n) = 100 − 100

1+
T G/n
T L/n

6 Money Flow Index MF = Pt ∗ Vt
MFI(n) = 100 ∗ +MF

+MF+−MF

7 K-Line KLine(n) = Pt−lowest
heighest−lowest ∗ 100

8 D-Line DLine(n) = SMA of KLine

DLine(n) =
KLinet+KLinet−1+···+KLinet−n+1

n

9 On Balance Volume OBVt = OBVt−1 +


V if Pt > Pricet−1

0 if Pt = Pricet−1

−V if Pt < Pricet−1

10 Accumulative CLV (t) =
(Pclose−Plow)−(Phigh−Pclose)

(Phigh−Plow)

Distribution Index ADI(t) = ADIt−1 + VtCLVt

11 Rate of Change ROC(n) =
Pt−Pt−n

Pt−n
∗ 100

12 Commodity θ =
∑n

t=1|SMAt−Pt|
n

Channel Index CCI(t) = 1
0.015

Pt−SMA(n)
θ

13 Moving Average Convergence MACD(t) = EMA(12) − EMA(26)
or Divergence

Note: t is the day of trade, P is the closing price, n is the number of previous days. V is the Volume,

MD is the mean deviation.

