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Abstract. The collective behavior system depends strongly on the effi-
ciency of communication paths, in other words, network topology. Net-
work connectivity affects the properties of networked agents. Synchronous
behavior is also affected by the network structure. A consensus problem
is also related to the problem of synchronization. A consensus algorithm
is an interaction rule that specifies the information exchange between an
agent and all of its neighbors on the network. A class of local control laws
is investigated for a collection of agents that result in global order their
motion in convergence of their movement to a common. In large groups
of agents the information sharing should be local in some sense, due to
energy limitation, reliability, and other constraints. However, local in-
formation exchange limits the speed of convergence of such protocols. A
consensus protocol is an iteractive method that provides the group with
a common coordination variable. In this paper, we describe the occur-
rence of flocking behavior and the underlying connection between agents.
The occurrence of flocking behavior in the synchronization of networked
agents is directly associated with the connectivity properties of the in-
terconnection network. Each node of the network represents a dynamical
system. Individual systems are coupled according to the network topol-
ogy. It is possible to think about the network topology through local
control action by exploiting the graph theoretic properties of the agent
networks. We consider the network by the Laplacian matrix eigenvalue
viewpoint.
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1 Introduction

Flocking is this phenomenon that individuals all move with approximately the
same motion, so that they remain together as a group. In nature, aggregations of
large numbers of mobile organisms are also faced with the problem of organizing
themselves efficiently. This selective pressure has led to the evolution of behav-
ior such as flocking of birds, swarming of insects, herding of land animals and
schooling of fish. Reynolds developed a method that creates realistic simulations



of bird flocking[1]. This model is known as Boids Model. and, there are three
interaction rules: 1) attraction (cohesion rule), 2) collision avoidance (separation
rule), and 3) velocity matching (alignment rule) between the boids located within
a certain radius. these 3 local rules create produce realistic flocking behavior.

In boids model, each agent has direct access to the whole scene’s geometric
description, but flocking requires that it react only to flock mates within a cer-
tain small neighborhood around itself. The neighborhood is characterized by a
distance and an angle, measured from the agent ’s direction of flight.

We are interested in self-organization and group behavior about independent
and autonomous agent. They are decentralized and doesn’t share information.
It is recognized that most complex systems in nature are organized as intricate
network patterns [2][3]. Furthermore, Autonomous agents of conventional model
need connected network structure as a prerequisite for the emergence of flocking
behavior. On the other hand, Autonomous agents of our model doesn’t need
connected network structure and emerge flocking behavior. We think about the
network topology by exploiting the graph theoretic properties of the agent net-
works. Exploiting modern results from algebraic graph theory, these properties
are directly related to the topology of the network through the eigenvalues of
the Laplacian of the graph.

2 Emergence Flocking Behavior

The flocking model consists of three simple steering behaviors which describe
how an individual agent maneuvers based on the positions and velocities its
nearby flock mates: Boids model is as follows[1] :

(1) Cohesion: steer to move towards the average position of the neigh-
boring flockmates

(2) Separation: steer to avoid crowding the neighboring flockmates
(3) Alignment: steer towards the average heading of the neighboring

flockmates

A flock often consists of multiple local interactions of each agent.agents. The
cohesion rule causes each active flock member to try to orient its velocity vector
in the direction of the centroid of the local flock. The degree of locality of the
rule is determined by the sensor range of the active flock member, represented
by the light colored circle. Separation behavior gives an agent the ability to
maintain a certain separation distance from others nearby. This can be used
to prevent agents from crowding together. To compute steering for separation,
a search is first made to find other agents within the specified neighborhood.
Alignment behavior gives an agent the ability to align itself with, that is, head
in the same direction or speed as, other nearby agents. Steering for alignment
can be computed by finding all agents in the local neighborhood.

A method is presented for flocking behavior of creatures, birds, fishes and so
on, that can form herds by evading obstacles in airspace, terrain or ocean floor



topography in 3D space while being efficient enough to run in real-time. This
method involves making modifications to the boids model [1] as following.

The flocking algorithm works as follows: For a given agent, centroids are
calculated using the sensor characteristics associated with each flocking rule.
Next, the velocity vector the given agent should follow to carry out the rule
is calculated for each of the rules. These velocity vectors are then weighted
according to the rule strength and added together to give an overall velocity
vector demand. Finally, this velocity vector demand is resolved into a heading
angle, pitch attitude, and speed demand, which are passed to the control system.
The superposition of these three rules results in all agents moving as a flock. A
theoretical analysis of the emergent dynamics of flocking behavior given in [4]
was performed.

A theoretical analysis of the emergent dynamics of flocking behavior given
as follows. Each agent recognizes two physical values: 1) the distance to its
nearest flockmates and 2) the relative velocity of its flockmates. Agent i sees a
neighboring agent j in its visual sensor range. Agent i can recognize the vector
dij , that is, the position vector to the neighbor agent j and can calculate the
relative center position vector Di of the neighboring flockmates. Agent i also
recognizes vector vij = ddij/dt, that is, the relative velocity vector and can
calculate the average relative velocity vector V i of the neighboring flockmates.
The relative center position vector Di, its unit vector eDi , its size Di, the average
relative velocity vector V i, its unit vector eV i and its size Vi,are:


Di =

1
ni

nj∑
j

dij , Di = |Di| , eDi =
Di

Di

V i =
1
ni

nj∑
j

vij , Vi = |Vi| , eVi =
Vi

Vi

(1)

A linear combination of the cohesion force vector F ci, separation force vector
F si, and alignment force vector F ai are used to define the flocking force vector
F fi. 

F ci = wcieDi

F si = −wsi

Di
eDi

F ai = waiV i

(2)

F fi = F ci + F si + F ai =
(

wci −
wsi

Di

)
eDi + waiV i (3)

where coefficient wci, wsi and wai are positive. The first term of Eq.(3) is the
resultant force of the cohesion force vector F ci and the separation force vector
F si. The resultant force vector F csi relates position between agents.

F csi =
(

wci −
wsi

Di

)
eDi (4)



The potential ϕcsi of F csi is given by the following equation.

ϕcsi =
∫

|F csi| dDi = wciDi − wsilog(Di) (5)

The potential energy ϕcsi has a local minimum at

Di =
wsi

wci
(6)

At this point, the force vector ϕcsi equals the zero vector. When the distance
Di from the center of neighbors is less than the value of right side of Eq.(6), the
force vector F csi becomes repulsive. Otherwise, the force vector F csi becomes
attractive. If wsi is smaller or wci is larger, then the absolute value of the distance
Di from the center of neighbors becomes shorter. The second term in Eq.(3),
the alignment term, aligns the velocity of each agents.

3 Complex Networks

Recently there has been a surge of interest in trying to understand the prop-
erties of realistic networks. The small-world model of Watts and Strogatz [5]
caused a tremendous amount of interest among researchers working in multi-
ple fields on the topological properties of complex networks. And another type
of networks are particularly known as scale-free and different models for gen-
erating or growing them have been imagined. Still, one of the most important
models for generating power-low networks is the preferential attachment growth,
introduced by Barabási & Albert (BA)[6]. Another case of regular networks are
lattices, which have evenly spaced nodes, each connected only to the nearest
neighbors. An interesting property of lattices is that, although they do not dis-
play the small-world property, by taking a small number of randomly chosen
links and rewiring them to another node, small-world properties emerge very
quickly.

In most engineering and biological complex systems, the nodes are dynamic,
that is, ”real-life” engineering networks are interconnections of dynamic systems.
Synchronization is the most prominent example of coherent behavior, and is a
key phenomenon in systems of coupled oscillators as those characterizing most
biological networks or physiological functions [7]. Synchronous behavior is also
affected by the network structure. The range of stability of a synchronized state
is a measure of the system ability to yield a coherent response and to distribute
information efficiently among its elements.

4 Consensus, Synchronization and Graph Laplacian

In networks of dynamic agents, consensus means to reach an agreement regarding
a certain quantity of interest that depends on the state of all agents. A consensus
algorithm is an interaction rule that specifies the information exchange between
an agent and all of its neighbors on the network. Olfati-Saber [8] demonstrates



a phase transition phenomenon in algebraic connectivity of network and show
good convergence speed for consensus problems on small-world networks. Each
agent has cohesion, separation, and alignment (CSA) rules that were originally
introduced by Reynolds [1]. Each agent inputs the relative velocity and position
of neighboring agents in its visual range and computes its steering and driving
acceleration at that time. In other words, each agent has a local-directed link to
other agents and the emerging flocking behavior. However, if agents are far from
each other, flocking behavior cannot emerge.

A theoretical framework for the design and analysis of flocking algorithms
for mobile agents was developed by Olfati-Saber [9] as a consensus problem.
They demonstrated that flocks are networks of dynamic systems with a dynamic
topology. This topology is a proximity graph that depends on the states of all
the agents and is determined locally for each agent.

In networks of agents, consensus means to reach an agreement regarding a
certain quantity of interest that depends on the state of all agents. A consensus
algorithm is an interaction rule that specifies the information exchange between
an agent and all of its neighbors on the network.

The analysis of consensus problems relies heavily on matrix theory and spec-
tral graph theory. The interaction topology of a network of agents is represented
using a directed graph G with the set of nodes and edges. We denote neighbors
of agent i with ni.

Consider a network of agents with the following dynamics:

ẋi =
∑
j∈Ni

αij (xj(t) − xi(t)) (7)

Here, reaching a consensus means asymptotically converging to the same
internal state by way of an agreement characterized by the following equation:

x1 = x2 = · · · = xn = α (8)

The collective dynamics converge to the average of the initial states of all
agents:

α =
1
n

n∑
i=1

xi(0) (9)

The dynamics of system in Eq. 7 can be expressed as

ẋ = −Lx(t) (10)

L is the graph Laplacian of the network G; the graph Laplacian is defined as

L = D − A (11)

where D = diag(d1, d2, · · · , dn) is the diagonal matrix with elements di =∑
j ̸=i aij .



Fig. 1. Snapshot of simulation. p =
10−3, time step t = 100.

Fig. 2. Snapshot of simulation. p = 10−4,
time step t = 100.

The Laplacian matrix of a graph is defined as L = D − A, where D is the
degree matrix, and A is the adjacency matrix [10].

Observation to make is that λ1 = 0 for any Laplacian matrix, because
[1 · · · 1]T is an eigenvector. Since any given row’s diagonal entry is ki, and there
is a −1 for each connection (a total of ki of them), we have


k1 {0, −1}

k2

. . .
{0, −1} kn


1

...
1

 = 0

1
...
1

 (12)

The eigenvalues λi satisfy

0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2kn, (13)

where kn is the largest degree in the graph[11].
A graph with a small first Laplacian eigenvalue, λ2, customarily called alge-

braic connectivity (or also spectral gap) has a relatively clean bisection. In other
words, the smaller the algebraic connectivity the smaller the relative number of
links required to be cut-away to generate a bipartition. Conversely a large al-
gebraic connectivity characterizes non-structured networks, with poor modular
structure, in which a clear-cut separation into subgraphs is not inherent, i.e. in
general higher λ2 indicates graphs with smaller diameter and higher connectiv-
ity.[12] This is a crucial topological implication of algebraic connectivity. The
best synchronizability is obtained by maximizing the algebraic connectivity.



Fig. 3. The growth process of the largest agent cluster connected with local links.
Vertical line is the number of agents that consist the largest cluster size, the total
number of agents (N = 200).

5 Simulation Results

5.1 Simulation Condition

A simulation was performed where the state of the emerging flocking behavior
depended on the probability of the external directed link p. If 0 < p < 1, then
the group of agents are in a small-world network. The probability for an external
link was set to p = 1, 10−3 or 10−4 for the simulation.

At initial state (time step t = 0), 200 agents are randomly deployed in a
sphere with radius 100. The visual range of each agent is a sphere with radius 3.
It is the condition that most of the agents are too far apart to be locally linked
except for nonsignificant a few agent pairs. The velocity vector of each agent has
a random magnitude on closed interval [0, 0.2] and a random direction.

Each agent accelerates 0.2 times more than current velocity by a simula-
tion step. Therewith it generates the acceleration from the force of Cohesion,
Separation and Alignment rules as shown Eq.(3). And the magnitude of velocity
vector is limited a maximum of 0.2. If there are not at all agents within its visual
range of an agent, then it goes straight at an accelerated rate to the direction
of its initial velocity. When its speed reach to the maximum, its motion transits
uniform motion.

5.2 Growth of the Agent Cluster Network

Figure.1 shows a snapshot of the simulation where each agent has a probability
for external link p = 10−3 at a time step t = 100. It shows emergent flocking



Fig. 4. The change of Laplacian 2nd smallest eigenvalue over time.

behavior. Figure.2 shows that the agents disengage from the flock and, thus,
flocking behavior cannot occur. This implies that a group of agents cannot form
a flock unless there are enough external links (p > 10−3). Agents aggregate and
form agent cluster with local links. Figure.3 shows the growth process of largest
agent cluster connected with local links excluding external links. A few pairs
consist as it happens at time t = 0.

In the case where p = 10−4, some agents happen to close and to encounter.
But they are disconnected by lapse of time. This means that stochastic external
links contribute to break up rather than to aggregate.

In the case where p = 1, agents aggregate each other and agent cluster
growth. All agent are connected and form an agent cluster. After that time, all
agents continuity is connected. In other words, the connectivity is completely
steady.

In the case where p = 10−3, agents aggregate each other and agent cluster
growth. It causes delay as compared with the case of p = 1. Almost all the agents
are connected at time around t = 100, and the connectivity is not completely
steady but slightly has a fluctuation. This means that stochastic external links
sometimes contribute to break up rather than to aggregate.

5.3 Networked Consensus Agents Dynamics through Lapalcian
Matrix Eigenvalue

Each agent aggregates together based on the cohesion and separation rules. Each
agent adjusts its velocity using the alignment rule, and emergence of flocking
behavior occurs. We approach the network dynamics by Lapalcian eigenvalue



Fig. 5. The change of Laplacian max eigenvalue over time.

viewoint. In networks of agents, consensus means to reach an agreement re-
garding a certain quantity of interest that depends on the state of all agents. A
consensus algorithm is an interaction rule that specifies the information exchange
between an agent and all of its neighbors on the network. Flocking behavior is
one of the consensus problem things. The emergence of Flocking behavior need
to reach an agreement regarding a certain quantity such as velocity, direction
and interaction rule that specifies the information exchange between an agent
and all of its neighbors on the network.

The analysis of consensus problems relies heavily on matrix theory and spec-
tral graph theory,and Laplacian matrix eigenvalues play an important role to
think about the problems. Figure.4 shows the 2nd Laplacian eigenvalue transi-
tion of the flocking agents’ network. Figure.5 shows the max Laplacian eigenvalue
transition of the flocking agents’ network. By these eigenvaules time transition
dynamics, we can understand the network dynamics.

2nd Laplacian eigenvalue, λ2, customarily called algebraic connectivity (or
also spectral gap) has a relatively clean bisection. Crucial topological implica-
tion is a large algebraic connectivity characterizes non-structured networks, with
poor modular structure, in which a clear-cut separation into subgraphs is not
inherent, i.e. in general higher λ2 indicates graphs with smaller diameter and
higher connectivity. By 2nd eigenvalue transition of Figure.4, we can grasp the
network dynamics. Max Laplacian eigenvalue,λn expresses robustness to infor-
mation time delays, and λn is relational to the network max cluster size. If
λ2 = 0, the flocking agents’ clusters are separated, and the network is discon-
nected. But, if λ2 > 0 the flocking agents’ clusters are not separated, the network
is connected.



Fig. 6. The change of average distance over time.

Fig. 7. The change of clustering coefficient over time.

Fig. 8. The change of diameter over time.



In the case where p = 1, all agents always link directly each other. Thus, the
agents can aggregate, so λ2 and λn is always N(All number of nodes or agents)
In the case where p = 10−4, each agent never has enough links and, thus, the
agents are dispersed. The flocking agents’ clusters are separated, and the network
is disconnected, so λ2 is always 0. And flocking agents’ clusters are small so that
λn is kept small value all the time. In the case where p = 10−3, all agents always
have enough links to flock together. However, the agents as a group undergo
a state transition from dispersing to aggregating. From the first point, λ2 > 0
time, λ2 increases gradually. This means that flocking network’s connectivity is
higher and diameter is smaller as λ2 increases. And λ2 reaches highest peak,
flocking agents reach an agreement regarding a certain quantity such as velocity,
direction. In other words, the network has achieved consensus. After that, λ2

drastically drops and keeps low value. This means that flocking agents reach
an agreement and consensus, and network do not need high connectivity and
consensus state continue.

λ2 and λn dynamics correspond to the diameter，average distance and clus-
tering coefficient. The diameter D of a network is the longest are among all
shortest paths between any pairs of nodes. It provides an upper bound on the
average distance dave, which is the average length of all shortest paths between
pairs of nodes. Given a node i, with ki neighbours, Ei is defined to be number of
links between the ki neighbours. The clustering coefficient is the ratio between
the number of links that exist between neighbours (Ei) and the potential number
of links ki(ki − 1)/2 between the neighbours. The average clustering coefficient
is defined as

CC =
1
N

N∑
i=1

2Ei

ki(ki − 1)
(14)

Figure.6,7,8 shows average distance，clustering coefficient，diameter transi-
tion of the flocking agents’ network. These network dynamics correspond to the
Laplacian 2nd and max eigenvalue for the agent over time.

Stability is shown to rely on the connectivity properties of the graph that
represents agent interconnections, in terms of asymptotic convergence with re-
spect to arbitrary changes in the interconnection topology. We investigate the
case where the topology of the control interactions between the agents is not
fixed. The network topology property is dynamic and time varying. Exploiting
results from algebraic graph theory, these properties are directly related to the
topology of the network through the eigenvalues of the Laplacian of the graph.
In this way, from the standpoint of the network eigenvalues viewpoint, we can
understand the network dynamics structure.

6 Conclusion

The occurrence of flocking behavior in the networked agents is associated with
the connectivity properties of the interconnection network. The network repre-
sents a dynamical systems which are coupled according to the network topology.



We consider the network by exploiting the graph theoretic properties of the agent
networks. Our network showed how flocking behavior can emerge and converge
to stability using a few external links, in addition to the local links among the
autonomous agents. The topology of the network that allows observation of the
shift in the network-wide patterns over time is important for robustness, since
each agent needs to recognize not only its neighboring ones but also distant
agents.

The information interaction for the agents is the behaviors of smooth and the
stability analysis is based on the invariant principle, facilitated by the algebraic
properties of the interconnection graph that allow the connectivity properties of
the network to be reflected on the convergence estimate. Networked multi-agent
systems are comprised of many autonomous interdependent agents which are
decentralized group formation found in a complex network. The time varying
nature of the interconnection topology introduces discontinuities in the control
inputs, which in turns give rise to a set of discontinuous differential equations
describing the system dynamics. As in the smooth case, the connectivity proper-
ties of the graph are instrumental in establishing global asymptotic stability. We
can think about the dynamic networks and topology through algebraic graph
theory, these properties are directly related to the eigenvalues of the Laplacian
of the graph.
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