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Abstract. Microblogging is a new paradigm spreading in social web
services that provides us a light-weight, speedy way of communication.
In the microblogging system, users post short messages just as quickly
as chatting. Users can easily communicate with each other. However, the
microblogging brings users huge cognitive costs since they always need to
follow up their friends’ posts every second. Can such cognitive costs af-
fect the structure of the microblogging network? Here we extracted data
from the most major microblogging web service: Twitter. We find that
the network structure in Twitter has two main features: link reciprocity
and asymmetricity between distributions of the in-degree and out-degree.
To explain such characteristics, we introduce a simple cognitive-costed
agent model based on the Barabási-Albert model. With the mathemati-
cal analysis and computational experiments, we confirm that even such
a simple model explains well the behavior of the observed data.
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1 Introduction

Microblogging is a new paradigm spreading in social web services that
provides us a light-weight, speedy way of communication. Recently, more
and more services have been implementing the microblogging systems, like
Twitter1, Jaiku2, and so on. In these systems, users post short messages
(usually less than 140 characters) as quickly as chatting via PC, mobile,
or cell phone. Users can communicate and share information in the blink
of an eye. Furthermore, they can add the other users as their friends
therefore the microblogging system is a class of social networks.

Many private companies and public organizations plan to make use
of the microblogging service as a marketing medium e.g. public relations
channel and infrastructure for gathering latent customer information. For
1 http://twitter.com
2 http://www.jaiku.com



such purposes, it is important to understand the structure and function of
the microblogging system. Despite that, there have been still few studies
investigating microblogging systems [1, 2].

In this paper, we adopt a point of view of complex network science
and attempt to understand properties of the microblogging network. We
make our analysis based on the actual data obtained from Twitter, which
is the first and most popular microblogging service. By studying some
statistical features of the data, we introduce a simple stochastic agent
model of the microblogging network. With mathematical analysis and
agent-based simulation, we show that even such a simple model can ex-
plain macroscopic properties in the observation. Finally we discuss several
issues contained in the model and point out directions for future research.

2 Data Analysis

Microblogging is an instance of the social network and Twitter shows or-
dinary characteristics already observed in the other networks [1] such as
small-world and scale-free features [3–6]. Contrasting with the other so-
cial networking services such as Mixi3, Twitter is quite unique because of
its directedness when viewed as a network. In Twitter ’s network, like the
other social networks, vertices represent users and edges represent friend-
ships between users. Edges have directions, “following” or “followed”, and
thus friendships can be either one-way or two-way (see Fig. 1).

Fig. 1. Following/followed friendships in Twitter. To add a user as a friend is called
“follow”. User 1 “follows” user 2 and user 4, while “followed” by user 3 and user 4.
Only user 1 and user 4 have a mutual friendship and the others are all one-sided.
When a user follows another user, the former one follows up the latter one’s updating
of messages.

3 http://mixi.jp



Here we analyze fetched data set (about 1.5 million users, obtained
in July 2009) from Twitter ’s data feed and study statistical properties of
the network, especially degree distributions. We promise that a user’s in-
degree means the number of users he/she is “followed” by and out-degree
indicates the number of users he/she is “following”.

Fig. 2 shows strong correlation between the in-degree and out-degree.
Most users have the same order of the in-degree and out-degree. This

(a) Log-log scatter plot between in/out-
degrees

(b) Rank scatter plot between in/out-
degrees

Fig. 2. Log-log and rank scatter plots between the in-degree and out-degree. Kendall’s
τ = .64. Vertices with huge degrees have high ranks.

feature is caused by link reciprocity: tendency of vertex pairs to form
mutual connections between each other [7]. In many social networking
services, creation of a link from one user to another tend to cause creation
of the reverse link to be established [8, 9]. Such a behavior of users is
called “reciprocation”. Additionally, in Fig. 2(a), users in the right lower-
triangular part present asymmetricity between their in-degree and out-
degree, while few users are in the left upper-trianguler part.

Fig. 3 displays the in-degree and out-degree distributions that follow
power-law (scale-free) statistics. Fig. 3(b) is a zoom-up of Fig. 3(a). We
observed that the out-degree is huger than the in-degree in the small-
degree range (k < 102), whereas the out-degree is smaller than the in-
degree in the large-degree range (k > 102). What mechanism causes such
phenomena?



(a) In/out-degree distributions (b) Zoom-up of the small-degree range

Fig. 3. Log-log plots of the in-degree and out-degree distributions. Blank points for
in-degree and filled points for out-degree. Both of them exhibit scale-free behavior in
the large-degree range, while showing a power-law decay in the small-degree range. A
peculiar peak around k = 2, 000 in the out-degree distribution is human-made [10].

3 Model

We now try to get further understanding about the phenomena reported
above. To explain observed statistical behavior, basically we apply a rate
equation approach to the extended Barabási-Albert model [11]. We first
focus on a feature observed in the actual network: reciprocation. We also
pay attension to the cognitive cost brought by the microblogging system.

3.1 Simple reciprocal model

A growth model of the directed network which considers vertices’ recipro-
cation was studied by Ref. [12]. Here we briefly introduce such a stochastic
agent model.

We start with one vertex in the network. In each time step, a new
vertex i is added to the network and create an edge to an existing vertex
j with probability Π(kj), which is proposal to j’s in-degree kj (preferential
attachment). Then, the vertex j creates a return edge to the vertex i with
probability ρj , where the constant ρj is determined with each vertex.



Applying continuous approximation, we get the following time evolu-
tion about the average in-degree.

∂k̄(s, t)
∂t

= Π(k̄(s, t)) =
k̄(s, t)∫ t

0
du k̄(u, t)

=
1

1 + 〈ρ〉
k̄(s, t)

t
, k̄(s, s) = 〈ρ〉 ,

(1)
where k̄(s, t) means the average in-degree of a vertex at any time t which
is added at the time s and 〈ρ〉 denotes the expected value over time of ρi.

The solution of Eq. (1) is,

k̄(s, t) = 〈ρ〉
(s

t

)− 1
1+〈ρ〉

. (2)

Hence, at the equilibrium time, the cumulative in-degree distribution be-
comes,

P<(k) = Pr
[
k̄(s, t) < k

]
= Pr

[
s

t
>

(
〈ρ〉
k

)1+〈ρ〉
]

= 1 −
(

k

〈ρ〉

)−(1+〈ρ〉)
.

(3)
Then we obtain the in-degree distribution,

p(k) =
∂

∂k
P<(k) ∝ k−(2+〈ρ〉) . (4)

We also get the out-degree distribution p(q) ∝ q−(2+〈ρ〉) from the
boundary condition q̄(s, s) = 1 and the following relation,

∂q̄(s, t)
∂t

= 〈ρ〉∂k̄(s, t)
∂t

. (5)

The out-degree distribution is thiner than the in-degree distribution
on account of the multiplicative factor 〈ρ〉 in Eq. (5). This result is sta-
tistically consistent with the observation in Fig. 3.

3.2 Reciprocal model with cognitive cost

We extend the reciprocal model described above with considering the
effect of cognitive cost.

In Twitter, posted messages from one’s “following” friends appear
on his/her “timeline”, which keeps updating every second (see Fig. 4).
Consequently, the more the number of following users increases, the faster
and the faster the timeline flows. Thus large amounts of following users



Fig. 4. The concept of “timeline”. Posted messages from user 1’s following users (user
2, user 3, user 4) keep real-time updating on a second scale. Updates from not-following
users (user 5) will not appear on the timeline.

result in difficulty following up friends’ posts. We regard it as that the
cognitive cost increases with the out-degree.

We assume that the merginal cognitive cost is diminishing. The func-
tional form of the cognitive cost should be,

C(q) ∝ qα , (6)

where q is the out-degree and α ∈ (0, 1) is a constant.
Consider the following situation. In each time step, a new vertex i is

added to the network with probability p, then the vertex i creates a new
edge to an old vertex j with probability Π(kj). The vertex j reciprocates
the vertex i with probability ρj . On the other hand, with probability
p̄ ≡ 1− p, an old vertex i is chosen with probability Ψi, then the vertex i
creates an edge to another old vertex j in accordance with the preferential
attachment rule and the vertex j reciprocates in the same manner. Let Ψi

depend on the cognitive cost C(qi). We simply assume that Ψi ∝ C(qi)−β

where β > 0, since vertices with smaller cost should create more out-going
edges. Therefore Ψi = Ψ(qi) ∝ q−κ

i where κ ≡ αβ > 0.
Here we derives degree distributions in the same way in Sec. 3.1. The

time evolution of the average in-degree consists of the following three
cases:



1. A new vertex is added with probability p, then one gets a new edge
from the new vertex with probability Π(k̄).

2. One creates a new edge with probability p̄Ψ(q̄), then receives recipro-
cation with probability 〈ρ〉.

3. One gets a new edge from an old vertex with probability p̄ (1 − Ψ(q̄))Π(k̄).

Thus,

∂k̄

∂t
= pΠ(k̄) + p̄

[
Ψ(q̄)〈ρ〉 + (1 − Ψ(q̄))Π(k̄)

]
= Π(k̄) + p̄〈ρ〉Ψ(q̄) − p̄Π(k̄)Ψ(q̄) . (7)

In just the same way, the time evolution of the average out-degree is
the summation of the following three cases:

1. A new vertex is added with probability p, then one gets a new edge
from the new vertex with probability Π(k̄), after that the one recip-
rocates with probability 〈ρ〉.

2. One creates a new edge with probability p̄Ψ(q̄)．
3. One gets a new edge from an old vertex with probability p̄ (1 − Ψ(q̄))Π(k̄),

then reciprocates with probability 〈ρ〉.

Thus,

∂q̄

∂t
= pΠ(k̄)〈ρ〉 + p̄

[
Ψ(q̄) + (1 − Ψ(q̄))Π(k̄)〈ρ〉

]
= 〈ρ〉Π(k̄) + p̄Ψ(q̄) − p̄〈ρ〉Π(k̄)Ψ(q̄) . (8)

For Eqs. (7) (8), obtaining,

∂q̄

∂t
= 〈ρ〉∂k̄

∂t
+ p̄

(
1 − 〈ρ〉2

)
Ψ(q̄) . (9)

As a consequence of Eq. (9), large enough 〈ρ〉 results in that the average
in-degree and out-degree have strong correlation. Assuming such a con-
dition, we can ignore Ψ(q̄) in the large-degree range and thus Eqs (7) (8)
become, 

∂k̄

∂t
= Π(k̄) , k̄(s, s) = 〈ρ〉

∂q̄

∂t
= 〈ρ〉Π(k̄) , q̄(s, s) = 1

. (10)

As the same as Sec. 3.1, we get p(k) ∝ k−(2+〈ρ〉) and p(q) ∝ q−(2+〈ρ〉).



In the small-degree range, we can ignore Π(k̄). Therefore,
∂k̄

∂t
= p̄〈ρ〉Ψ(q̄) , k̄(s, s) = 〈ρ〉

∂q̄

∂t
= p̄Ψ(q̄) , q̄(s, s) = 1

. (11)

Ψ(q̄) has
∑

j q−κ
j at its denominator, whose behavior is unknown. We

adopt a mean-field approximation and rewrite it as Mκt, where Mκ ≡〈
q−κ
j

〉
j

. This is supported by a numerical evaluation (see Fig. 5).

(a) Evaluation of Mκ (b) κ-dependency of Mκ

Fig. 5. (a) Evaluation of Mκ. At large enough time, Mκ becomes stable. (b) κ-
dependency of Mκ. Only the vertical axis is plotted as logarithm. Mκ is inferred to be
a form of exponential function.

Applying this approximation to Eqs. 11, we obtain,

p(q) =
Mκ

p̄
qκ exp

[
−Mκ

p̄

qκ+1 − 1
κ + 1

]
, (12)

p(k) =
Mκ

p̄〈ρ〉κ+1
kκ exp

[
− Mκ

p̄〈ρ〉κ+1

kκ+1 − 1
κ + 1

]
. (13)

Eqs. (12) (13) do not follow the power law. Replacing Mκ/p̄ in Eq. (12)
and Mκ/p̄〈ρ〉κ+1 in Eq. (13) as θ, these functions behave as shown in Fig.
6. Small θ (namely, small p and large κ) makes those distributions have



Fig. 6. Log-log plots of the functional form of Eqs. (12) (13).

gentle slopes. Moreover, the factor 〈ρ〉κ+1 in Eq. (13) affects the asym-
metricity between the in-degree and out-degree distributions. Smaller 〈ρ〉
makes the in-degree distribution sharper.

Fig. 7 shows results of a numerical simulation. As the actual observa-
tion, the out-degree distribution is thicker than the in-degree distribution
in the small-degree range (k < 10), while the out-degree distribution is
thinner than the in-degree distribution in the large-degree range (k > 10).
Additionally, the in-degree and out-degree are asymmetric as shown in
Fig. 7(b).

4 Discussion and Conclusions

In summary, we have taken a look at the actual microblogging network
and introduced a simple stochastic agent model containing two features:
users’ reciprocation and the effect of cognitive cost. Despite its simplicity,
the model succeeds to reproduce structural properties observed in the
experimental data and thus it should capture some key characteristics of
the behavior of users in the real microblogging systems.

On the other hand, some assumptions in our model failed to catch the
reality in the actual system. For example, we assumed that the probability
of reciprocation ρi is constant, while it is suggested that ρi depends on the



(a) In/out-degree distributions (b) Scatter plot between in/out-degrees

Fig. 7. Results of a numerical simulation, where p = 0.5, κ = 0.5, and ρi obeys a
uniform distribution in [0, 1]. The number of vertices is 100, 000. (a) The in-degree
and out-degree distributions. Blank points for the in-degree and filled points for the
out-degree. (b) Scatter plot between the in-degree and out-degree.

out-degree in the real microblogging service. In future, We will enhance
our model for such inconsistencies.

Microblogging is a new social web service which will be having signifi-
cant importance in the next generation. Toward application in marketing,
we will continue further research for understanding of such a social web
system.
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