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Abstract— We evaluate an agent-based model featuring near-
zero-intelligence traders operating in a call market with a wide
range of trading rules governing the determination of prices,
which orders are executed as well as a range of parameters
regarding market intervention by market makers and the
presence of informed traders. We optimize these trading rules
using a multi-objective population-based incremental learning
algorithm seeking to maximize the trading volume and minimize
the bid-ask spread. Our results suggest that markets should
choose a small tick size if concerns about the bid-ask spread are
dominating and a large tick size if maximizing trading volume
is the main aim. We also find that in contrast to trading rules
in actual markets reverse time priority is an optimal priority
rule.

I. INTRODUCTION

Market microstructure theory as used in conventional
finance suggests that the trading rules applied by a market
affect the prices at which trades occur, see [1] and [2] for an
overview. This influence on prices should then also be visible
in the statistical properties of returns such as their distribution
and autocorrelations. In the highly structured models of mar-
ket microstructure theory it is, however, difficult to evaluate
a wide range of trading rules in a single model. Furthermore,
the behavioral assumptions in those models make it difficult
to assess the impact the changed trading rules have on the
outcome, relative to behavioral influences.

In order to overcome these difficulties we develop an
agent-based model in which traders use a very simple
trading algorithm which does not assume rational behavior
or any other optimizing rule. Such zero-intelligence (ZI)
traders have been first introduced in [3] with the explicit
aim to investigate the importance of the trading rules for
the outcomes of trading. The strategic behavior has been
considered to be a dominant influence factor for the market
dynamics in previous research. However, [3] find that many
of the major properties of double auction markets including
the high allocative efficiency are primarily derived from the
constraints imposed by the market mechanism, independent
of traders’ behavior. The zero intelligence approach has
been widely applied in simulations of financial markets,
particularly for analysis of the stylized facts, see [4], [5],
[6], [7], [8], [9] and [10]. In [11] such traders have also
been used to determine the optimal type of auction market.
The use of appropriate automatons would allow us to focus
on the influence the market structure, i.e. set of trading rules,
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has on the outcomes; in [10], models with near ZI traders do
provide good return properties. In [12] and [13] a single-
objective optimization of this model has been conducted
using the trading-volume and bid-ask spread as objective
functions and in this paper we extend this framework to a
multi-objective setting to evaluate how any conflicts between
different interests in market characteristics might be resolved.

With traders essentially behaving randomly with minimal
restrictions, we are able to investigate a wide range of trading
rules, e.g. the tick size, degree of intervention by market
makers, priority rules, and market transparency, commonly
found in financial markets and conduct research into the
design of call markets to obtain the optimal combination of
these trading rules.

Thus far only very limited attention has been paid to
the optimization of financial markets in the agent-based
literature. Apart from [12] and [13], most notably [11] and
[14] investigate optimization of the real-valued parameter set
for adaptation in the trading agents using Genetic Algorithms
(GA), an adaptive heuristic search algorithm with the evolu-
tionary ideas of natural selection and genetic recombination.
It is shown that a good result is reported with random initial
value using GA together with an appropriate function. In
addition, a recently developed framework of optimization,
the population-based incremental learning (PBIL) has been
widely applied. It is a type of evolutionary algorithm in
which the genotype of the whole population is evolved rather
than individual chromosomes. This algorithm, proposed by
[15], has been found to be simpler and to achieve better
results than the standard genetic algorithm in many circum-
stances, e.g. [16]. Therefore, in this paper, we apply the PBIL
as the optimization algorithm and extend its use to a multi-
objective setting by using the trading volume and bid-ask
spread as objective functions.

Using the results obtained from this research it is possible
to derive recommendations to exchanges, regulators on es-
tablishing the optimal market structure, for securities issuers
to choose the best exchange for their listing and for investors
to choose the most suitable exchange for trading.

We continue in section II by introducing our model as well
as the trading rules considered. Section III then discusses the
results of our computer experiments and section IV concludes
the findings.

II. DESCRIPTION OF THE MARKET

A. The behavior of traders

We investigate a market in which a fixed number of N
traders trade a single asset in a call market. At any time each



trader is either a buyer or seller of the asset and submits buy
orders Bi, i = 1, . . . , N such that at time t the limit price is
taken from a log-normal distribution:

lnBti ∼ iidN
(
ln P̄t + µbuy, σ

2
buy

)
, (1)

where P̄t is the long-term fundamental value in time period
t, which we here assume to be equal to the initial price
P0.1 µbuy denotes the average amount by which the bid
price exceeds the fundamental value, and σ2

buy represents
the variance of bid prices around the mean. With µbuy < 0
the limit bid price will on average be below the fundamental
value, although traders may well submit orders with limit
prices above the fundamental value given the random nature
of the limit price in our model. We might interpret this
either as uncertainty about the fundamental value to which
traders pay limited attention, different opinions about the
true fundamental value or the fact that many traders will
ignore the fundamental value to a large degree in their
decision-making. While experiments have shown that the
exact specification of the decision-making process is not
affecting results, we require a minimal amount of information
which traders use as a common anchor for their decision; this
is necessary to avoid the limit prices and thereby transaction
prices to evolve such that an infinitely large bubble emerges.
This constraint on the behavior of traders thus implicitly
acts as a budget constraint as too large limit prices are not
permitted and similarly too small limit prices will not be
observed, acting as a minimum size requirement for entering
the market.

If we denote by P̂ t−1
i the price at which a trader bought

the asset the last time, the limit price of a sell order is chosen
according to

lnSti ∼ iidN
(

ln P̂ t−1
i + µsell, σ

2
sell

)
, (2)

in which µsell denotes the average amount by which the
ask price exceeds the price previously paid by the trader,
and σ2

sell represents the variance of ask prices. A trader will
only be able to sell those shares he actually holds, i.e. we
do not allow for any short sales, thereby acting implicitly as
a budget constraint on the behavior of traders.

The order size for a sell order will always be equal to the
number of shares held. The order size for buy orders Qti is
a random variable with

lnQti ∼ iidN
(
µsize, σ

2
size

)
, (3)

where µsize denotes the average of the order size, and σ2
size

is the variance of the order size.
An order remains in the order book until it is filled or

canceled; for partially filled orders the remainder of the order
remains in the order book. An order not filled after T ti time
steps is canceled, where

lnT ti ∼ iidN
(
τ, σ2

τ

)
, (4)

1We could also introduce a positive long-term trend of the fundamental
value without changing the results of our model.

in which τ is the average time of order remains in the order
book, and σ2

τ denotes the variance of this time.
The canceled order is replaced by a new order taken from

the following distributions:

lnBti ∼ iidN
(
ln P̄t + µbuy, σ

2
buy

)
, (5)

lnSti ∼ iidN
(
lnP t−1

i + µsell, σ
2
sell

)
,

where P ti denotes the market price at time t.
Whether a trader is a buyer or a seller is determined

as follows: if his last transaction was to buy the asset he
becomes a seller and if his last transaction was to sell the
asset he becomes a buyer. A change from buyer to seller or
vice versa only occurs if he has no order remaining in the
order book. In the initialization of the experiments buyers
and sellers are determined randomly.

B. Determination of transaction prices

Following the price formation approach applied in [3] and
[11], the transaction price is determined where the demand
and supply curves intersect, i.e., the price at the maximal
trading volume is chosen as the trading price. In this market,
limit orders with the highest bid prices are first traded and
cleared in the market; oppositely, the cheapest sell orders are
traded with priority. If we find that there are multiple prices
at which the trading volume shows the same maximal value,
we employ trading rules to determine which of the prices
will be chosen. Any imbalances between buy and sell orders
at the transaction price will lead to the need for rationing;
how this rationing of buy or sell orders is conducted will
depend on the trading rules as outlined below.

In contrast to the models in [3] and [11], however, we
do not use a continuous double auction market but rather a
call market in which orders of traders batched. We batch all
orders in each time step, where a time step consists of the
submission and revision of orders as well as the batching
of orders, the determination of the transaction price and
execution of the trades.

C. Trading rules considered

1) Tick size: In the market we are able to vary a wide
range of trading rules. We will firstly investigate different
tick sizes, i.e. minimum differences between prices at which
orders can be submitted. The tick size has several impacts
during trading. As it represents the cost of getting inside
other competitors quote, the tick size affects the motivation
of submitting limit orders. In addition, the tick size has
an impact on the spreads. As reported in many empirical
investigations, e.g. [17] and [18], amongst others, the bid-
ask spread declined dramatically by about 25% with the
reduction of tick size from 1/8 to 1/16 dollar on the New
York Stock Exchange (NYSE). In order to make limit prices
to comply to the tick size, we will lower any limit price
of buy orders as determined in (1) and (5) to the next
permissible price and similarly raise the limit price of sell
orders determined by (2) and (5) to the next permissible
price.



2) Priority rules: Secondly, different priority rules are
employed to determine the rationing of orders in the case of
an imbalance between buy and sell orders at the transaction
price, see [19] and [20] for an overview of the different
priority rules found in several markets. The enforcement
of priority rules, as the primary difference between market
structures, is another important design feature of trading
systems. We use in particular time priority, which is the
most commonly used rule. It adheres to the principle of first-
come first-served, and ensures that orders submitted earlier
will be filled first; reverse time priority in which orders
submitted later will receive priority to be filled; another
frequently used rule to promote traders to place larger orders
is the size priority in which larger orders receive priority;
random selection in which the orders to be filled are selected
randomly and with pro-rata selection, a common practice
on many financial market such as the Stock Exchange of
Hong Kong, the old Toronto Stock Exchange and the batch
systems, in which all orders get filled partially to the same
fraction.

3) Multiple prices: Thirdly, for the case of multiple prices
at which the trading volume is maximal we determine
the transaction price to be either the price closest to the
previous price, the price furthest from the previous price, the
highest price, the lowest price, the price with minimum order
imbalance (the difference between the volume of buy and
sell orders at the transaction price), the price with maximum
order imbalance or a randomly selected price.

4) Market transparency: Fourthly, we also consider mar-
ket transparency, which is defined by [1] as ”the ability of
market participants to observe the information in the trading
process”. In this context, information refers to knowledge
about the prices, the size and direction of orders, and the
identities of market participants. In a transparent market,
traders are able to have access to information on the order
book and react to any orders submitted by other traders. This
could reduce the magnitude of adverse-selection problems.
Hence transparency is expected to increase profit for traders.
[21] show that transparency does reduce the trading costs
incurred by uninformed traders in theory. Empirically, [22]
discover that the pre-trade transparency can narrow the
spreads. However, one can argue that transparency can make
it difficult to supply liquidity to large traders, who may be
reluctant to submit limit orders, since the disclosure may
convey information which makes the price moves against
the trader′s position.

In order to replicate this aspect of the market we assume
that a fraction of γ of the traders has access to the order
book and can observe the potential transaction price as well
as the ensuing order imbalance if the trades were to happen
instantly. They use this information to revise their own order
size according to the size of the order imbalance δ for a buy
and sell order, respectively:

Q̂ti = Qti − αδ, (6)

Q̂ti = Qti + αδ,

where α represents the fraction of order size revised, Qti
is the order size before revision, and Q̂ti is the order size
after revision. This revised size is then used to determine the
transaction price.

5) Market making: As a final aspect we consider the
intervention of a market maker into the trading process.
A market maker would intervene or influence the prices
such that he is prepared to trade a fraction θ of the order
imbalance at any time in the market with the existence of
imbalance between demand and supply at the transaction
price by submitting an offsetting order with pricê̂

P
t

= P t + λIt, (7)

where It denotes the inventory of the market maker, i.e. the
number of shares held by him, λ is the price adjustment
of market maker. Holding a volume of shares as inventory,
the It is a positive number; on the other hand, the It is a
negative value representing a purchasing position. Therefore,
the bid price set by the market maker would be lower than
the market price, while the ask price is higher than the
market price. Such a linear relationship between the price and
inventory has been established in the inventory-based models
of market-making, see e.g. [23], [24] or [25], although other
mechanisms have been proposed in the literature, e.g. in [26].

D. Optimization of market structures

The methodology used to optimize the market structure is
a computer experiment in which trading is simulated over a
given number of time periods with a given market structure.
The optimization of the trading rules is conducted evolution-
ary by population-based incremental learning (PBIL), using
the trading volume (maximizing) and the bid-ask spread
(minimizing) as our performance functions for our multi-
objective optimization. The PBIL, described by [15], is ”a
method of combining genetic algorithms and competitive
learning for function optimization.”

1) Genetic algorithm: Genetic algorithms (GA), devel-
oped in [27], are automated optimization algorithms based
upon the principles of natural selection and genetic recom-
bination. GAs maintain a group of potential solutions to the
objective function being optimized, a so called ”population”,
constructed randomly for the initial generation. Each popu-
lation member is referred to be a chromosome, represented
by a string of binary alphabet. In each generation, the fitness
of each chromosome or potential solution is estimated, i.e.
it measures how well each solution optimizes the objective
function. The better fitted sets are selected as ”parents” and
randomly paired to create a new optimal set as the next
generation with the reproduction process of crossover and
mutation. Since parents with higher fitness are more likely
to pass their characteristics on to the child, the average fitness
would increase. Therefore, the potential solutions in the last
generation are expected to be the best solutions found for
the optimization.

Although GAs have been applied successfully in financial
market research, see [11] and [14], many issues, such as



efficient problem representation and adequate scaling of
functions to make sure the good genes pass down to the
next generation, need to be solved. Among a fixed number
of generations, it is very difficult for the GA to return
the optimal solution due to the randomized searching, and
the inability of comparing the often very small difference
between good and optimal solutions.

2) Competitive learning: Competitive learning, clustering
a number of unlabeled points into different groups based on
the similarity of points, is often used in the field of artificial
neural networks. The input cells in this network represent
the feature vector for each point; the outputs represent the
group where the point has been allocated into. With random
initial weights wij , the activation of the output neuron i is
computed during learning with the following formula

outputi =
∑
j

wij ∗ inputj (8)

where wij is the weight of the connection between input unit
i and output unit j. The weights of the output unit with the
highest activation, i.e. the winning neuron, are modified to
represent the current input better:

∆wij = η(inputj − wij) (9)

with η being the learning rate. The learning process would
repeat until the network has stabilized. In this framework,
all input units get the same signal, while only the winning
neuron with the highest output signal is allowed to fire and
used to represent the current input. After the learning process
is complete, the weights for each output neuron can be
viewed as a prototype vector for a group represented by this
neuron.

3) Population-based incremental learning: In analogy to
GAs, the population-based incremental learning(PBIL) algo-
rithm maintains a population of potential solutions evolving
over a number of generations. However, the PBIL attempts
to create a probability vector, measuring the probability of
each bit position having a ”1” in a binary solution string,
to define a population of a genetic algorithm. Instead of
transforming each individual into a probability vector used
for generating and recombination, the probability vector is
moved towards representing the high evaluation vectors with
a similar manner to the competitive learning process. The
probability vector πt is updated based on the following rule

πt = (1− η)π∗t−1 + ηv̂ (10)

where π∗t−1 denotes the probability of containing a 1 in each
bit position that was used in the previous time period, and v̂
represents the best solution in the current generation selected
according to the fitness function of the optimization and η
the learning rate. The probabilities are subject to mutation at
a mutation rate ξ and the actually chosen probability π∗t will
be

π∗t = (1− ξ)πt + ξε (11)

with ε ∼ U [−1; 1] and π∗t restricted between 1 and 0. This
algorithm is capable to maintain diversity in search as the
same probability vector could generate distinct population.

In [15], the author compares empirical performance of a
standard genetic algorithm to the simple PBIL, and shows
that the PBIL is capable to attain the results more accu-
rately and faster than a standard GA. As a combination of
genetic algorithms and competitive learning it makes PBIL
an successful and efficient search mechanism employed in
such complex optimization problems as the one presented in
this paper.

E. Multi-objective optimization

Applications of multi-objective optimization using the
PBIL algorithm are rare thus far, e.g. [28], and this paper
is one of the few applications in this field. In multi-objective
optimization no single best solution typically exists but
in most cases a trade-off between the different objective
functions are observed. For this reason the reference vector
v̂ in equation (10) will be determined as the Pareto-efficient
solution closest to the currently used vector. ”Closest” is de-
fined by the Euclidean norm and a ”Pareto-efficient” solution
is one for which there is no solution which is superior for
both objective functions.

To employ the PBIL algorithm, we first create a probability
vector specifying the probability of each bit position having
the value one. All the initial value for the PBIL process is
determined randomly, i.e. the initial probability of each bit
position is considered as 0.5. With the probability vector, a
population could be produced accordingly. In each generation
we determine the fitness of each potential solution and the
best fitted set in the current generation is selected and used to
update the probability vector for the subsequent generation
using (10) and (11).

In each time step we determine 100 different parameter
constellations using π∗t and then determine the best perform-
ing parameter constellation from these 100 different market
simulations that then makes v̂.

Each trading rule is coded into a vector v, where the
precision of the continuous variables α, λ, γ, θ is such that
each variable is divided into 17 bits each, the tick size t into
20 bits; the discrete variables (priority rules, multiple prices)
are coded such that all rules are covered.

As is common with multi-objective optimization, we do
not observe an easy convergence of results (even after 5,000
generations no convergence towards a clearly identifiable
Pareto-efficient frontier was observed). For this reason we
run the optimization for 500 generations and use the entire
population of the resulting final generation to analyze our
results. This length is about 4 times the length it took the
single-objective optimization in [12] and [13] to converge
and should therefore represent an adequate time length for
the evolutionary algorithm to evolve.

III. RESULTS OF COMPUTER EXPERIMENTS

A. Parameter constellations considered

We consider a market with 100 traders, which consist of
50 buyers and 50 sellers for the first round. The order book
contains the traders’ ID number, whether they are buying or



TABLE I
PARAMETER VALUES CONSIDERED IN THE COMPUTER EXPERIMENT

Parameter Description Value
µbuy Mean of bid exceeding fundamental value -0.1
µsell Mean of ask exceeding fundamental value 0.1
σbuy Standard deviation of bid 0.1
σsell Standard deviation of ask 0.1
τ Mean time of order in order book 1+ln100
στ Standard deviation of time in order book 1
µsize Mean of order sizes 1
σsize Standard deviation of order sizes 1
µ Trend of the fundamental value 0
t Tick size [0,10]*
α Fraction of order size revised [0,1]*
λ Price adjustment of market maker [0,1]*
γ Fraction of informed traders [0,1]*
θ Imbalance traded by market maker [0,1]*

* denotes the parameter range used in the optimization.

selling, their limit price, order size, order submission time
and length until the order is to be revised. The initial order
book is constructed randomly using the parameter settings
described in table I and the initial price P0 set at 100. We
assume that the trading price equals the previous price if
there is no trading.

Each simulation is run for 2,000 time steps, where the
first 1,000 data is eliminated for the investigation. The multi-
objective PBIL optimization is conducted using a population
size of 100 over 500 generations with learning rate of 0.2
and a mutation rate of 0.01. We repeat the multi-objective
optimization 20 times with the same parameter constellation
to reduce the amount of noise remaining from the lack of
convergence.

B. Evaluation of computer experiments

In figure 1 we show the trading volume and spread of
the final generation for the entire population for all 20
runs of our computer experiments restricted to the area
close to the Pareto-efficient frontier. We observe a trade-off
between the maximal trading volume and the minimal spread,
the approximate location of the Pareto-efficient frontier is
sketched by the line to the lower right. This figure clearly
shows that a low spread will be associated with a low
trading volume while a high trading volume will necessitate
a large spread. The optimal combination between trading
volume and spread will depend on the preferences of the
decision-maker and how he values the importance of these
two aspects.

From figure 1 we have identified 8 markets that approxi-
mately determine the Pareto-efficient frontier, these points are
identified as large red points and associated with numbers;
the market structures of these eight markets are shown in
figure 2. The first point to notice is that unless the decision-
maker puts great emphasis on a large trading volume at the
expense of the spread, the tick size chosen should be very
small as can easily be observed from the top left panel.
Results are more ambiguous for the fraction of informed
traders (top right panel), here no clear pattern can be iden-
tified for different points along the Pareto-efficient frontier,

suggesting that results are not very sensitive to this variable
and informed traders should ideally make approximately 5%
of the trader population. Similarly the fraction of orders
revised by those informed traders seem to be independent of
the location on the Pareto-efficient frontier at approximately
0.6. The same result holds for the intervention of the market
maker who should trade approximately 60% of the order
imbalance and a price adjustment fluctuating widely with an
average of about 0.3. Apart from one instant associated with
a high trading volume and large spread, the optimal priority
rule is reverse time priority and the optimal multi-price rule is
to choose the nearest price to the previous transaction price.
At this stage we can summarize our results in stating that
for determining the location on the Pareto-efficient frontier
only the tick size seems to have a significant impact.

Comparing these results with those in [12] and [13] who
use the same model and optimization technique, although
applying only a single objective function - the trading volume
and spread, respectively - we observe that our results are
largely consistent with those obtained in these papers. We
find that most variables take values similar to the optimal
values in the single-objective optimization, where many were
found to be very variable when running different experi-
ments. Furthermore we are able to recover one feature on
the tick size that has also been found in those papers, when
maximizing trading volume it was found that a large tick size
was optimal while when minimizing the spread a small tick
size was preferable. This feature we also found in our results
as we have established above that when concerns about the
spread dominate the tick size should be small, while it should
be large when the trading volume is of more importance.

Another result was also found to be stable in multi-
objective optimization: the optimal priority rule is reverse
time priority, i.e. orders submitted later are executed earlier.
This result was established when minimizing the spread in
[13] and is confirmed here in a multi-objective setting; when
maximizing the trading volume in [12] priority rules were
found to be ambiguous in the optimal market structure, a fact
that might cause the time priority to be optimal in one case.
Reverse time priority is in opposition to most real markets
that apply price priority and should be an aspect that might
be beneficial for market to consider if they seek to optimize
their market structures.

IV. CONCLUSIONS

In this paper we investigate the combination of a wide
range of trading rules in a multi-objective optimization
by employing population-based incremental learning (PBIL)
in call markets seeking to maximize trading volume and
minimize the bid-ask spread. As trading rules we include
the tick size, priority rules, multi-price rule, intervention of
market makers and market transparency. In order to eliminate
the influence of complex trader behavior we use an agent-
based model in which traders behave nearly randomly, such
that any properties arising can be attributed to the impact of
the trading rules directly rather than trader behavior.



Fig. 1. Market performance after 500 generations

Conducting such an analysis we analyze the market struc-
tures of those markets close to the Pareto-efficient frontier.
The results show that when concerns about the bid-ask
spread are dominating a small tick size should be chosen
and a large tick size if concerns about trading volume are
more important. We also find that as a priority rule markets
should use reverse time priority rather than time priority as
currently done in nearly all markets. These results have direct
consequences for the optimal design of financial markets in
terms of maximization of trading volume while ensuring
a low bid-ask spread, and thus might inform any market
reforms considered by stock, bond or derivatives markets.

In future research the proposed framework can easily be
extended to include other objective functions, like minimiz-
ing volatility, maximizing share value, or maximizing the
trading profits to small traders as alternative or additional
objective functions. Such research would allow us to balance
a wider range of interest in the market and investigate the
sensitivity of the optimal trading rules to the different pref-
erences of decision-makers, thereby giving a more complete
picture of the influences on market performance.
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