
A Measure of Time Series’ Predictability 
Using Genetic Programming 

 
_______________________________________________________________ 
 
Based on standard genetic programming (GP) paradigm, we introduce a new test of 

time series’ predictability. It is an index computed as the ratio of two fitness values 

from GP runs when searching for a series’ data generating process. One value 

belongs to the original series, while the other belongs to the same series after it is 

randomly shuffled. Theoretically, the index boundaries are between zero and 100, 

where zero characterizes stochastic processes while 100 typifies predictability. This 

test helps in reducing model search space and in producing more reliable forecast 

models. 
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1. INTORDUCTION 

Genetic programming is a search technique introduced by Koza (1992). It is useful in 

finding a symbolic structural model that characterizes the dynamical behavior of 

sequential data sets. The method has been rather successful in finding the underlying 

dynamical data generating process (or DGP) in many areas if properly used. Lensberg 

(1997), Fernandez and Evett (1997), Oussaidene et al. (1996), Chen and Yeh (1996), and 

Chen and Yeh (1997) used it to study financial markets for example. McKay et al. (1996) 

and Greeff and Aldrich (1997) applied it to industrial processes. Bettenhausen and 

Marenbach (1995), Hickey (1996), Hiden et al. (1997), and Willis et al. (1997) applied it 
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to chemical and biological processes. Schoenauer et al. (1996) used it to find mechanical 

models.  GP was also used to predict chaotic signals in Fogel and Fogel (1996), Jonsson 

and Barklund (1996), Mulloy et al. (1996), and in Oakly (1996).  

 

We use the results from GP’s search for dynamic structures to introduce a new test of 

time series’ predictability. The aim is to minimize the search space when attempting to 

identify a series’ data generating process. Implementing predictability or complexity of 

time series tests helps reduce high costs of search and specification error. Search space 

can be reduced if there are many independent variables that can possibly be included and 

some choices must be made. Perhaps such a test can help identify clusters of variables 

that best explain the dependent variable. This test also helps find the best possible 

specification and proper structural form. Linear (L), nonlinear (NL), and L-NL 

combination structures are all included in the search for the best specification. Therefore 

such a test may help delete extraneous information and to find the best if not true model 

specification. 

 

There are many tests that apply when analyzing time series. Lee et al. (1993) 

compares a neural network test with five others that test for linearity. All tests in the 

comparison were sensitive to departures from linearity in mean and some may have 

power against series linear in mean with ARCH. These tests are only a first step toward 

analyzing methods capable of unambiguous detection of neglected nonlinearity in 

sequential data. Oakly (1996) used GP to test for chaos. He finds that chaotic signals (or 

nonlinear deterministic processes sensitive to initial conditions) yield richer GP 
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processes. He did not introduce a specific measure that clearly identifies chaotic or other 

signals. Kaboudan (1998) proposed a test for complexity. It is based on the correlation 

dimension estimates of a series before and after randomly shuffling it. The test works 

well when the data set tested is sufficiently long (at least 1,000 observations). Thus there 

remains a need to discover a test that measures the complexity or predictability of scarce 

data. The test proposed in this paper caters to achieving this objective at the cost of 

computational time. While the Kaboudan (1998) test for complexity is data demanding, 

its computational time is relatively short when compared with the proposed new test. 

 

We introduce the proposed new test (η) in Section 3 after reviewing the genetic 

programming paradigm and symbolic regressions used in the search for model structures 

in the next Section. Section 4 contains an evaluation of the test performance using 

experimental data.  It also contains a comparison between the proposed predictability test 

and Kaboudan’s previous complexity test. An application of the two tests to financial 

time series is in Section 5. The conclusion is in Section 6. 

 

2. GENETIC PROGRAMMING 

From a forecaster’s point of view, GP is a form of computerized model specification. 

Koza (1992) created a special form of programming called symbolic regression that 

specializes in searching for the ‘best’ dynamical structural that predicts data series. To 

find that structure, a GP computer program is given the dependent variable, a host of 

many possible independent variables, and a set of operators. The independent ones may 

be lagged dependent variables in a time series model, or a set of possible other 
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explanatory variables determined by the analyst searching for a behavioral model. The 

operators are mathematical functions including the basic arithmetic ones (+ ; - ; * ; ÷) as 

well as trigonometric, exponential, square root, and logarithmic operators. The program 

then randomly selects and combines independent variables and operators in search for a 

model specification that would satisfy some user-specified fitness function. A minimum 

tolerable error at all data points signals the program to terminate the search if it is 

reached. When a program is executed, it generates many combinations of independent 

variables and operators. Each combination is known as an individual (often referred to as 

a tree and sometimes as an equation). A maximum number of variables and operators in 

any equation is also specified by the user and are known as the tree depth. Each set of 

equations simultaneously evaluated is a population. The user also sets the number of 

individuals to include in a single population. A GP code is written to solve each 

individual equation to generate predicted values of the dependent variable. Each 

observation’s error is computed and the sum of squared errors is obtained for each 

individual. That individual characterized as fittest or possessing the lowest SSE is kept in 

memory, and the program generates a new population of individuals. This is done using 

an evolutionary process where crossover and mutation produce the next generation. 

Crossover is a process involving exchanging part of one individual (equation) with part 

of another. Mutation is a process of simply replacing a part of an individual with new 

part(s). Here the fittest individuals get a higher chance of survival and producing new 

equations or individuals. The weaker individuals get a lower chance and ultimately die. 

This process of creating new “fitter” generations continues until a user-specified number 
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of generations is reached. The program saves only the fittest individual for each 

generation and among all populations in a file containing the final results. 

 

Although GP seems logical and may in fact - under proper circumstances - yield a 

‘best’ equation to describe the dynamical process generating a time series, it is not free 

from problems. Here are three: 

1. The algorithm is a search process in a huge space. Therefore, it is conceivable that 

the program gets trapped in a local minimum SSE in the search space. This means that 

there is no guarantee that the program will find that global minimum SSE. To avoid this 

problem it is essential to conduct the search a sufficiently large number of times, hoping 

that one of these will find that global minimum SSE equation or individual. 

Unfortunately, this problem also means that it is extremely difficult if not impossible to 

reproduce results. This is due to the random selection of the initial individuals’ structures, 

and the randomness of crossover and  mutation.  

2. There are so many user-specified parameters that rely entirely on that user’s 

experience and intuition. This problem is so vast; there are numerous studies that attempt 

to address only partials of it. It is sufficient here to mention only a few, especially that no 

attempt will be made in this study to resolve these issues, and since these problems have 

little to no impact on the development of the predictability test. The first, and perhaps of 

concern to practitioners, is the selection of sample size one uses to obtain the symbolic 

regression. There is no agreement in the literature on what may be optimal, but there is 

general agreement that a small sample size is usually sufficient. Small here is defined as 

less than 100 data points. Fernandez and Evett (1997) conducted a study just to evaluate 
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the effects of varying the sample size. They studied trading profitability using three 

different training periods. They found that profitability chances increased when the 

training period is medium (150 days), followed by small (50 days), and worst for large (5 

years). The second perhaps more important problem is the selection of the population size 

and number of generations. Gathercole and Ross (1997) address the problem of selecting 

the appropriate population size and number of generations to run. While Koza (1992) 

favors larger population sizes, Gathercole and Ross find that small populations with 

many generations is better than the opposite. A third, and perhaps less serious problem, is 

the selection of crossover and mutation rates. Harries and Smith (1997) address this 

problem. For the development of the test proposed in this paper, the parameters selected 

to complete all runs are in Table 1, and are discussed later. 

3. The efficacy of the search process is affected by the magnitudes of random 

constants in equations generating a series. One can only postulate the reason. It seems 

that the larger the random constant, the larger the search space the program has to go 

through to ‘find’ that constant. Investigations during this study suggest normalizing the 

data one is modeling to a reasonable range (such as ±1, and not more than ±10) prior to 

completing a GP run. Fortunately, this problem has little to no effect on the test proposed 

in this study either as shown in the next section. None of the experimental data needed 

normalization, but stock returns in Section 5 did. 

 

There are many GP packages one can use to obtain symbolic regression results. We 

selected Andy Singleton’s GPQuick (1995) in C++ after tailoring it to accept input files 

of time series and print the final output in two separate files. One output file contains the 
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fittest equation in each generation and the final equation, and the other contains the 

measures of fitness, R2 and SSE. Table 1 contains the parameters used for all runs in this 

study. They are basically the default ones the developer of the software specified except 

for a few: the population size, the number of generations, the sample size, the tolerance 

error, and the crossover and mutation rates. Sample size, population size, and number of 

generations were selected after completing a Monte Carlo study comparing the 

differences and gains from varying three parameters. The other parameters were 

arbitrarily selected based on what was used in other studies. 

3. THE PREDICTABILITY TEST: η 

The new test is a measure of percentage predictable information in a variable Yt. SSE 

is one way to measure unpredictable information. If Yt actually contains predictable 

information, SSEY should be reasonably low. Randomly shuffling the sequence of Yt will 

ruin predictable information in the original sequence. Accordingly, Yt has low while its 

randomly shuffled sequence St has high entropy. The proposed test is based on 

comparing two SSE values from estimating the two sets of data, series Yt and that same 

series after it is randomly shuffled. Random shuffling is obtained using Efron’s (1982) 

bootstrap method. The method randomly samples data with replacement. This yields a 

new scrambled series with very similar statistical characteristics. The comparison 

between the two SSE values is then feasible and logical given that the variables’ units of 

measurement affect these values. 
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GP is used to find the best fit equation and compute SSE for a given series Yt 

representing a sample of the variable Y collected over t = 1,…,T time periods. The 

prediction error is: 
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If Yt is deterministic, SSEY < SSES. Intuitively, the more deterministic Yt is, the 

lower will be the ratio of SSEY ÷ SSES. Therefore, such ratio is a measure of the 

proportion of entropy in Yt before shuffling. Alternatively, if the Yt is stochastic, using 

GP or any equation estimation method should not have any predictive power, and at least 

theoretically, the ratio of (SSEY ÷ SSES) ≈ 1. This means that predictive information 

entropy of the stochastic Yt was at 100 percent before shuffling. 

   

Statistically, the probability of predictability and non-predictability are mutually 

exclusive and collectively exhaustive events. This means that if a variable is x% 

predictable, it must (100-x%) non-predictable. Given that GP is a random search 

mechanism, the ratio SSEY ÷ SSES will differ from one run to the other. Therefore, 

although the ratio may initially seem as a good measure of the proportion of entropy in 

the data, it is an inconsistent one. Consistency may be introduced by taking an average of 

SSE over a sufficiently larger number of runs. If the mean before and after shuffling SSE 

remains the same, then there was no increase in information entropy due to shuffling; Yt 

is stochastic. If the mean SSE increases, shuffling must have dismembered information. 
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Therefore, the degree of predictability relative to a series’ shuffled sequence may be 

measured by: 

),(1(*100
______

SY SSESSE ÷−=η     (3) 

where 
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YY SSEkSSE −=       (4) 

k is the number of GP runs performed in search for the fittest equation, and 
___

SSSE is 

computed similar to 
___

YSSE but for the shuffled data. 

 

The test measures the percentage hypothetical reversed entropy (or gain in 

information) if a shuffled or randomized series were put back to its original order or 

sequence. It is a percentage based of a statistical mean resulting from a random search. 

Percentage boundaries should, at least theoretically, be between zero and 100. If the 

computed η = 100%, this means that the series is totally predictable. If η = 0, this means 

that the series is totally unpredictable. Somewhere between zero and 100% is the 

proportion of the series that is predictable using GP or perhaps any other forecasting 

methodology. Practically, however, the lower boundary may be violated. This is possible 

since a stochastic Yt and its shuffled counterpart are somewhat predictable using GP as 

the highest R2 values for GS in Table 2 indicate. Therefore, it is not unusual to find that 

the search was more successful in finding some determinism in the shuffled data a 

number of times greater than that found for the original random set. Under such 

conditions, η < 0. Given that the shuffled series is useless, even if it is found more 
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predictable than its originally random series, the final form for the proposed test is 

conditional. Formally, the final η test is: 
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4. EVALUATION AND COMPARISON 

To evaluate the performance of the proposed predictability test and ascertain that its 

results are meaningful, eight experimental series with known dynamical characteristics 

were artificially generated and used. Their dynamical structures contain linear, linear 

stochastic, nonlinear, nonlinear stochastic, and pseudo-random. No attempt was made in 

this study to control the signal-to-noise ratio of the data used in testing. Although 

desirable and was used by Kaboudan (1998), it is left for future investigation. The eight 

structural data generating processes selected here serve this investigation. They are 

different in complexity and should produce different degrees of predictability. The eight 

data generating processes investigated in this study are: 

(1) A simple linear model – OZ: 

     .8708.1 21 −− −= ttt YYY        (6) 

This is a noise free linear function capable of generating an infinite time series. It is 

known as the Ozaki function and is studied by Tong (1990, p. 76). 

 

(2) The logistic map - LG:  

     ).1(4 11 −− −= ttt YYY         (7) 
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This is a nonlinear chaotic function in Grassberger and Procaccia (1983) and often 

cited in the chaos literature. It is a discrete function that generates an infinite time 

series. 

 

(3) The Henon map - HN: 

    .4.113.0 2
12 −− −+= ttt YYY         (8) 

This is also a nonlinear chaotic function in Grassberger and Procaccia (1983) and is 

widely studied in chaos theory as well. It also provides discrete series. 

 

(4) Trigonometric function - TF:  

    .cos85.0sin9.3 21 −− += ttt YYY        (9) 

This is a simple nonlinear trigonometric function capable of producing an infinite time 

series. This transcendental function was created for this study. 

 

(5)  Exponentially weighted coefficients function - EF:  

     .)5.443.1( 2

2
1

−
− −−= t

Y
t YeY t        (10) 

This transcendental function is a difference equation with complex roots. It is studied 

by Tong (1990, p. 71). 

 

(6) AR2 model - AR:  

    ,15.06.0 21 tttt YYY ε++= −−        (11) 
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where εt ~ N(0,1). This is a second order autoregressive model that generates an infinite 

series. It is a linear-stochastic model. 

 

(7) A GARCH(1,1) - GR:  

    
,7.025.01

,

1
2

1 −− ++=

=

ttt

ttt

hYh

hY ε
        (12) 

where εt ~ N(0,1). This is a generalized autoregressive model with conditional 

heteroscedasticity. It is a nonlinear-stochastic system capable of generating an infinite 

time series.  

 

(8) Random - GS: 

 This is pseudo-random data with Gaussian characteristics, also N(0,1). It was 

generated using the statistical software package RATS. 

 

Although the dynamic structure of data generated by these eight processes is known, 

one can only hypothesize about their predictability. It is highly possible that the linear 

data is most predictable, followed by nonlinear data without noise. Linear stochastic is 

probably more predictable than the nonlinear stochastic, and the random set is not 

predictable. We will now apply two tests to measure complexity and predictability of the 

experimental data: a complexity test proposed in Kaboudan (1998) and the predictability 

test proposed above. Neither test attempts to estimate the model or process that generates 

the data, they just measure complexity and predictability, respectively. 
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To measure complexity, Kaboudan (1998) proposed a two step method that 

discriminates between linear, linear stochastic, nonlinear, nonlinear stochastic, and 

random data. First a data set is filtered from linear structure using an AR(p) model with p 

determined following Akaike’s (1974) method, where p is the number of lags. The 

filtering equation yields an R2 that measures the series’ linear DGP component. The 

residuals are then measured for complexity using a θ statistic. If the θ estimate is close to 

1, the data is stochastic, and if it is close to zero, the data is deterministic. Chaotic data 

were found with 0.3 < θ < 0.6. Complexity increased when deterministic signals were 

tarnished with different levels of noise. The θ test is basically a relative measure of the 

change in a series correlation dimension estimate after it is randomly shuffled. 

 

Different data sample sizes were needed for the two tests. To measure complexity, 

each DGP produced 1,500 observations first. The top 400 points were discarded to ensure 

that the data used was on the attractor thus avoiding bias from the selection of starting 

values. Linear filtering produced residuals that are a minimum of 1,000 observations for 

which θ was measured. Each of the residuals produced was shuffled 1,000 times to 

estimate a mean θ, thus avoiding any statistical bias due to random shuffling. To measure 

predictability, only 112 observations were selected per series, specifically observations 

501 to 612 from the 1,500 originally generated. One hundred GP runs were then 

completed for each using twelve lagged values. 

 

Table 2 presents both complexity and predictability measures for the eight functions 

listed above. Each DGP was abbreviated by two letters (above) and identified by them in 
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the Table. The second and third columns contain complexity measures. The balance of 

the Table contains predictability statistics. η was estimated as the average of only the best 

fifty runs per series. Fifty is an arbitrary selection of the number of SSE results to 

average. It was selected for two reasons: It is a number sufficiently large to provide a 

meaningful average, and it suppresses the effect of those runs that generate meaningless 

results when they are trapped in a local minimum.  

 

These results are fairly consistent and confirm one’s intuition about predictability of 

less complex processes. Here are some observations about the information in the Table 

reached by observing both the η percentage and the highest R2 for each process: 

a. The linear process is surely predictable. 

b. Nonlinear processes free from noise are also quite predictable but may vary in 

their predictability level. The variation is not significantly large, however. 

c. Exponential weighted coefficients functions are the least predictable among the 

nonlinear ones studied here. This is not surprising given the structure of the DGP 

in equation (10) above. 

d. Predictability decreased significantly when a stochastic component is part of the 

process. It is obvious and intuitive that linear stochastic is more predictable than 

nonlinear stochastic. It is surprising to find GARCH data as unpredictable as 

random series, however. 
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5. APPLICATION TO FINANCIAL TIME SERIES 

In this section, we apply the tests to real world time series with unknown dynamical 

structures. Three Dow Jones stocks are analyzed here: IBM, GE, and AT&T. The sample 

is rather small but serves the purpose. A large sample is beyond the scope of this study 

and is left for future investigations. Time and quotes (TAQ) data available on CDs from 

the NYSE, Inc. covering October 1996 through March 1997 was used. Three frequencies 

were selected to represent each stock: Prices were collected every 30 minutes, every 

minute, and every price change. Returns, defined as the proportional change in price from 

one observation to the next, are computed for each. These returns are represented by very 

low numerical values that were normalized by multiplying their values by 100. This 

converts the returns to percentages. Traditional analysis of stocks involves analyzing 

time-stamped stock returns using daily data. There are two problems with analyzing such 

data. First, daily closing prices miss far too many price-changes in the course of a single 

trading day. Some of these stocks experience a price change every second of the day, and 

sometimes the price changes more than once per second. The second problem has to do 

with consistency. If one analyzes time-stamped returns, the data analyzed is inconsistent 

since some stocks trade heavily while others thinly. Even the trading frequency of the 

same stock changes within the course of a single day. It is therefore logical to make the 

hypothesis that price-change returns are most predictable, followed by minute-to-minute 

returns, while thirty-minute returns are not predictable. 
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 Table 3 contains stock returns’ complexity and predictability measured results. (PCR 

stands for price-change returns.) Tables 2 and 3 are the same format. Complexity 

statistics are first, followed by those of predictability. These results confirm our 

hypotheses. Here are some observations based on the results in Table 3: 

a. Analysis of 30-minute data shows that only GE is slightly predictable. 

b. Analysis of 1-minute data show that GE is not and the others are somewhat 

predictable. 

c. Analysis of price-change returns shows GE as least complex followed by AT&T. 

d. In general and on the average, there is a better chance predicting price-change 

than predicting one-minute returns, and the latter has a better chance than 30-

minute returns.  

e. Comparing the complexity statistics (R2 and θ) and their relationship with η for 

IBM indicates that if the DGP of a series is a combination of linear-nonlinear, or 

linear-nonlinear-stochastic components, that series DGP is probably 

unpredictable. This is also evident from the one-minute and PCR statistics on 

AT&T. Evidenced increased complexity in such a meager sample is purely 

phenomenological and further investigation is clearly warranted. 

 

6. CONCLUSION 

We proposed a new test that helps forecasters in different disciplines to determine 

whether their data is actually predictable using GP or any equation forecasting technique. 

The new test involves computing percentage measure of predictability. If the computed 

percentage approaches 100, the data is predictable using conventional methods as well as 
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GP. If the computed percentage approaches zero, the data is random or unpredictable. 

The test was compared with Kaboudan’s (1998) complexity test. They both seem to 

provide important information about data prior to attempting to model and forecast. 

Kaboudan’s complexity test seems to be able to discriminate between linear, nonlinear, 

nonlinear chaotic, linear stochastic, nonlinear stochastic, and random data. It does not tell 

us whether the series is predictable. The proposed predictability test furnishes such 

information missed by the complexity test. There is another major difference 

distinguishing the two tests from each other. The complexity test is demanding when it 

comes to the number of observations needed to obtain statistically reliable results. The 

results are reliable if at least 1,000 observations are used. Its computational time is very 

low relative to the predictability test. One can determine complexity in a few minutes 

given an average PC with 230 MHz. This is not true with the predictability test. It can run 

with as few as 80 to 100 observations, but the running time is no less than 4 hours on the 

same PC. 
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Table 1 
Specifications for GPQucik Configuration Files 

 
Generations 20,000 Populations 2,000 
Error 0.00001 Sample 100 
Terminals 12 Max. expression 50 
Init. Expression 6 Mutation rate 100 
Cross self 1 Unrestrict. Wt. 70 
Cross Wt. 100 Mut. Wt. 30 
Mute node Wt. 100 Mute Const. Wt. 100 
Mute shrink st 100 Copy Wt. 10 
Select method 4 Tourn. size 7 
Mate radius 500 Kill tourn. 2 
Max. age 2000   
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Table 2: Signal and Noisy Logistic Map Predictability & Complexity 
        

  Original Shuffled       

  λ    
Lowest 50% 
Mean SSEY 

Standard
Deviation

Lowest 50%
Mean SSES 

Standard
Deviation  η R2 Mean θ 

          �     
 
   0.83 0.64 10.81 0.23 92.35 0.00 0.39 

60 2.51 0.61 11.68 0.28 78.50 0.00 0.40 
50 2.13 0.36 10.16 0.25 79.03 0.00 0.41 
40 2.67 0.47 12.36 2.62 78.43 0.00 0.41 
30 3.04 0.47 11.63 0.29 73.84 0.00 0.42 
20 4.20 1.05 11.20 0.20 62.53 0.00 0.45 
15 5.56 0.70 10.28 0.27 45.91 0.00 0.49 
10 6.37 0.84 14.11 0.29 54.83 0.00 0.58 
5 10.21 0.33 14.07 0.37 27.42 0.00 0.76 

1 22.81 0.76 20.32 0.39 0.00 0.00 1.03 
 

∞



 23

 

Table 3: Applications of the Predictability & Complexity Measures 
        

  Original Shuffled       

Functions 
Lowest 50% 
Mean SSEY 

Standard
Deviation

Lowest 50%
Mean SSES 

Standard
Deviation  η R2 Mean θ 

        �     
Linear:       �     

OZ 1.96 0.55 384.73 18.68 99.49 0.87 0.31 
                

Nonlinear:               
TF 27.64 10.62 769.53 19.22 96.41 0.00 0.50 
HN 4.18 1.11 41.71 1.24 89.98 0.27 0.54 
EF 138.87 30.89 653.65 24.39 78.75 0.00 0.51 
MG 3.71 0.13 6.50 0.40 42.92 0.49 0.75 

                
Nonlinear- 
Stochastic:               

AR2 84.80 3.44 259.56 7.07 67.33 0.72 0.99 
BL 226.29 24.40 469.82 36.68 51.84 0.03 0.84 
GR 70.64 2.12 73.19 2.70 3.49 0.00 0.92 

                
Random:               

GS 76.79 2.27 68.58 2.05 0.00 0.00 1.01 
ER 16.36 0.29 12.19 0.70 0.00 0.00 1.01 
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Table 4: Predictability & Complexity of Stock Returns 
        

Stocks 
Lowest 50% 
Mean SSEY 

Standard
Deviation

Lowest 50%
Mean SSES 

Standard
Deviation  η R2 Mean θ 

        �    
30-minute:            
                
BA 13.86 0.70 12.66 1.99 0.00 0.07 0.92 
GE 13.14 0.74 10.08 0.36 0.00 0.03 0.63 
GM 11.65 0.39 8.61 0.30 0.00 0.49 0.80 
IBM 14.12 0.75 10.28 0.31 0.00 0.46 0.36 
S 34.24 0.69 34.99 1.35 2.15 0.01 0.93 
T 9.28 0.34 7.77 0.18 0.00 0.08 0.67 
WMT 46.19 1.11 53.55 2.40 13.74 0.07 0.88 
XON 8.62 0.21 9.27 0.26 7.01 0.02 0.78 
                
1-minute:            
                
BA 8.21 0.29 7.20 0.13 0.00 0.12 0.90 
GE 0.60 0.01 0.61 0.02 1.07 0.10 1.48 
GM 5.96 0.15 6.67 0.35 10.76 0.13 0.31 
IBM 0.90 0.02 0.85 0.03 0.00 0.21 0.91 
S 2.72 0.10 2.90 0.07 6.32 0.11 0.31 
T 3.08 0.07 6.18 0.34 50.10 0.45 0.68 
WMT 7.38 0.33 6.43 0.10 0.00 0.30 0.19 
XON 0.90 0.02 0.89 0.03 0.00 0.11 1.28 
             
PCRs:            
             
BA 1.02 0.02 1.66 0.06 38.59 0.32 0.27 
GE 0.57 0.03 2.06 0.08 72.44 0.59 0.18 
GM 2.50 0.05 5.99 0.31 58.32 0.54 0.32 
IBM 0.85 0.05 1.23 0.04 30.75 0.28 0.44 
S 1.37 0.02 4.69 0.14 70.70 0.42 0.04 
T 9.76 0.30 16.68 0.83 41.48 0.59 0.35 
WMT 1.95 0.51 22.79 0.40 91.46 0.83 0.80 
XON 0.95 0.04 1.82 0.05 47.67 0.56 0.41 
 


