
A Measure of Time Series’ Predictability
Using Genetic Programming

Based on standard genetic programming (GP) paradigm, we introduce a new test of

time series’ predictability. It is an index computed as the ratio of two fitness values

from GP runs when searching for a series’ data generating process. One value

belongs to the original series, while the other belongs to the same series after it is

randomly shuffled. Theoretically, the index boundaries are between zero and 100,

where zero characterizes stochastic processes while 100 typifies predictability. This

test helps in reducing model search space and in producing more reliable forecast

models.

KEY WORD: Complexity; Nonlinearity; Artificial intelligence; Search algorithms.

1. INTORDUCTION

Genetic programming is a search technique introduced by Koza (1992). It is useful in

finding a symbolic structural model that characterizes the dynamical behavior of

sequential data sets. The method has been rather successful in finding the underlying

dynamical data generating process (or DGP) in many areas if properly used. Lensberg

(1997), Fernandez and Evett (1997), Oussaidene et al. (1996), Chen and Yeh (1996), and

Chen and Yeh (1997) used it to study financial markets for example. McKay et al. (1996)

and Greeff and Aldrich (1997) applied it to industrial processes. Bettenhausen and

Marenbach (1995), Hickey (1996), Hiden et al. (1997), and Willis et al. (1997) applied it

 2

to chemical and biological processes. Schoenauer et al. (1996) used it to find mechanical

models. GP was also used to predict chaotic signals in Fogel and Fogel (1996), Jonsson

and Barklund (1996), Mulloy et al. (1996), and in Oakly (1996).

We use the results from GP’s search for dynamic structures to introduce a new test of

time series’ predictability. The aim is to minimize the search space when attempting to

identify a series’ data generating process. Implementing predictability or complexity of

time series tests helps reduce high costs of search and specification error. Search space

can be reduced if there are many independent variables that can possibly be included and

some choices must be made. Perhaps such a test can help identify clusters of variables

that best explain the dependent variable. This test also helps find the best possible

specification and proper structural form. Linear (L), nonlinear (NL), and L-NL

combination structures are all included in the search for the best specification. Therefore

such a test may help delete extraneous information and to find the best if not true model

specification.

There are many tests that apply when analyzing time series. Lee et al. (1993)

compares a neural network test with five others that test for linearity. All tests in the

comparison were sensitive to departures from linearity in mean and some may have

power against series linear in mean with ARCH. These tests are only a first step toward

analyzing methods capable of unambiguous detection of neglected nonlinearity in

sequential data. Oakly (1996) used GP to test for chaos. He finds that chaotic signals (or

nonlinear deterministic processes sensitive to initial conditions) yield richer GP

 3

processes. He did not introduce a specific measure that clearly identifies chaotic or other

signals. Kaboudan (1998) proposed a test for complexity. It is based on the correlation

dimension estimates of a series before and after randomly shuffling it. The test works

well when the data set tested is sufficiently long (at least 1,000 observations). Thus there

remains a need to discover a test that measures the complexity or predictability of scarce

data. The test proposed in this paper caters to achieving this objective at the cost of

computational time. While the Kaboudan (1998) test for complexity is data demanding,

its computational time is relatively short when compared with the proposed new test.

We introduce the proposed new test (η) in Section 3 after reviewing the genetic

programming paradigm and symbolic regressions used in the search for model structures

in the next Section. Section 4 contains an evaluation of the test performance using

experimental data. It also contains a comparison between the proposed predictability test

and Kaboudan’s previous complexity test. An application of the two tests to financial

time series is in Section 5. The conclusion is in Section 6.

2. GENETIC PROGRAMMING

From a forecaster’s point of view, GP is a form of computerized model specification.

Koza (1992) created a special form of programming called symbolic regression that

specializes in searching for the ‘best’ dynamical structural that predicts data series. To

find that structure, a GP computer program is given the dependent variable, a host of

many possible independent variables, and a set of operators. The independent ones may

be lagged dependent variables in a time series model, or a set of possible other

 4

explanatory variables determined by the analyst searching for a behavioral model. The

operators are mathematical functions including the basic arithmetic ones (+ ; - ; * ; ÷) as

well as trigonometric, exponential, square root, and logarithmic operators. The program

then randomly selects and combines independent variables and operators in search for a

model specification that would satisfy some user-specified fitness function. A minimum

tolerable error at all data points signals the program to terminate the search if it is

reached. When a program is executed, it generates many combinations of independent

variables and operators. Each combination is known as an individual (often referred to as

a tree and sometimes as an equation). A maximum number of variables and operators in

any equation is also specified by the user and are known as the tree depth. Each set of

equations simultaneously evaluated is a population. The user also sets the number of

individuals to include in a single population. A GP code is written to solve each

individual equation to generate predicted values of the dependent variable. Each

observation’s error is computed and the sum of squared errors is obtained for each

individual. That individual characterized as fittest or possessing the lowest SSE is kept in

memory, and the program generates a new population of individuals. This is done using

an evolutionary process where crossover and mutation produce the next generation.

Crossover is a process involving exchanging part of one individual (equation) with part

of another. Mutation is a process of simply replacing a part of an individual with new

part(s). Here the fittest individuals get a higher chance of survival and producing new

equations or individuals. The weaker individuals get a lower chance and ultimately die.

This process of creating new “fitter” generations continues until a user-specified number

 5

of generations is reached. The program saves only the fittest individual for each

generation and among all populations in a file containing the final results.

Although GP seems logical and may in fact - under proper circumstances - yield a

‘best’ equation to describe the dynamical process generating a time series, it is not free

from problems. Here are three:

1. The algorithm is a search process in a huge space. Therefore, it is conceivable that

the program gets trapped in a local minimum SSE in the search space. This means that

there is no guarantee that the program will find that global minimum SSE. To avoid this

problem it is essential to conduct the search a sufficiently large number of times, hoping

that one of these will find that global minimum SSE equation or individual.

Unfortunately, this problem also means that it is extremely difficult if not impossible to

reproduce results. This is due to the random selection of the initial individuals’ structures,

and the randomness of crossover and mutation.

2. There are so many user-specified parameters that rely entirely on that user’s

experience and intuition. This problem is so vast; there are numerous studies that attempt

to address only partials of it. It is sufficient here to mention only a few, especially that no

attempt will be made in this study to resolve these issues, and since these problems have

little to no impact on the development of the predictability test. The first, and perhaps of

concern to practitioners, is the selection of sample size one uses to obtain the symbolic

regression. There is no agreement in the literature on what may be optimal, but there is

general agreement that a small sample size is usually sufficient. Small here is defined as

less than 100 data points. Fernandez and Evett (1997) conducted a study just to evaluate

 6

the effects of varying the sample size. They studied trading profitability using three

different training periods. They found that profitability chances increased when the

training period is medium (150 days), followed by small (50 days), and worst for large (5

years). The second perhaps more important problem is the selection of the population size

and number of generations. Gathercole and Ross (1997) address the problem of selecting

the appropriate population size and number of generations to run. While Koza (1992)

favors larger population sizes, Gathercole and Ross find that small populations with

many generations is better than the opposite. A third, and perhaps less serious problem, is

the selection of crossover and mutation rates. Harries and Smith (1997) address this

problem. For the development of the test proposed in this paper, the parameters selected

to complete all runs are in Table 1, and are discussed later.

3. The efficacy of the search process is affected by the magnitudes of random

constants in equations generating a series. One can only postulate the reason. It seems

that the larger the random constant, the larger the search space the program has to go

through to ‘find’ that constant. Investigations during this study suggest normalizing the

data one is modeling to a reasonable range (such as ±1, and not more than ±10) prior to

completing a GP run. Fortunately, this problem has little to no effect on the test proposed

in this study either as shown in the next section. None of the experimental data needed

normalization, but stock returns in Section 5 did.

There are many GP packages one can use to obtain symbolic regression results. We

selected Andy Singleton’s GPQuick (1995) in C++ after tailoring it to accept input files

of time series and print the final output in two separate files. One output file contains the

 7

fittest equation in each generation and the final equation, and the other contains the

measures of fitness, R2 and SSE. Table 1 contains the parameters used for all runs in this

study. They are basically the default ones the developer of the software specified except

for a few: the population size, the number of generations, the sample size, the tolerance

error, and the crossover and mutation rates. Sample size, population size, and number of

generations were selected after completing a Monte Carlo study comparing the

differences and gains from varying three parameters. The other parameters were

arbitrarily selected based on what was used in other studies.

3. THE PREDICTABILITY TEST: η

The new test is a measure of percentage predictable information in a variable Yt. SSE

is one way to measure unpredictable information. If Yt actually contains predictable

information, SSEY should be reasonably low. Randomly shuffling the sequence of Yt will

ruin predictable information in the original sequence. Accordingly, Yt has low while its

randomly shuffled sequence St has high entropy. The proposed test is based on

comparing two SSE values from estimating the two sets of data, series Yt and that same

series after it is randomly shuffled. Random shuffling is obtained using Efron’s (1982)

bootstrap method. The method randomly samples data with replacement. This yields a

new scrambled series with very similar statistical characteristics. The comparison

between the two SSE values is then feasible and logical given that the variables’ units of

measurement affect these values.

 8

GP is used to find the best fit equation and compute SSE for a given series Yt

representing a sample of the variable Y collected over t = 1,…,T time periods. The

prediction error is:

,)(2
^

1
t

T

t
tY YYSSE −= ∑

=

 (1)

where
^
Y are the predicted values of Yt. SSE of St is:

.)(2
^

1
t

T

t
tS SSSSE −= ∑

=

 (2)

If Yt is deterministic, SSEY < SSES. Intuitively, the more deterministic Yt is, the

lower will be the ratio of SSEY ÷ SSES. Therefore, such ratio is a measure of the

proportion of entropy in Yt before shuffling. Alternatively, if the Yt is stochastic, using

GP or any equation estimation method should not have any predictive power, and at least

theoretically, the ratio of (SSEY ÷ SSES) ≈ 1. This means that predictive information

entropy of the stochastic Yt was at 100 percent before shuffling.

Statistically, the probability of predictability and non-predictability are mutually

exclusive and collectively exhaustive events. This means that if a variable is x%

predictable, it must (100-x%) non-predictable. Given that GP is a random search

mechanism, the ratio SSEY ÷ SSES will differ from one run to the other. Therefore,

although the ratio may initially seem as a good measure of the proportion of entropy in

the data, it is an inconsistent one. Consistency may be introduced by taking an average of

SSE over a sufficiently larger number of runs. If the mean before and after shuffling SSE

remains the same, then there was no increase in information entropy due to shuffling; Yt

is stochastic. If the mean SSE increases, shuffling must have dismembered information.

 9

Therefore, the degree of predictability relative to a series’ shuffled sequence may be

measured by:

),(1(*100

SY SSESSE ÷−=η (3)

where

,*1

YY SSEkSSE −= (4)

k is the number of GP runs performed in search for the fittest equation, and

SSSE is

computed similar to

YSSE but for the shuffled data.

The test measures the percentage hypothetical reversed entropy (or gain in

information) if a shuffled or randomized series were put back to its original order or

sequence. It is a percentage based of a statistical mean resulting from a random search.

Percentage boundaries should, at least theoretically, be between zero and 100. If the

computed η = 100%, this means that the series is totally predictable. If η = 0, this means

that the series is totally unpredictable. Somewhere between zero and 100% is the

proportion of the series that is predictable using GP or perhaps any other forecasting

methodology. Practically, however, the lower boundary may be violated. This is possible

since a stochastic Yt and its shuffled counterpart are somewhat predictable using GP as

the highest R2 values for GS in Table 2 indicate. Therefore, it is not unusual to find that

the search was more successful in finding some determinism in the shuffled data a

number of times greater than that found for the original random set. Under such

conditions, η < 0. Given that the shuffled series is useless, even if it is found more

 10

predictable than its originally random series, the final form for the proposed test is

conditional. Formally, the final η test is:







÷−

>÷
=

.),(1(*100

,1)(,0

otherwiseSSESSE

SSESSEif

SY

SYη (5)

4. EVALUATION AND COMPARISON

To evaluate the performance of the proposed predictability test and ascertain that its

results are meaningful, eight experimental series with known dynamical characteristics

were artificially generated and used. Their dynamical structures contain linear, linear

stochastic, nonlinear, nonlinear stochastic, and pseudo-random. No attempt was made in

this study to control the signal-to-noise ratio of the data used in testing. Although

desirable and was used by Kaboudan (1998), it is left for future investigation. The eight

structural data generating processes selected here serve this investigation. They are

different in complexity and should produce different degrees of predictability. The eight

data generating processes investigated in this study are:

(1) A simple linear model – OZ:

 .8708.1 21 −− −= ttt YYY (6)

This is a noise free linear function capable of generating an infinite time series. It is

known as the Ozaki function and is studied by Tong (1990, p. 76).

(2) The logistic map - LG:

).1(4 11 −− −= ttt YYY (7)

 11

This is a nonlinear chaotic function in Grassberger and Procaccia (1983) and often

cited in the chaos literature. It is a discrete function that generates an infinite time

series.

(3) The Henon map - HN:

 .4.113.0 2
12 −− −+= ttt YYY (8)

This is also a nonlinear chaotic function in Grassberger and Procaccia (1983) and is

widely studied in chaos theory as well. It also provides discrete series.

(4) Trigonometric function - TF:

 .cos85.0sin9.3 21 −− += ttt YYY (9)

This is a simple nonlinear trigonometric function capable of producing an infinite time

series. This transcendental function was created for this study.

(5) Exponentially weighted coefficients function - EF:

 .)5.443.1(2

2
1

−
− −−= t

Y
t YeY t (10)

This transcendental function is a difference equation with complex roots. It is studied

by Tong (1990, p. 71).

(6) AR2 model - AR:

 ,15.06.0 21 tttt YYY ε++= −− (11)

 12

where εt ~ N(0,1). This is a second order autoregressive model that generates an infinite

series. It is a linear-stochastic model.

(7) A GARCH(1,1) - GR:

,7.025.01

,

1
2

1 −− ++=

=

ttt

ttt

hYh

hY ε
 (12)

where εt ~ N(0,1). This is a generalized autoregressive model with conditional

heteroscedasticity. It is a nonlinear-stochastic system capable of generating an infinite

time series.

(8) Random - GS:

 This is pseudo-random data with Gaussian characteristics, also N(0,1). It was

generated using the statistical software package RATS.

Although the dynamic structure of data generated by these eight processes is known,

one can only hypothesize about their predictability. It is highly possible that the linear

data is most predictable, followed by nonlinear data without noise. Linear stochastic is

probably more predictable than the nonlinear stochastic, and the random set is not

predictable. We will now apply two tests to measure complexity and predictability of the

experimental data: a complexity test proposed in Kaboudan (1998) and the predictability

test proposed above. Neither test attempts to estimate the model or process that generates

the data, they just measure complexity and predictability, respectively.

 13

To measure complexity, Kaboudan (1998) proposed a two step method that

discriminates between linear, linear stochastic, nonlinear, nonlinear stochastic, and

random data. First a data set is filtered from linear structure using an AR(p) model with p

determined following Akaike’s (1974) method, where p is the number of lags. The

filtering equation yields an R2 that measures the series’ linear DGP component. The

residuals are then measured for complexity using a θ statistic. If the θ estimate is close to

1, the data is stochastic, and if it is close to zero, the data is deterministic. Chaotic data

were found with 0.3 < θ < 0.6. Complexity increased when deterministic signals were

tarnished with different levels of noise. The θ test is basically a relative measure of the

change in a series correlation dimension estimate after it is randomly shuffled.

Different data sample sizes were needed for the two tests. To measure complexity,

each DGP produced 1,500 observations first. The top 400 points were discarded to ensure

that the data used was on the attractor thus avoiding bias from the selection of starting

values. Linear filtering produced residuals that are a minimum of 1,000 observations for

which θ was measured. Each of the residuals produced was shuffled 1,000 times to

estimate a mean θ, thus avoiding any statistical bias due to random shuffling. To measure

predictability, only 112 observations were selected per series, specifically observations

501 to 612 from the 1,500 originally generated. One hundred GP runs were then

completed for each using twelve lagged values.

Table 2 presents both complexity and predictability measures for the eight functions

listed above. Each DGP was abbreviated by two letters (above) and identified by them in

 14

the Table. The second and third columns contain complexity measures. The balance of

the Table contains predictability statistics. η was estimated as the average of only the best

fifty runs per series. Fifty is an arbitrary selection of the number of SSE results to

average. It was selected for two reasons: It is a number sufficiently large to provide a

meaningful average, and it suppresses the effect of those runs that generate meaningless

results when they are trapped in a local minimum.

These results are fairly consistent and confirm one’s intuition about predictability of

less complex processes. Here are some observations about the information in the Table

reached by observing both the η percentage and the highest R2 for each process:

a. The linear process is surely predictable.

b. Nonlinear processes free from noise are also quite predictable but may vary in

their predictability level. The variation is not significantly large, however.

c. Exponential weighted coefficients functions are the least predictable among the

nonlinear ones studied here. This is not surprising given the structure of the DGP

in equation (10) above.

d. Predictability decreased significantly when a stochastic component is part of the

process. It is obvious and intuitive that linear stochastic is more predictable than

nonlinear stochastic. It is surprising to find GARCH data as unpredictable as

random series, however.

 15

5. APPLICATION TO FINANCIAL TIME SERIES

In this section, we apply the tests to real world time series with unknown dynamical

structures. Three Dow Jones stocks are analyzed here: IBM, GE, and AT&T. The sample

is rather small but serves the purpose. A large sample is beyond the scope of this study

and is left for future investigations. Time and quotes (TAQ) data available on CDs from

the NYSE, Inc. covering October 1996 through March 1997 was used. Three frequencies

were selected to represent each stock: Prices were collected every 30 minutes, every

minute, and every price change. Returns, defined as the proportional change in price from

one observation to the next, are computed for each. These returns are represented by very

low numerical values that were normalized by multiplying their values by 100. This

converts the returns to percentages. Traditional analysis of stocks involves analyzing

time-stamped stock returns using daily data. There are two problems with analyzing such

data. First, daily closing prices miss far too many price-changes in the course of a single

trading day. Some of these stocks experience a price change every second of the day, and

sometimes the price changes more than once per second. The second problem has to do

with consistency. If one analyzes time-stamped returns, the data analyzed is inconsistent

since some stocks trade heavily while others thinly. Even the trading frequency of the

same stock changes within the course of a single day. It is therefore logical to make the

hypothesis that price-change returns are most predictable, followed by minute-to-minute

returns, while thirty-minute returns are not predictable.

 16

 Table 3 contains stock returns’ complexity and predictability measured results. (PCR

stands for price-change returns.) Tables 2 and 3 are the same format. Complexity

statistics are first, followed by those of predictability. These results confirm our

hypotheses. Here are some observations based on the results in Table 3:

a. Analysis of 30-minute data shows that only GE is slightly predictable.

b. Analysis of 1-minute data show that GE is not and the others are somewhat

predictable.

c. Analysis of price-change returns shows GE as least complex followed by AT&T.

d. In general and on the average, there is a better chance predicting price-change

than predicting one-minute returns, and the latter has a better chance than 30-

minute returns.

e. Comparing the complexity statistics (R2 and θ) and their relationship with η for

IBM indicates that if the DGP of a series is a combination of linear-nonlinear, or

linear-nonlinear-stochastic components, that series DGP is probably

unpredictable. This is also evident from the one-minute and PCR statistics on

AT&T. Evidenced increased complexity in such a meager sample is purely

phenomenological and further investigation is clearly warranted.

6. CONCLUSION

We proposed a new test that helps forecasters in different disciplines to determine

whether their data is actually predictable using GP or any equation forecasting technique.

The new test involves computing percentage measure of predictability. If the computed

percentage approaches 100, the data is predictable using conventional methods as well as

 17

GP. If the computed percentage approaches zero, the data is random or unpredictable.

The test was compared with Kaboudan’s (1998) complexity test. They both seem to

provide important information about data prior to attempting to model and forecast.

Kaboudan’s complexity test seems to be able to discriminate between linear, nonlinear,

nonlinear chaotic, linear stochastic, nonlinear stochastic, and random data. It does not tell

us whether the series is predictable. The proposed predictability test furnishes such

information missed by the complexity test. There is another major difference

distinguishing the two tests from each other. The complexity test is demanding when it

comes to the number of observations needed to obtain statistically reliable results. The

results are reliable if at least 1,000 observations are used. Its computational time is very

low relative to the predictability test. One can determine complexity in a few minutes

given an average PC with 230 MHz. This is not true with the predictability test. It can run

with as few as 80 to 100 observations, but the running time is no less than 4 hours on the

same PC.

 18

REFERENCES

Akaike, H. (1974), “A New Look at the Statistical Model Identification,” IEEE

Transactions on Automatic Control, 19, 716-723.

Bettenhausen, K., and Marenbach, P., (1995), “Self-Organizing Modelling of

Biotechnological Batch and Fed-Batch Fermentations,” In F. Breitenecker and I.

Husinsky, eds., EUROSIM ’95: Simulation Congress: Proceedings of EUROSIM

Conference, Vienna, Austria, Elsevier Science B.V., Amsterdam, 445-450.

Chen, S., and Yeh, C., (1996), “Genetic Programming and the Efficient Market

Hypothesis,” in Genetic Programming: Proceedings of the First Annual Conference

1996, edited by J. Koza, D. Goldberg, D. Fogel, and R. Riolo, The MIT Press,

Cambridge, Massachusetts, 45-53.

 Chen, S., and Yeh, C., (1997), “Using Genetic Programming to Model Volatility in

Financial Time Series,” in Genetic Programming 1997: Proceedings of the Second

Annual Conference, edited by J. Koza, K. Deb, M. Dorigo, D. Fogel, M. Garzon, H.

Iba, and R. Riolo, Morgan Kaufmann, San Francisco, 58-63.

Efron, B. (1982), The Jackknife, the Bootstrap, and Other Resampling Plans, Society for

Industrial and Applied Mathematics, Philadelphia.

 Fernandez, T., and Evett, M., (1997), “Training Period Size and Evolved Trading

Systems,” in Genetic Programming 1997: Proceedings of the Second Annual

Conference, edited by J. Koza, K. Deb, M. Dorigo, D. Fogel, M. Garzon, H. Iba, and

R. Riolo, Morgan Kaufmann, San Francisco, 95.

Fogel, D., and Fogel, L. (1996), “Preliminary Experiments on Discriminating Between

Chaotic Signals and Noise Using Evolutionary Programming,” in Genetic

Programming: Proceedings of the First Annual Conference 1996, edited by J. Koza,

D. Goldberg, D. Fogel, and R. Riolo, The MIT Press, Cambridge, Massachusetts,

512-520.

Gathercole, C., and Ross, P. (1997), “Small Populations Over Many Generations Can

Beat Large Populations Over Few Generations in Genetic Programming,” in Genetic

Programming 1997: Proceedings of the Second Annual Conference, edited by J.

Koza, K. Deb, M. Dorigo, D. Fogel, M. Garzon, H. Iba, and R. Riolo, Morgan

Kaufmann, San Francisco, 111-118.

 19

Grassberger, P., and Procaccia, I., (1983), “Measuring the Strangeness of Strange

Attractors,” Physica D, 9, 189-208.

Greeff, D., and Aldrich, C., (1997), “Evolution of Empirical Models for Metallurgical

Process Systems,” in Genetic Programming 1997: Proceedings of the Second Annual

Conference, edited by J. Koza, K. Deb, M. Dorigo, D. Fogel, M. Garzon, H. Iba, and

R. Riolo, Morgan Kaufmann, San Francisco, 138.

Harries, K., and Smith, P., (1997), “Exploring Alternative Operators and Search

Strategies in Genetic Programming,” in Genetic Programming 1997: Proceedings of

the Second Annual Conference, edited by J. Koza, K. Deb, M. Dorigo, D. Fogel, M.

Garzon, H. Iba, and R. Riolo, Morgan Kaufmann, San Francisco, 147-155.

Hickey, R. (1996), “Noise Modelling and Evaluating Learning from Examples,” Artificial

Intelligence, 82, 157-179.

Hiden, H., Willis, M., McKay, B., and Montague, G. (1997), “Non-Linear and Direction

Dependent Dynamic Modelling Using Genetic Programming,” in Genetic

Programming 1997: Proceedings of the Second Annual Conference, edited by J.

Koza, K. Deb, M. Dorigo, D. Fogel, M. Garzon, H. Iba, and R. Riolo, Morgan

Kaufmann, San Francisco, 169-173.

Jonsson, P., and Barklund, J. (1996), “Characterizing Signal Behavior Using Genetic

Programming,” in T. Fogarty, ed., Lectures in Computer Science 1143, Evolutionary

Computing, AISB Workshop, Brighton, U.K., Springer-Verlag, Berlin, 62-72.

Kaboudan, M. (1998), “Statistical Properties of Time-Series-Complexity Measure

Applied to Stock Returns,” forthcoming in Computational Economics.

Koza, J. (1992), Genetic Programming, The MIT Press, Cambridge, Massachusetts.

Lee, T., White, H., and Granger, C., (1993), “Testing for Neglected Nonlinearity in Time

Series Models,” Journal of Econometrics, 56, 269-290.

Lensberg, T. (1997), “A Genetic Programming Experiment on Investment Behavior

under Knightian Uncertainty,” in Genetic Programming 1997: Proceedings of the

Second Annual Conference, edited by J. Koza, K. Deb, M. Dorigo, D. Fogel, M.

Garzon, H. Iba, and R. Riolo, Morgan Kaufmann, San Francisco, 231-239.

McKay, B., Willis, M., Montague, G., and Barton, G. (1996), “Using Genetic

Programming to Develop Inferential Estimation Algorithms,” in Genetic

 20

Programming: Proceedings of the First Annual Conference 1996, edited by J. Koza,

D. Goldberg, D. Fogel, and R. Riolo, The MIT Press, Cambridge, Massachusetts,

157-165.

Mulloy, B., Riolo, R., and Savit, R. (1996), “Dynamics of Genetic Programming and

Chaotic Time Series Prediction,” in Genetic Programming: Proceedings of the First

Annual Conference 1996, edited by J. Koza, D. Goldberg, D. Fogel, and R. Riolo,

The MIT Press, Cambridge, Massachusetts, 166-174.

 Oakly, H. (1996), “Genetic Programming, the Reflection of Chaos, and the Bootstrap:

Toward a Useful Test for Chaos,” in Genetic Programming: Proceedings of the First

Annual Conference 1996, edited by J. Koza, D. Goldberg, D. Fogel, and R. Riolo,

The MIT Press, Cambridge, Massachusetts, 175-181.

 Oussaidene, M., Chopard, B., Pictet, O., and Tomassini, M., (1996), “Parallel Genetic

Programming: An Application to Trading Models Evolution,” in Genetic

Programming: Proceedings of the First Annual Conference 1996, edited by J. Koza,

D. Goldberg, D. Fogel, and R. Riolo, The MIT Press, Cambridge, Massachusetts,

357-362.

Schoenauer, M., Sebag, M., Jouve, F., Lamy, B., and Maitournam, H., (1996),

“Evolutionary Identification of Macro-Mechanical Models,” in Advances in Genetic

Programming: vol. II, edited by P. Angeline and K. Kinnear, Jr., The MIT Press,

Cambridge, Massachusetts, 467-488.

 Singleton, A. (1995), Genetic Programming with C++, public domain genetic

programming package, Creation Mechanics, Dublin, NH.

Tong, H. (1990), Non-linear Time Series: A Dynamical System Approach, Oxford

University Press, Oxford.

Willis, M., Hiden, H., Hinchliffe, M., McKay, B., and Barton, G., (1997), “Systems

Modelling using Genetic Programming,” Computers and Chemical Engineering, 21,

Suppl., pp. S1161-S1166.

 21

Table 1
Specifications for GPQucik Configuration Files

Generations 20,000 Populations 2,000
Error 0.00001 Sample 100
Terminals 12 Max. expression 50
Init. Expression 6 Mutation rate 100
Cross self 1 Unrestrict. Wt. 70
Cross Wt. 100 Mut. Wt. 30
Mute node Wt. 100 Mute Const. Wt. 100
Mute shrink st 100 Copy Wt. 10
Select method 4 Tourn. size 7
Mate radius 500 Kill tourn. 2
Max. age 2000

 22

Table 2: Signal and Noisy Logistic Map Predictability & Complexity

 Original Shuffled

 λ
Lowest 50%
Mean SSEY

Standard
Deviation

Lowest 50%
Mean SSES

Standard
Deviation η R2 Mean θ

 �

 0.83 0.64 10.81 0.23 92.35 0.00 0.39

60 2.51 0.61 11.68 0.28 78.50 0.00 0.40
50 2.13 0.36 10.16 0.25 79.03 0.00 0.41
40 2.67 0.47 12.36 2.62 78.43 0.00 0.41
30 3.04 0.47 11.63 0.29 73.84 0.00 0.42
20 4.20 1.05 11.20 0.20 62.53 0.00 0.45
15 5.56 0.70 10.28 0.27 45.91 0.00 0.49
10 6.37 0.84 14.11 0.29 54.83 0.00 0.58
5 10.21 0.33 14.07 0.37 27.42 0.00 0.76

1 22.81 0.76 20.32 0.39 0.00 0.00 1.03

∞

 23

Table 3: Applications of the Predictability & Complexity Measures

 Original Shuffled

Functions
Lowest 50%
Mean SSEY

Standard
Deviation

Lowest 50%
Mean SSES

Standard
Deviation η R2 Mean θ

 �
Linear: �

OZ 1.96 0.55 384.73 18.68 99.49 0.87 0.31

Nonlinear:
TF 27.64 10.62 769.53 19.22 96.41 0.00 0.50
HN 4.18 1.11 41.71 1.24 89.98 0.27 0.54
EF 138.87 30.89 653.65 24.39 78.75 0.00 0.51
MG 3.71 0.13 6.50 0.40 42.92 0.49 0.75

Nonlinear-
Stochastic:

AR2 84.80 3.44 259.56 7.07 67.33 0.72 0.99
BL 226.29 24.40 469.82 36.68 51.84 0.03 0.84
GR 70.64 2.12 73.19 2.70 3.49 0.00 0.92

Random:

GS 76.79 2.27 68.58 2.05 0.00 0.00 1.01
ER 16.36 0.29 12.19 0.70 0.00 0.00 1.01

 24

Table 4: Predictability & Complexity of Stock Returns

Stocks
Lowest 50%
Mean SSEY

Standard
Deviation

Lowest 50%
Mean SSES

Standard
Deviation η R2 Mean θ

 �
30-minute:

BA 13.86 0.70 12.66 1.99 0.00 0.07 0.92
GE 13.14 0.74 10.08 0.36 0.00 0.03 0.63
GM 11.65 0.39 8.61 0.30 0.00 0.49 0.80
IBM 14.12 0.75 10.28 0.31 0.00 0.46 0.36
S 34.24 0.69 34.99 1.35 2.15 0.01 0.93
T 9.28 0.34 7.77 0.18 0.00 0.08 0.67
WMT 46.19 1.11 53.55 2.40 13.74 0.07 0.88
XON 8.62 0.21 9.27 0.26 7.01 0.02 0.78

1-minute:

BA 8.21 0.29 7.20 0.13 0.00 0.12 0.90
GE 0.60 0.01 0.61 0.02 1.07 0.10 1.48
GM 5.96 0.15 6.67 0.35 10.76 0.13 0.31
IBM 0.90 0.02 0.85 0.03 0.00 0.21 0.91
S 2.72 0.10 2.90 0.07 6.32 0.11 0.31
T 3.08 0.07 6.18 0.34 50.10 0.45 0.68
WMT 7.38 0.33 6.43 0.10 0.00 0.30 0.19
XON 0.90 0.02 0.89 0.03 0.00 0.11 1.28

PCRs:

BA 1.02 0.02 1.66 0.06 38.59 0.32 0.27
GE 0.57 0.03 2.06 0.08 72.44 0.59 0.18
GM 2.50 0.05 5.99 0.31 58.32 0.54 0.32
IBM 0.85 0.05 1.23 0.04 30.75 0.28 0.44
S 1.37 0.02 4.69 0.14 70.70 0.42 0.04
T 9.76 0.30 16.68 0.83 41.48 0.59 0.35
WMT 1.95 0.51 22.79 0.40 91.46 0.83 0.80
XON 0.95 0.04 1.82 0.05 47.67 0.56 0.41

