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Application and development of the Fuzzy Analytic
Hierarchy Process

within a Capital Investment Study

Abstract

Capital budgeting as a decision process is amongst the
most important of all management decisions. The
importance (consequents) of the subsequent outcome
may bring a level of uncertainty to the judgement
making process by the decision maker(s), in the form of
doubt, hesitancy and procrastination. This study
considers one such problem, namely the choice of type
of fleet car to adopt by a small car hire company, a
choice that accounts for a large proportion of the
company’s working capital. With a number of criteria 
to consider, a fuzzy analytic hierarchy process (FAHP)
analysis is undertaken to accommodate for the possible
inherent uncertainty. Developments are made to the
FAHP method utilised, to consider the preference
results with differing levels of imprecision in the
pairwise judgements made.

1. Introduction

Capital budgeting is the decision process relating to
long-term capital investment programmes. The
decisions made are amongst the most important of all
management decisions (Smith, 1994). However,
numerous capital budgeting decision-making methods
only take into account financial criteria, but fail to
analyse political and market risks (see Ye and Tiong,
2000). A number of research models take risks into
account, but each of them focuses on different factors
and has its limitations (ibid.)

Two of the major problems that decision-makers (DMs)
encounter in making capital budgeting decisions
involve both the uncertainty and ambiguity
surrounding the different criteria they judge on,
including financial and non-financial criteria (Tang,
2003). In the case of investment in new technologies,
the problems of uncertainty and ambiguity assume
even greater proportions because of the difficulty in
estimating the impact of unexpected changes on cash
flows (Franz et al., 1995; Sutardi et al., 1995).
Moreover, it is difficult to measure the positive impact
on cash flows brought about by the increase in quality
and quicker reaction to changes in the market (Kaplan,
1986; Franz et al., 1995).

Apart from uncertainty in qualitative (objective) data,
the other problem of uncertainty in capital budgeting
investment is from DMs’subjective opinions. These
uncertainties involve incomplete information,
inadequate understanding, and undifferentiated
alternatives (Lipshitz and Strauss, 1997). Here we
focus on eliciting subjective opinions from DMs, with
the ultimate objective, the selection of a best course of

action from a set of available alternatives. Moreover,
the problem considered here relates to the choice of
type of fleet car, to be adopted by a small car hire
company, with the choice made by one of its directors.
Even for this company, the decision problem affects a
large proportion of their working capital. Hence, the
importance (consequents) of the decision outcome may
bring a level of doubt and hesitancy to the decision
making process by the DM (ibid.).

To operationalise this decision making process, there
exists a number of methods to elicit the DMs’ 
subjective opinions (e.g. CW method in Wang (1997);
AHP in Saaty (1980); Java AHP in Zhu and Dale
(2001); Randomized Expert Panel Opinion
Marginalizing Procedure in Tenekedjiev et al. (2004)).
Amongst the most well known is the analytic hierarchy
process –AHP (Saaty, 1980). Here to accommodate
the acknowledged possible uncertainty (including
doubt, hesitancy etc.), in the subjective judgements to
be made, a Fuzzy AHP (FAHP) approach is adopted.
The earliest work in the FAHP appeared in Laarhaven
and Pedryz (1983), which utilised triangular fuzzy
numbers to model the pairwise comparisons made in
order to elicit weights of preference of the decision
alternatives considered. Since then, the FAHP related
developments have been consistently reported in the
concomitant literature (e.g. the spatial allocation within
FAHP (Wu et al., 2004); the method of fuzzy AHP and
fuzzy multiple criteria decision making in Hsieh et al.
(2004); Mikhailov’s (2003) deriving priorities from
FAHP; the FAHP revisited within Buckley et al.
(2001)).

In this study the synthetic extent method of the FAHP
(Chang, 1996; Zhu, 1999; Bozdağ et al., 2003), is 
further developed and applied to the hire car choice
problem discussed previously. Central to this
development is the measure of imprecision in the
pairwise comparisons made between alternatives (cars),
described by triangular membership functions - MFs
(e.g. Chiou and Tzeng, 2001; Sohn et al., 2001; Cheng
et al., 1999; Deng, 1999; Zhu et al., 1999; Chang,
1996). This imprecision is with respect to the degree of
fuzziness in the judgements made (MFs), which is re-
defined here from previously used. Further, a
sensitivity analysis on the changes in the results
preference weights is also given, based on the change
in the degree of fuzziness allowed. Throughout this
paper, there is a balance between the size of the
problem considered and the developments on the
existing FAHP technique used, as such there is a level
of expositional approach to the application problem
investigated.

The structure of the rest of the paper is as follows: In
section 2, the details of the hire car choice problem are
described. In section 3, the synthetic extent method of
the FAHP is presented, including the new
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developments introduced here. In section 4, the results
of the FAHP analysis on the hire car choice problem
are illustrated. In section 5, conclusions are given as
well as directions for future research.

2. Identification of hire car choice problem

This section presents the details of the capital
investment problem investigated throughout this study.
The problem concerns a small hire car company and
their choice of type of fleet car to be adopted. This
choice is an important investment decision, with a
large proportion of their working capital to be tied up
in their final choice. Here, one of the three directors of
the company agreed to make the necessary judgements
to be used in a FAHP analysis on this decision problem.
However a number of a priori decisions were made on
the specific structure of the hire car choice problem.

The first stage was the identification of the necessary
criteria to be considered, which here was a
consequence of a semi-structured interview with the
director (herein defined DM). With the DM told of the
expositional nature of the application, it was decided to
restrict the number of criteria to only five, through
discussion s/he was agreed to be:

i) Equipment: This includes whether the car has
central locking, electric windows, power steering,
automatic, gear box, air conditioning, and number
of doors etc. (see car description table in Appendix
A)

ii) Comfort: This includes the space and seating of
the cars, and the general décor utilised.

iii) Safety: The most important safety feature is those
that reduce the risk of death or serious injury. This
criterion includes: airbags, antilock breaking
system, impact protection systems, seat belts,
safety of the body and number of alarm systems.

iv) Image: The general image of the cars in terms of
the market of customer, some emphasis here was
simply the colour of the car.

v) Price: This is the price which would be paid for
the used car, with also some emphasis on the
depreciation of the car, when considered for re-
selling.

Apart from the five criteria, the semi-structured
interviews also identified five types of cars, which the
DM agreed on would be those seriously considered in
the car choice problem (see Appendix 1). In summary,
the five types of cars are Proton Persona, Honda New
Civic, Vauxhall Merit, Volkswagen Polo and Daewoo
Lanos, denoted herein A1, A2, A3, A4 and A5,
respectively.

Given the necessary details of the criteria and decision
alternatives, the DM was asked to indicate their
preference between pairs of criteria, and then between
pairs of alternatives over the different criteria. One
characteristic of this questionnaire that is states that if
the DM does not have an opinion on any of the
comparisons between pairs of criteria and alternatives
then s/he should leave the relevant row blank. The
questionnaire is designed to avoid pressurising the DM
into an inappropriate decision, by allowing for
incompleteness.
The linguistic variables used to make the pairwise
comparisons, were those associated with the standard
9-unit scale (Saaty, 1980), see Table 1.

Insert Table 1 about here

The use of the linguistic variables is important here,
since using the FAHP, the changes in the degree of
fuzziness relate to the strength of association with the
linguistic terms defined. The results of the pairwise
comparisons made by the DM are illustrated in Tables
2 (five criteria) and 3 (five alternatives).

Insert Table2 about here

Insert Table 3 about here

One noticeable aspect of the pairwise comparison
tables, are the empty cells, dash lines, these highlight
the ability of the DM not to make the exhaustive
specific judgements. These judgements are
subsequently used to exposit the FAHP analysis,
including the development to be introduced.

3. Presentation of Synthetic Extent FAHP
method

As a method of multi-criteria decision making, the
analytic hierarchy process–AHP (Saaty, 1980) is well
established as a versatile technique. It is not surprising
that it has been developed to within a fuzzy
environment (Zadeh, 1965). The family of fuzzy
AHP –FAHP techniques developed all undertake
pairwise comparisons, but may or not may adhere to
the Saaty based analytic process (see Buckley et al.,
2001; Mikhailov, 2003).

In this study the synthetic extent FAHP introduced in
Chang (1996) is utilised, which itself was developed in
Zhu et al. (1999) and recently applied to the selection
of computer integrated manufacturing systems (Bozdağ 
et al., 2003). One reason for its employment is that
from its introduction it allows for the incompleteness
of the pairwise judgements made (not the only FAHP
approach to allow this, see Interval Probability Theory
(Davis and Hall, 2003 also). This offers its suitability
in decision problems where uncertainty exists in the
judgement making process. A brief exposition of the
FAHP method is next given.
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3.1 Value of fuzzy synthetic extent

Let C = {C1, C2, …, Cn} be a criteria set, where n is the
number of criteria and A = {A1, A2, …, Am} is a DA set
where m is the number of DAs. Let 1

iCM , 2

iCM ,…., 
m

iCM be values of extent analysis of ith criteria for m

DAs. Where i = 1, 2, …, n and all the j

iCM (j = 1, 2, …, 
m) are triangular fuzzy numbers (TFNs). Then the
value of fuzzy synthetic extent (Si) with respect to the
ith criteria is defined as:


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iCM , (1)

where represents fuzzy multiplication and superscript
1 represents the fuzzy inverse. The concepts of
synthetic extent can also be found in Cheng (1999),
Kwiesielewicz (1998) and Bozdağ et al. (2003).

3.2 Construction of the FAHP comparison matrices

The aim of any FAHP method is to elucidate an order
of preference on a number of DAs, i.e., a prioritised
ranking of DAs. Central to this method is a series of
pairwise comparisons, indicating the relative
preferences between pairs of DAs in the same
hierarchy. It is difficult to map qualitative preferences
to point estimates, hence a degree of uncertainty will
be associated with some or all pairwise comparison
values in an FAHP problem (Yu, 2002). By using
triangular fuzzy numbers, via the pairwise comparisons
made, the fuzzy comparison matrix X = (xij)n m is
constructed.

The pairwise comparisons are described by values
taken from a pre-defined set of ratio scale values as
presented in Table 1. The ratio comparison between
the relative preference of elements indexed i and j on a
criterion can be modelled through a fuzzy scale value
associated with a degree of fuzziness. Then an element
of X, xij (comparison of ith DA with jth DA with respect
to a specific criterion) is a fuzzy number defined as xij
= (lij, mij, uij), where mij, uij and lij are the modal-value,
the upper bound and the lower bound values of a fuzzy
number xij, respectively.

To keep the reciprocal nature of the fuzzy comparison
matrix X, the fuzzy number is also satisfied with lij =

jiu
1

, mij =
jim

1
, uij =

jil
1

. More formally, given an

element xij in the fuzzy comparison matrix has modal-
value scale value vk. For instance, if there is a strong
preference1 of an element i over an element j under a

1 The original mapping from a linguistic scale to
numerical values (ratios) is referred to in Table 1.

certain criterion: then xij = (lij, 5, uij) and vk = 5, with
the lij and uij values found depending on the associated
degree of fuzziness.

3.3 Calculation of the sets of weight values of the
FAHP

To obtain the estimates for the sets of weight values
under each criterion, it is necessary to consider a
principle of comparison for fuzzy numbers (Chang,
1996). For example, for two fuzzy numbers M1 and M2,
the degree of possibility of M1 M2 is defined as:

V(M1 M2) =
yx

sup


[min ( )(
1

xM , )(
2

yM )].

Where sup represents supremum (i.e., the least upper
bound of a set) and when a pair (x, y) exists such that x
y and )(

1
xM = )(

2
yM = 1, then it follows that

V(M1 M2) = 1 and V(M2 M1) = 0. Since M1 and
M2 are convex fuzzy numbers defined by the TFNs (l1,
m1, u1) and (l2, m2, u2) respectively, then

V(M1 M2) = 1 iff m1 m2;
(2)

V(M2 M1) = hgt (M1 M2) = )(
1 dM x .

Where iff represents “if and only if” and d is the
ordinate of the highest intersection point between the

1M and
2M TFNs (see Figure 1) and xd is the point on

the domain of
1M and

2M where the ordinate d is
found. The term hgt is the height of fuzzy numbers on
the intersection of M1 and M2. For M1 = (l1, m1, u1) and
M2 = (l2, m2, u2), the possible ordinate of their
intersection is given by the expression (2). The degree
of possibility for a convex fuzzy number can be
obtained from the use of equation (3).

V(M2 M1) = hgt (M1 M2) =

)()( 1122

21

lmum
ul




= d. (3)

Insert Figure 1 about here

One point of concern, highlighted in this paper is when
two elements (fuzzy numbers - M1 and M2) say (l1, m1,
u1) and (l2, m2, u2) in a fuzzy comparison matrix satisfy
l1 –u2 > 0 (see Figure 2) then V(M2 M1) = hgt(M1 
M2) = )(

2 dM x , with )(
2 dM x given by (Zhu et al.,

1999):
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xdM (4)

Insert Figure 2 about here
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The degree of possibility for a convex fuzzy number M
to be greater than the number of k convex fuzzy
numbers Mi (i = 1, 2, …, k) can be given by the use of
the operation max and min (Dubois and Prade, 1980)
and can be defined by:

V(M M1, M2, …, Mk) =
V[(M M1) and (M M2)and … and (M Mk)]

= min V(M Mi), i = 1, 2, …, k.

Assume that d′(Ai) = min V(Si Sk), where k = 1, 2, …, 
n; k i and n is the number of criteria as described
previously. Then a weight vector is given by:

W′ = (d′(A1), d′(A2), …, d′(Am)). (5)

where Ai (i = 1, 2, …, m) are the m DAs. Hence each
d′(Ai) value represents the relative preference of each
DA. To allow the values in the vector to be analogous
to weights defined from the AHP type methods then
the vector W′ is normalised and denoted by:

W = (d(A1), d(A2), …, d(Am)). (6)

Referring back to fuzzy numbers, for example an
element xij in a fuzzy comparison matrix, if DA i is
preferred to DA j then mij takes an integer value from
two to nine (from the 1-9 scale). More formally, given
the entry mij in the fuzzy comparison matrix has the kth

scale value vk, then lij and uij have values either side of
the vk scale value. It follows, the values lij and uij

directly describe the fuzziness of the judgement given
in xij. In Zhu et al. (1999) this fuzziness is influenced
by a (degree of fuzziness) value, where mij–lij = uij–
mij = . That is, the value of is a constant and is
considered an absolute distance from the lower bound
value (lij) to the modal value (mij) or the modal value
(mij) to the upper bound value (uij), see Figure 3.

Insert Figure 3 about here

Given the modal value (scale value) mij (vk), the fuzzy
number representing the fuzzy judgement made is
defined by (mij , mij, mij + ), with its associated
inverse fuzzy number subsequently described by

(
ijm

1
,

ijm
1

,
ijm

1
).

In Figure 3 the definition of the fuzzy scale value given
in Zhu et al. (1999) is that the distance from mij (= vk)
to vk1 is equal to the distance from mij to vk+1, which
implies the distances from mij to lij and mij to uij are
equal to each other (distance). In the case of mij
given a value of one (mij = 1) off the leading diagonal
(i j), the general form of its associated fuzzy scale

value is defined as (
1

1
, 1, 1 + ).2 For example,

given mij = 1, the fuzzy number will be (0.6667, 1, 1.5)
when = 0.5.

When considering the domain of , if = 0 then lij =
mij = uij hence a non-fuzzy (crisp) number. As 
increases in size, so the distance value uij lij increases,
and greater is the inherent degree of fuzziness in the
judgements. On the issue of the value, Zhu et al.
(1999) state:

“ … when 0 < < 0.5, mij is selected as
the consecutive two-level scale. At this
time (d) [ )(

2 dM x ] = 0 [see Figure 2],

but it doesn’t reflect the cognitive 
fuzziness completely. When > 1, the
degree of fuzziness increases and the
degree of confidence decreases. The
practical result indicates that 0.5 1
is more suitable. ” 

This debate on the value of and its associated
workable (suitable) domain will be discussed in
Section 4.

There are two factors to consider here regarding the 
expression, firstly in Zhu et al. (1999) the value is an
absolute value. That is, it defines the physical distance
the lij and uij values are away from the modal value mij.
For example, when = 0.5 then lij = mij0.5 and uij =
mij + 0.5. The second factor leads to a better
understanding of the role of the value on the support
associated with each fuzzy preference judgement. One
restriction of the method described by Zhu et al. (1999)
is that it assumes equal unit distances between
successive scale values. However with respect to the
traditional AHP there has been a growing debate on the
actual appropriateness of the Saaty 1-9 scale, with a
number of alternative sets of scales being proposed
(see Beynon (2002) and Tang (2003) and references
contained therein).

These (possible) alternative sets of scales do not
necessarily have equal distances between their
successive scale values (see Figure 4). To allow the
possibility of utilising scale values with non-equal inter
distances between them, the definition of is redefined.
Here, is defined as a proportion (relative) of the
distance between successive scale values. Hence the
associated fuzzy scale value for the case of mij given
scale value vk is defined as:

2 The expression for (
1

1
, 1, 1 + ) is supported by

Escobar and Moreno-Jiménez (2000) who for the
traditional AHP state that the distribution of the scale
value above and below one are analogous.
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(vk (vk vk1), vk, vk + (vk+1vk)). (7)

Therefore, mij = vk, lij = vk (vk vk1) and uij = vk + 
(vk+1 vk). When the maximum scale value v9 is used,
consideration has to be given to its associated upper
bound values. That is given mij = vk then it is not
possible to use the previously defined expressed,

instead of uij = u9 = v9 + 
)(
)(

78

2
89

vv
vv



. The reason is

that there is no v10 (v9 + 1) value to use, so instead the
new expression takes into account the difference
between successive scale values. That is, using the
notation v10 value we would require:

)(
)(

)(
)(

78

89

89

910

vv
vv

vv
vv








; which becomes (v10  v9) =

)(
)(

78

2
89

vv
vv



. Hence our expression for u9 is v9 +

)(
)(

78

2
89

vv
vv



. Bringing in the 1-9 scale, when v9 = 9 then

u9 = 9 + 
)78(
)89( 2




= 9 + . That is, the upper bound

value uses information from the inter-distance between
the two preceding scale values. A graphical
representation where is a proportional (relative) value
is provided in Figure 4.

Insert Figure 4 about here

In Figure 4, the diagram shows the case when distances
between successive scale values are not equal (vk–vk 

1 vk + 1–vk). Here the effect of the value on a fuzzy
number (lij, mij, uij) will be elucidated. For example,
around this scale value 1, the domain of the fuzzy scale
value measure is between 0 and . 3 With the sub-
domain 0 to 1 associated with one direction of
preference (e.g., j preferred to i) and 1 to the reverse
preference (e.g., i preferred to j). In the case of fuzzy
scale values, there is still a need for the strict partition
of the scale value domain. That is, the support of any
fuzzy scale value should be in either the 0 to 1 or the 1
to sub-domains of .

If this were not satisfied then there would be sub-
domains of the support which would be in conflict with
each other.4 This approach follows a direction of study
in the traditional AHP, when interval preference

3 Considering the upper bound of , implies an
unbounded scale, see Jensen (1984) for a discussion
on the notion of an unbounded scale. It is stressed the
notion of is with the domain of support rather than
the actual modal value scale, taken from the Saaty 1-
9 scale here.

4 The exception is when mij = 1 then the fuzzy scale
value has support which spans either side of the scale
value 1.

judgements are utilised. That is, the partition of the
domain of the scale value to the sub-domains 0 to 1
and 1 to is adhered to over the domain of the interval
judgements around a scale value (see Moreno-Jiménez
and Vargas, 1993; Bryson and Joseph, 2000).

Insert Figure 5 about here

To illustrate, using the fuzzy scale value mij = vk = 2,
following Zhu et al. (1999) if = 1.5 the associated
fuzzy number is (0.5, 2, 3.5) (see Figure 5). It follows,
lij = 0.5 < 1 and implies that a sub-domain of the
support (0.5, 1) is meaningless with the fuzzy scale
value mij = 2. One further example shows that when 
= 2.5, the associated fuzzy number is (0.5, 2, 4.5), and
the value 0.5 has no meaning as part of a fuzzy
judgement (ratio scale measure). To remove this
potential of conflict, a restraint on the lij value needs to
be constructed. 5 Expressed more formally, if mij is
given a fuzzy scale value such that mij = vk 1 then lij

is bound by 1 lij mij, whose value depends on the
value of , and is given by:



























.
1

1

;
1

)(

1

1

1

kk

k

kk

k
kkk

ij

vv
v

vv
v

vvv
l




(8)

This expression for lij ensures that irrespective of the
value of , the support associated with a fuzzy scale
value includes no conflicting sub-domain. There is no
limit on the upper bound of the fuzzy scale value,
hence the value of uij remains as uij = vk + (vk+1 –vk).
A similar discussion and subsequent expression can be
given for the inverse case (when mij < 1). To further
illustrate this expression for the lij value, Figure 6
shows the respective graphical presentation of the
fuzzy number characterisation of a fuzzy scale value
for different values (sub-domain) of . The fuzzy scale
value considered is vk = 3, so the associated fuzzy
number has modal value mij = 3. It is presumed that
neighbour scale values are a unit distance either side of
the scale value 3, hence vk 1 = 2 and vk + 1 = 4.

Insert Figure 6 about here

In Figure 6, the graphical representation of the fuzzy
number (lij, 3, uij) is demonstrated, dependent on the 
value. That is, the differently shaded regions define
where the left and right bounds of the support for the
TFN will lie within, for certain sub-domains of .
Since there is a unit distance between successive scale

5 This argument assumes that the fuzziness in a
preference judgement (mij 1) does not include the
possibility of reversal in the direction of the
preference initially implied.
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values, the majority of the results are symmetrical
around the special case of lij = mij = uij = 3 (crisp value).
The darkest shaded regions (either side of the mij = 3
value) in Figure 6 are the domains of the lij and uij

values for when is between (0, 0.5], which implies
2.5 lij < 3 and 3 < uij 3.5.

The middle shaded region is when is in (0.5, 1],
which implies 2 lij < 2.5 and 3.5 < uij 4, following
the Zhu et al. (1999) statement, it is suggested the
region is considered the most suitable domain. The
lightly shaded region when is in (1, 2], implies 1 lij

< 2 and 4 < uij 5. In the case of > 2 it is necessary
to refer specifically to equation (8) for lij. That is, the
lower bound on lij when = 2 and shown by the light
shaded region in Figure 6 is the value 1.

This is the least value the lower bound can take, so
from equation (8) the value of lij for when  > 2 is
always 1. To illustrate, when in (2, 4], then lij = 1 and
5 < uij 7, as shown with the non-shaded region in
Figure 6. In this case there is no equivalent non-shaded
region in Figure 6 representing the range of the lij value
for in (2, 4], since it is always lij = 1.

Following the exposition of the FAHP extent analysis
as stated above, the subjective opinions in Tables 2 and
3 need to be transferred into the fuzzy comparison
matrix. An example demonstrates the transformation of
Table 2 as shown in Table 4.

Insert Table 4 about here

In Table 4 the 1-9 scale is utilized, therefore, the
distances between successive scale values are equal
(vk –vk 1 = vk + 1 –vk). Here in this case, the effect of
the fuzzy numbers is only the changing of value.

3.4 The advantages of this method

The utilisation of the FAHP extent analysis method
presented in this paper brings together a number of
advantageous aspects of group decision-making in a
fuzzy environment. That is, while many of these
aspects are present in other techniques, they are most
present in this FAHP extent analysis method, and will
now be discussed.

Group decision-making

The role of group decision-making is increasingly
important (Ahn, 2000). The method used in this paper
takes account of group decision-making (see equation
(1)). Each matrix can involve all the DMs’ judgements.  
However, in this case study only one of the directors
from the car hire company is willing to answer the
questionnaire.

Computational manageability

The computational manageability of the FAHP method
in this paper allows results in the form of weight values
to be evaluated in a small amount of time. It does not
require the evaluation of fuzzy eigenvalues (Juang and
Lee, 1991) or the solving of a linear programming
problem (e.g., in Arbel, 1989; Bryson and Joseph, 1999;
Yu, 2002), instead it utilises a number of rows and
columns averaged from the associated fuzzy
comparison matrices (Beynon and Tang, 2002; Tang,
2003). It also allows the opportunity for a level of
sensitivity analysis to be realistically undertaken on the
comparison matrices (ibid.). In this paper the
sensitivity analysis undertaken (see later) relates to the
change in the fuzziness degree associated with the
preferences (judgements) made.

Imprecision

A major consequence of the incorporation of decision-
making in a fuzzy environment is the
acknowledgement of and allowance for imprecision in
the judgements made. Imprecision refers to the
contents of the considered judgements and depends on
the “granularity” of the language used in those 
judgements (Bosc and Prade, 1997). The method in
this paper allows the judgements in the judgement
matrices to be given a measure of imprecision by using
the degree of fuzziness - (the quantifiable allowance
for a level of imprecision in the judgement(s) made).

Incompleteness

One aspect of the FAHP method of this paper is the
prevalence of and allowance for incompleteness in the
judgements made by DMs. For example, if a DM is
not willing or able to specify the preference
judgements in the detailed way required by the
corresponding method then, a DM is able to not make a
judgement in the form of a pairwise comparison
between two DAs. The problem of DMs being unable
to provide complete information in the above
circumstances is addressed by the allowance for
incompleteness in the FAHP

4. Results of the FAHP analysis in the hire car
problem

In this section, the concepts presented above are
applied to the data from the hire car selection case
study. The redefinition of the proportional distance
between lower bound and upper bound values
associated with fuzzy numbers in the FAHP in Section
3 is now applied in a practical environment, to reach a
decision on capital investment. The application of the
FAHP to the data from the hire car selection case study
is described as follows.

4.1 The process of weight evaluation
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Utilizing the expression given in Section 3, we apply
the FAHP extent analysis method to the data on capital
budgeting case study previously described. The
following stages demonstrate how to obtain the weight
values for DAs. In this demonstration, the degree of
fuzziness is set up at 0.5. 6

Weights evaluation for criteria

In this car selection case study, only the
judgements between criteria obtained from the
DM will be demonstrated. Subsequently, the
judgements between DAs over different criteria
are dealt with in an identical manner. The
calculation of the fuzziness degree within each
scale value will be transformed from Table 4 to
Table 5. The first stage of the weight evaluation
process is the aggregation of lij, mij and uij values,
present in the pairwise comparison matrix for the
judgements between criteria. Following the fuzzy
synthetic extent concept shown in equation (1),
the evaluation with respect to five criteria in
terms of the 1-9 scale from Saaty (1980) based
on = 0.5 can be illustrated as shown in Table 6:

Insert Table 6 about here

The associated Si values can be found as follows:

S1 = (6.1818, 7.2000, 8.2222) 

(
1826.47
1

,
42.8207

1
,
38.4128

1
)

= (0.1310, 0.1681, 0.2140);

S2 = (1.7968, 1.9444, 2.1843) (
1826.47
1

,
42.8207

1
,

38.4128
1

)

= (0.0381, 0.0454, 0.0569);
S3 = (16.6667, 18.000, 19.000) 

(
1826.47
1

,
42.8207

1
,
38.4128

1
) = (0.3532, 0.4204, 0.4946);

S4 = (1.6001, 1.6762, 1.7761) 

(
1826.47
1

,
42.8207

1
,
38.4128

1
) = (0.0339, 0.0391, 0.0462);

S5 = (12.1667, 14.000, 16.000) 

(
1826.47
1

,
42.8207

1
,
38.4128

1
) = (0.2579, 0.3269, 0.4165);

Using equations (2) and (3) described in Section 3

V (S1 S2) = 1; V (S1 S3) =

)3532.04204.0()2140.01681.0(
2140.03532.0




= 1.2308 = 0;

V (S1 S4) = 1; V (S1 S5) = 0;V (S2 S1) = 0;

6 The degree of fuzziness is not necessary to be 0.5. It
can be any numbers (explain later).

V (S2 S3) = 0; V (S2 S4) = 1; V (S2 S5) = 0;

V (S3 S1) = 1; V (S3 S2) = 1; V (S3 S4) = 1; V

(S3 S5) = 1;V (S4 S1) = 0; V (S4 S2) =

)0381.00454.0()0462.00391.0(
0462.00381.0




= 0.5655;

V (S4 S3) = 0; V (S4 S5) = 0; V (S5 S1) = 1; V

(S5 S2) = 1;V (S5 S3) =

)3532.04204.0()4165.03269.0(
4165.03532.0




= 0.4039;

V (S5 S4) = 1.

Finally, using equation (4) described in Section 3, it

follows that

d′(C1) = V(S1S2, S3, S4, S5) = min(1, 0, 1, 0) = 0,

d′(C2) = V(S2S1, S3, S4, S5) = min(0, 0, 1, 0) = 0,

d′(C3) = V(S3S1, S2, S4, S5) = min(1, 1, 1, 1) = 1,

d′(C4) = V(S4S1, S2, S3, S5) = min(0, 0.5655, 0, 0)

= 0,

d′(C5) = V(S5S1, S2, S3, S4)

= min(1, 1, 0.4039, 1) = 0.4039.

Therefore,

W′  = (0, 0, 1, 0, 0.4039).

Through normalization, the weight vectors are obtained

with respect to the decision criteria C1, C2, C3, C4 and

C5:

W = (0, 0, 0.7123, 0, 0.2877).

Similarly, the transformation procedures for
comparisons between criteria based on other
alternative scales can be found and the final results
based on = 0.5 are shown below.

Insert Table 7 about here

Table 7 shows that A4 has the largest weight while =
0.5. It reveals that DM prefers the Volkswagen car
than others. The next is Daewoo. However, it is not
known the preferences for A1, A2 and A3 obtained from
Table 7 since there is no weight with these three DAs
while = 0.5.

The results from Table 7 cannot fully represent the
preferences for criteria. That is, since pairwise
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comparisons are made between criteria (or DAs) then it
is expected that all weights should have positive values.
Zahir (1999) discussed this aspect within the traditional
AHP, suggesting that the DM does not favour one
criterion (or DA) and ignore all others, rather places
the criteria (or DAs) at various levels. Furthermore it
is suggested the 1-9 scale forces the concentration of
the weight values, whereas only with an unbounded
scale range would it be possible for the weights to
overwhelmingly prefer on criterion (or DA).

Besides, in accordance with the aspects of Oskamp
(1982) that people become confident enough to make
decision (i.e., people who don’t know how much they 
don’t know). Hence the degree of fuzziness should be 
enlarged beyond 0.5 rather than only within a certain
domains. Therefore, there has an attempt by using
sensitivity analysis to observe the weight values
changing on different criteria and discuss below.

4.2 Sensitivity analysis of resultant weight values

The objective of a typical sensitivity analysis is to find
out when the input data (preference judgements and
degrees of fuzziness) are changed into new values, how
the ranking of the DAs will change. To illustrate in this
paper, firstly we consider the judgements made
between the criteria based on the DM, exposited in
Tables 2.

Insert Figure 7 about here

There are five lines in Figure 7 which represent the
weight values associated with the different criteria. In
Figure 7 the numbers (with criteria) on the -axis
represent the degree of fuzziness appearance points
with respect to each criterion. For example the degree
of fuzziness up to 0.3 (on Figure 7 -axis), shows
that C3 has the absolute dominant preference. This
means that Safety is an important criterion to be
considered when the DM makes decisions and the
weight value is 1. After reaches 0.3, the criterion C5
has weight. The next criterion is C1 which has weight
as approaches 1.14, etc. The values of at which the
criteria (or DAs) have positive weight values (non-zero)
are hereafter referred to as appearance points.

There is one cross points, of C2 and C4 where = 3.85.
C4 has greater preference over C2 after > 3.85. Hence
the ranking orders become clear after > 3.85. The
final ranking order shown on the right hand of Figure 7
is C3, C5, C1, C4, C2.

For the fuzzy comparison matrix with judgements
between criteria (see Figure 7), all the five criteria have
positive weights when is greater than 3.5. This
means that if is less than 3.5 some criteria have no
positive weights. It is suggested therefore that it is
useful to choose a minimum workable degree of

fuzziness. The expression minimum workable degree
of fuzziness is defined as the largest of the values of 
at the various appearance points of criteria (or DAs) on
the -axis. For example in Figure 7, the weights of the
criteria C5, C1, C2, and C4 at the appearance points are
0.3, 1.14, 3.36, and 3.5, respectively. The largest of
these appearance points is 3.5. Hence for this fuzzy
comparison matrix a minimum workable value can
be expressed as

CT = 3.5 where the subscript TC

represents the comparisons between different criteria.

Figure 7 can also be compared with Table 2. In Table
2, the Safety C3 has most of the preference when
comparing it with other criteria apart from has no
opinion on comparing with C1. The Price C5 also has
the most of the preferences when compared with other
criteria. The least preference shown in Figure 7 (where
< 3.85) is Image C4. This also can be verified from
Table 2. In the C4 row shown in Table 2, there is no
preference made by the DM between criteria. It seems
as if the Image (the colour) of the DA is not very
important when DM is making their decisions.
Although the order changes between C2 and C4 after 
> 3.85, they both are still very close to each other as
shown in Figure 7.

In Figure 7 the degree of fuzziness within domains 0 to
1 only two criteria have positive weights. The results
are against the extant research (i.e., Zhu et al., 1999), 
should be within the domain 0 to 1.

Referring the comparisons between DAs on these five
criteria, Figures 8a to e shows the varied movement of
the weight values as within domain 0 to 5. For the
fuzzy comparison matrix with judgements between
DAs on different criteria (see Figures 8a to e), all the
DAs have positive weights when is greater than 4.73
(see Figure 8c). This means that if is less than 4.73
some DAs have no positive weights.

Insert Figure 8 about here

For the comparisons between DAs with respect to
individual criterion fuzzy comparison matrices (on C1,
C2, C3, C4, C5, C6 and C7) their minimum workable 
values are

1T = 2.75,
2T = 4.55,

3T = 4.73,
4T = 4.55,

and
5T = 2.86, respectively (see Figure 8a to e).

When considering the final results, the domain of
workable is expressed as T , and is defined by the
maximum of the various minimum workable degrees
of fuzziness throughout the problem, that is here T =
max(

CT ,
1T ,

2T ,
3T ,

4T ,
5T ,

6T ,
7T ) = 4.73 where

the subscript T is the maximum of the minimum
workable values in the six fuzzy comparison matrices.
It follows that for this problem the workable region of
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is > 4.73 and the results on weights should possibly
only be considered in the workable region. The use
of minimum workable degree of fuzziness is intended
to exclude values of at which there are no positive
weights for the DAs. However the use of a workable
value of is not to be strictly enforced.

Insert Table 6 about here

In Table 8, the final results show that the most
preferred car is the Honda (A2), and then the
Volkswagen (A4), the Vauxhall (A3), the Daewoo (A5)
and the Proton (A1), which is the least preferred car in
the DM’s mind. From the comparison between the
criteria in Table 8, the first two preferred criteria out of
five criteria are Safety and Price. It means that the DM
cares about the cost (car price) and safety more than
other criteria.

In this study, the phenomenon of rank reversal happens
when sets of weight values are obtained in the pairwise
comparisons between criteria (see Figure 7). Each
fuzzy comparison matrix contains uncertain and
incomplete information. Therefore when these fuzzy
comparison matrices are aggregated together they also
involve imperfect information. The increase in degree
of fuzziness also increases the uncertainty of the
information.

One thing which should be highlighted here is that the
use of the minimum workable degree of fuzziness to
obtain the final aggregation results does not take into
account the possibility that the phenomenon of rank
reversal might exist when becomes larger. This
shows the need for more research in future work.

5. Conclusions

The aim of this study is to investigate the application
of the Fuzzy Analytic Hierarchy Process (FAHP)
method of multi-criteria decision making (MCDM),
within a capital budgeting problem. The application
problem in question is the choice of type of fleet car to
be adopted by a small car hire company. The important

consequences of the choice outcome may confer a
level of uncertainty on the decision maker, in the form
of doubt, procrastination etc. This is one reason for the
utilisation of FAHP, with its allowance for imprecision
in the judgements made. The issue of imprecision is
reformulated in this study, which further allows a
sensitivity analysis on the preferences weights
evaluated to changes in the levels of imprecision.

It is found the DM (one director) of the car hire
company successfully made the necessary judgements
made. This included their allowance to not make
specific pairwise comparisons between all pairs of
decision alternatives – the incompleteness another
aspect of the possible inherent uncertainty in the
decision process. The re-definement of the degree of
fuzziness associated with the preference judgements
made allows the change of imprecision (fuzziness) to
be succinctly reported.

The future research associated with FAHP includes,
from the MCDM point of view, those developments
with the traditional AHP. These include the
appropriateness of the 9-unit scale (integer values one
to nine), which within AHP is still an ongoing issue.
The effect of using different 9-unit scale within FAHP
would further elucidate the sensitivity analysis issues.
The graphical results presented in the paper including
changes in the degree of fuzziness would clearly
exposit this.

Amongst the criteria in the hire car selection problem
was price, from its definition this has an associated
value with each alternative, hence is a tangible
criterion. Within AHP and subsequently FAHP, an
ongoing question is how to effectively incorporate the
tangible with intangible criteria. Specifically to FAHP,
whether the change in the degree of fuzziness may aid
in this appropriateness, is again left for future research.
An important development in this study is the notion of
a workable degree of fuzziness, possibly specific to the
synthetic extent FAHP, it needs adoption in future
studies to strengthen its appropriateness.
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Appendix 1

Proton Honda Vauxhall Volkswagen Daewoo
Type Persona New Civic Merit Polo Lanos
Size of Engine 1600 1600 1600 1600 1600
Central Locking √ √ √ √ √
Electric Windows √ √ √ √ √
Power Steeling √ √ √ √ √
Automatic √ √ √ √ √
Air Condition √ √ √ √ √
5 Doors √ √ √ √ √
Airbags √ √ √ √ √
Antilock Braking
System

 √  √ 

Impact Protection
System

 √  √ 

Anti-Theft Devices  √  √ 
Image Green Silver Metallic blue Red Black
Insurance 11 7 8 7 6
Price £1,850.00 £2,500.00 £2,000.00 £3,000.00 £1,500.00
Car Age 3 years 3 years 3 years 2 years 2 years
Car Mileage 45,000 30,000 25,000 25,000 35,000

Table A-1: Information table
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Tables

Intensity of
preference

(Numerical Value)

Definition (Verbal Scale) Explanation

1 Equally preferred; Equal
preference

Two elements contribute
equally to the objective

3 Moderately preferred; Weak
preference of one over other

Experience and judgement
slightly favour one
element over another

5 Strongly preferred; Essential
or strong preference

Experience and judgement
favour one element over
another

7 Very strongly preferred;
Demonstrated preference

An element is very
strongly favoured and its
dominance is
demonstrated in practice

9 Extremely preferred;
Absolute preference

The evidence favouring
one element over another
is of the highest possible
order of affirmation

2, 4, 6, 8 Intermediate values between
the two adjacent judgements

When compromise is
needed

Reciprocals of
above nonzero

If an element i has one of the
above numbers assigned to it
when compared with element
j, then j has the reciprocal
value when compared with i.

Ratios Ratios arising from the scale If consistency were to be
forced by obtaining n
numerical values to span
the matrix.

Table 1: Scale of relative preference based on Saaty (1980)

C1 C2 C3 C4 C5

C1 1 3 - 3 1/5
C2 1/3 1 1/9 - 1/2
C3 - 9 1 7 1
C4 1/3 - 1/7 1 1/5
C5 5 2 1 5 1

Table 2: Pairwise comparisons between criteria based on the DM’s opinions
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a) C1 A1 A2 A3 A4 A5 b) C2 A1 A2 A3 A4 A5

A1 1 - - - 5 A1 1 1/8 1/8 1/7 -
A2 - 1 7 1/3 5 A2 8 1 - - 5
A3 - 1/7 1 1/5 5 A3 8 - 1 1/8 5
A4 - 3 5 1 5 A4 7 - 8 1 5
A5 1/5 1/5 1/5 1/5 1 A5 - 1/5 1/5 1/5 1

c) C3 A1 A2 A3 A4 A5 d) C4 A1 A2 A3 A4 A5

A1 1 1/8 - 1/7 - A1 1 1/7 1/5 1/9 -
A2 8 1 - 1 3 A2 7 1 7 - 1/6
A3 - - 1 1/8 3 A3 5 1/7 1 1/8 6
A4 7 1 8 1 3 A4 9 - 8 1 6
A5 - 1/3 1/3 1/3 1 A5 - 6 1/6 1/6 1

e) C5 A1 A2 A3 A4 A5

A1 1 3 2 5 1/3
A2 1/3 1 1/3 3 1/5
A3 1/2 3 1 4 1/3
A4 1/5 1/3 1/4 1 1/9
A5 3 5 3 9 1

Table 3. Pairwise comparisons between alternatives over the different criteria.

C1 C2 C3 C4 C5

C1 (1, 1, 1) (3 , 3, 3 + ) - (3 , 3, 3 + ) (1/5 , 1/5, 1/5 )
C2 (1/3 , 1/3, 1/3 ) (1, 1, 1) (1/9 , 1/9, 1/9 ) - (1/2 , 1/2, 1/2 )
C3 - (9 , 9, 9 + ) (1, 1, 1) (7 , 7, 7 + ) (

1
1 , 1, 1 + )

C4 (1/3 , 1/3, 1/3 ) - (1/7 , 1/7, 1/7 ) (1, 1, 1) (1/5 , 1/5, 1/5 )
C5 (5 , 5, 5 + ) (2 , 2, 2 + ) (

1
1 , 1, 1 + ) (5 , 5, 5 + ) (1, 1, 1)

Table 4: The fuzzy comparison matrix based on using the 1-9 scale

C1 C2 C3 C4 C5

C1 (1, 1, 1) (2.5, 3, 3 .5) - (2.5, 3, 3 .5) (0.1818, 1/5, 0.2222)
C2 (0.2857, 1/3, 0.4) (1, 1, 1) (1/9, 1/9, 0.1176) - (0.4, 0.5, 0.6667)
C3 - (8.5, 9, 9.5) (1, 1, 1) (6.5, 7, 7 .5) (0.6667, 1, 1.5)
C4 (0.2857, 1/3, 0.4) - (0.1333, 1/7, 0.1538) (1, 1, 1) (0.1818, 1/5, 0.2222)
C5 (4.5, 5, 5.5) (1.5, 2, 2.5) (0.6667, 1, 1.5) (4.5, 5, 5.5) (1, 1, 1)

Table 5: The fuzzy comparison matrix over different criteria where = 0.5
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Row Sums Column Sums

C1 (6.1818, 7.2000, 8.2222) (6.0714, 6.6667, 7.3000)
C2 (1.7968, 1.9444, 2.1843) (13.500, 15.000, 16.000)
C3 (16.6667, 18.000, 19.000) (1.9111, 2.2540, 2.7715)
C4 (1.6001, 1.6762, 1.7761) (14.500, 16.000, 17.500)
C5 (12.1667, 14.000, 16.000) (2.4303, 2.9000, 3.6111)

Sum of column sums (38.4128, 42.8207, 47.1826)

Table 6: Sum of rows and columns based on different criteria

Weight values for DAs Weight values for criteria
DAs A1 A2 A3 A4 A5

C1 0 0.4641 0 0.5359 0 0
C2 0 0 0 1 0 0
C3 0 0 0 1 0 0.7123
C4 0 0 0 1 0 0
C5 0 0 0 0 1 0.2877

Final Results 0 0 0 0.7123 0.2877
Ranking orders [A4, A5, A1 = A2 = A3]

Table 7: The sets of weight values for all fuzzy comparison matrices and the final results
obtained where = 0.5 based on theDM’s opinions

Weight values for DAs Weight values for
criteria

DAs A1 A2 A3 A4 A5

C1 0.1919 0.2412 0.1988 0.2436 0.1244 0.2485
C2 0.0117 0.2919 0.2930 0.3294 0.0740 0.0625
C3 0.0023 0.3385 0.1943 0.3795 0.0854 0.3186
C4 0.0128 0.2590 0.2427 0.2965 0.1890 0.0678
C5 0.2464 0.1730 0.2237 0.0710 0.2859 0.3026

Final Results 0.1246 0.2560 0.2138 0.2436 0.1621
Ranking orders [A2, A4, A3, A5, A1]

Table 8: The sets of weight values for all fuzzy comparison matrices and the final results
obtained where =4.73 based on theDM’s opinions
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Figure 1: The comparison of two fuzzy numbers M1 and M2
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Figure 2: Comparison of two fuzzy numbers M1 and M2 while l1 > u2
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Figure 3: Description of the degree of fuzziness according to Zhu et al. (1999)
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Figure 4: Representation of fuzzy number (lij, mij, uij) based on as a proportion between the
successive scale values
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Figure 5: The example for mij = vk = 2 while = 1.5
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Figure 6: Illustration of lij and uij bounds on the fuzzy number depending on changes in the 
value
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Figure 8: The weights between alternatives based on C1 to C5


