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Motivation
Linear Portfolio

@ value of portfolio w = (wy, ..., wy)" of assets
St =(Sit...,Sap)":

d
Vi= > WS
=

@ profit and loss (P&L) function:

d
Livt = (Viar = VO = ) wSe(e%%1 = 1)
j=1

Xi+1 = (log St+1 — log St)
@ Value-at-Risk at level a:
VaR(a) = F{ ' (a)
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Motivation 1-2

Log returns DCX & VW

Figure 1: Standardized log returns, DaimlerChrysler (DCX) and Volkswagen (VW), quan-
tiles ®=1(0.005) and ®~1(0.995) (red). @ maxmindep.xpl
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Motivation 1-3

Log returns DCX & VW at 20030408
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Figure 2: Standardized log returns, DaimlerChrysler (DCX) and Volkswagen (VW),
20020415-20030408. Q maxmindep.xpl
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Motivation 1-4

Log returns DCX & VW at 20041027

Figure 3: Standardized log returns, DaimlerChrysler (DCX) and Volkswagen (VW),
20031103-20041027. Q maxmindep.xpl
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Motivation

The VaR depends on the distribution Fx of the risk factor
increments X = (Xq,...,Xq)".

1. How to model the dependency among Xi,..., Xy ?
2. How does Fx and the dependency among Xj, ..., X4 vary
over time ?
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Motivation

Traditional approach

@ the conditional distribution of log-returns is multivariate
normal: X; ~ N(0,%;)
& the covariance matrix X; is estimated by:
Ti=(e'- 1)) e X X
s<t
& decay factor A (0 < A < 1) is determined by backtesting
@ A = 0.94 provides best results (Morgan/Reuters, 1996)

@ Drawbacks:

» does not allow to generate tail dependence
» does not allow heavy tails
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Motivation

Copula based approach

@ the conditional distribution of log-returns is modelled with
Copula C:
Xt ~ C{Fx,(x1), ..., Fx,(Xa), 01}

@ Fx,,..., Fx, are marginal distributions
@ 6; dependence parameter

(Embrechts, 1999)
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Motivation 1-8

A single global copula parameter 6; = 6 is too optimistic.
Copula parameter 6; almost constant on certain intervals.

& find the largest interval | for which parametric assumption is
acceptable (gpaxle)

@ find this interval for each t adaptively

@ practically speaking: estimate the dependence parameter 6; in
a time varying interval
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Motivation 1-9
Modelling Dependence over Time

Copula parameter Theta

theta
3
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Figure 4: Dependence over time for DaimlerChrysler(DCX) and Volkswagen(VW),
20000103-20041230. Q plotrealtheta.xpl
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Copulae and Value-at-Risk 2-1

Copulae

Theorem (Sklar’s theorem)

For a distribution function F with marginals Fx,, ..., Fx,. There
exists a copula C : [0,1]19 — [0, 1] with

F(x1,....Xq) = C{Fx (x1), ..., Fx,(Xa)} (1)

If Fx,,...,Fx, are cts, then C is unique. If C is a copula and
Fx,,...,Fx, are cdfs, then the function F defined in (1) is a joint cdf
with marginals Fx,, ..., Fx,.
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Copulae and Value-at-Risk 2-2

With copula density

8"C(u1, cooUg)

C(U1,...,Ud)= OUH ...aud
the density function of F(x1,..., Xg) is

d

(X1, . Xa) = S (1), ..., P 0} | ] %)
j=1

where uj = Fx;(x)) and fi(x)) = Fy (x), j=1...d
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Copulae and Value-at-Risk 2-3

1. Gaussian Copula

CSa(uy,. .., Ug) = D@ (Uy), ..., 0" (Ug))

® univariate standard normal cdf

Oy d-dimensional standard normal cdf with correlation matrix ¥

m Gaussian copula contains the dependence structure

@ normal marginal distributions + Gaussian copula =
multivariate normal distributions

@ non-normal marginal distributions + Gaussian copula =
meta-Gaussian distributions
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Copulae and Value-at-Risk 2-4

Explicit expression for the Gaussian copula

c&(uy, ..., ug) Oy{D 7 (uy), ..., D" (Ug)}

= (uy) oy e
= f f 22 w2 &2 Y D L dry

00 o

where
r=,....ra)", U = O(x))
o Cga(u1 ,...,Uq) allows to generate joint symmetric

dependence, but no tail dependence (i.e., there are no joint
extreme events)
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Copulae and Value-at-Risk 2-5

2. Frank Copula, 0 < 6 < o

d
l_l {exp(—auj) - 1}
]

j=
{exp(~0) — 1}9~"

1
Cg(u1,...,ud)=—glog 1+

= dependence becomes maximal when § — oo
@ independence is achieved when 6 = 0
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Copulae and Value-at-Risk 2-6

3. Gumbel-Hougaard copula, 1 < 6 < o

9—1
d
Co(Us, ..., Ug) = exp |- {Z(— log uj)"}

j=1
@ for 8 > 1 allows to generate dependence in the upper tail

(Schmidt, 2005)

@ For 6 = 1 reduces to the product copula, i.e.
Co(uq,...,Uq) = ]_[l?":1 uj.
@ for 8 — oo, we obtain the Fréchet-Hoeffding upper bound:

f—oco0
Co(uy,...,Ug) — min(uy,,...,Uq).
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Copulae and Value-at-Risk 2-7

4. Ali-Mikhail-Haq copula, -1 <0 < 1

d
[ ]u

s Ug) =
1:1

@ independence is achieved when 8 = 0

Cg(U1, Ce

:Q

@ the Fréchet-Hoeffding bounds are not achieved
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Copulae and Value-at-Risk 2-8

Q) (@

2\ Wo

Figure 5: Pdf contour plots, F(x1,x2) = C{®(x1), D(x2)} with Gaussian (o = 0), AMH
(6 = 0.9), Frank (6 = 8), Gumbel (6 = 2) copulae. @ cont4.xpl
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Copulae and Value-at-Risk 2-9

5. Clayton copula, 6 > 0

—o!
d
Co(uy, ..., Ug) = [Zuj‘e]—d+1

J=1

& dependence becomes maximal when § — oo
& independence is achieved when 8 — 0

@ the distribution tends to the lower Fréchet-Hoeffding bound
when § — 1

@ allows to generate asymmetric dependence and lower tail
dependence, but no upper tail dependence
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Copulae and Value-at-Risk

Value-at-Risk with Copulae

The process {Xt}tT:1 of log-returns can be modelled as

Xit = Wit + 0jrejt
with Elej¢] = 0, E[¢7,] =1,j=1,....d and
E[Xit | Ft-1] = pj¢
EL(Xjt = uj0)? | Fral = 0%y
where ¥ is the available information at time .

= & =(e14,..-,€4¢)" are standardised i.i.d. innovations with a
joint distribution function F,

@ g, j=1,...,d have continuous marginal distributions F;
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Copulae and Value-at-Risk 2-11

VaR with Copulae

For the log-returns {xj,t}tT:1 ,j=1,...,d Value-at-Risk at level « is
estimated:

1. determination of the innovations &; (e.g. by deGARCHing)
2. specification and estimation of marginal distributions F;j(¢;)

3. specification of a copula C and estimation of dependence
parameter 6

4. simulation of innovations ¢ and losses L
5. determination of \7&17?(@), the empirical a-quantile of F;.
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Copula estimation 3-1

Copula estimation
The distribution of X = (X4, ..., Xg) T with marginals ij(xj, 6j),
j=1,...,dis given by:

Fx(X1,...,Xa) = C{Fx,(X1;61), ..., Fx,(Xd; 04); 0}
and its density is given by

f(X1,...,Xd;51,...,(5d,9)

d
= c{Fx,(X1:01), ..., Fx,(X4:0q); 0} l_[ fi(xj;0))
=1

where c is a copula density.
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Copula estimation 3-2

For a sample of observations {x;}[_, and ¢ = (61, ...,64,6)" € R%*"
the likelihood function is

T

L(ﬁ;X‘I’-"’XT) = l_lf(X‘]’t,...,Xd’t;61,...,6d,0)
t=1

and the corresponding log-likelihood function

€3 X1, .., x7) = ) 10g 6{Fx, (61,661 -, Fx, (Xai13 6a); 0}
t=1

T d
+ZZ log fi(X;t; 0))

t=1 j=1
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Copula estimation 3-3

Full Maximum Likelihood (FML)

@ FML estimates vector of parameters @ in one step through

FemL = arg max £(1).
9

@ the estimates Jep = (81,...,04,0)T solve
(0€]964,...,00]064,0(/00) = 0.

= Drawback: with an increasing dimension the algorithm
becomes too burdensome computationally.
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Copula estimation 3-4
Inference for Margins (IFM)

1. estimate parameters ¢; from the marginal distributions:
T
3,- = arg max £;(6;) = arg max {Z log fi(X;t; 6,~)}
0 3 =

2. estimate the dependence parameter 6 by maximizing the pseudo
log-likelihood function

.
0, 81,...,80) = ) 10g c{Fx, (x1,6:81), ..., Fx,(Xas 6); 6}
t=1

@ The estimates dgy = (61, . . .,04,0)" solve
(0611064, ...,004]064,0(/00) = 0.

© Advantage: numerically stable.
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Adaptive Copula estimation and moving Window 4-1

Moving Window

@ use static windows of size w = 250 scrolling in time t for VaR
estimation:
{Xf}f:s—wﬂ
fors=w,...,T

@ the VaR estimation procedure generates a time series
{VaR{ [, and {8;}]_,, of dependence parameters estimates.
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Adaptive Copula estimation and moving Window 4-2
Adaptive Copula estimation

Using Local Change Point detection (LoChaP)(Mercurio, Spokoiny,
2004) we sequentially test: 6; is constant (i.e. 6; = 8) within some
interval | (local parametric assumption).

"Oracle” choice: the largest interval | = [v, n[, for which the small
modelling bias condition (SMB)

AIO) = ) K(Py, Py) < A
tel

is fulfilled.
@ v denotes the change point
@ 0 is then estimated from the interval I = [v, n[
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Adaptive Copula estimation and moving Window 4-3

Choice of the interval of homogeneity

LoChaP is based on adaptive choice of the interval of homogeneity
for the endpoint n.

Define 7 = {lx,k = 0,1,...} such that Iy = [n — my, n] with mj:
Mp<m<me<..<n

Hp: copula parameter 6; is constant within interval I,
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Adaptive Copula estimation and moving Window 4-4

LoChaP procedure

start from the smallest interval Iy
test the Hy hypothesis of homogeneity within
if Hy not rejected, take the next larger interval

MW N~

continue the procedure until a possible change point ¥ is
detected or the largest possible interval [0, n[ is reached

5. if Hp is within some I rejected, the estimated interval of
homogeneityT: [V, n[ or = [0, n[

6. estimate copula dependence parameter ¢ from observation S;
fort e, assumlng the homogeneous model within Tie.,

define 9, = &,
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Adaptive Copula estimation and moving Window 4-5

Test of homogeneity against a change point
alternative

Let I = [n— m, n[ be an interval candidate.
Let 77 be a set of internal points within |

Ho: 6; =61 €T
Hi: 3r€7:6; =04 fort € J = [1,n[ and 6; = 05 for
teS=I-Jd=[n-m,1][

= log-likelihood ¢,(6) corresponding to Hyp
@ log-likelihood £4(61) + €4c(62) corresponding to Hy
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Adaptive Copula estimation and moving Window 4-6

Test of homogeneity against a change point
alternative

Likelihood ratio test for the fixed change point location:

Tir = max{€y(01) + Lye(62)} — max £,(6)
01,02 (4
= 00y + LyeBy) - €(O)
= 2J + EJC - 2[
Test statistics for unknown change point location:
TI = MaXreT; TI,T
Reject Hy if T) > 4,

Change point ¥ = arg max.er, T+
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Adaptive Copula estimation and moving Window 4-7

Implementation Example

Selection of interval candidates 7: 7 = {ly : Ix = [n — my, n[}
with my = [mock], k =0,1,2,... forsome c > 1.

Setting of 7, : 7 = {t : n — Mk + p1my < t < n— pamy} for fixed
parameters py < 1/3 and po < 1/83.

n— m n

I 4 4 y
k t t 1

n—mg+ p1Mg n— p2myg
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Adaptive Copula estimation and moving Window 4-8

Test statistics

! !

T_ltau

1Mk P2Mi

Figure 6: Test statistics T, for one fixed interval I, of length m, = 200 plotted against 7.
Parameters po = 1/3 and p1 = 0.25 (dotted lines).
Q testChangePointMod. xpl
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Adaptive Copula estimation and moving Window 4-9

Choice of the critical values
Choose critical values A, to provide a prescribed first kind error
probability a:

1. Set g for every I: 3.7 81 = @, e.g. for M, denoting the
number of points in interval Ix we have

ZM‘

el

a(1 -ch

= a/M_
k Ck

and the corresponding value a;,:
a) ~a(l - c kD)
2. Select by Monte Carlo critical values 2, for every interval Ix:

PHO (manfSk le' > ﬂ/k,) =q,
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Adaptive Copula estimation and moving Window 4-10
Simulated Examples

A set of 240 observations was simulated from a bivariate
Gumbel-Hougaard copula

1
Co(u, v) = exp [— {(— log u)? + (~log v)"} /9]
with parameter:
1 if 1<t<80
=< 3 or 2 if 81 <t<160
1 if 161 <t <240
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Adaptive Copula estimation and moving Window 4-11

Simulated critical values

o] I
'e}
>-er [
o S\ I
~ N\ S_'\
N VT !
— - s
\\’——-
<« \//\\ \’/,\\'\/»
3 35 4 45 5 55

log of theinterval length

Figure 7: Critical values for @ = 0.05 (solid line) and « = 0.1 (dashed line), computed
by simulations using Gumbel-Hougaard copula with parameters my = 20, p» = 0.3 and
c =1.1, p1 = 0.1 (black line), c = 1.2, p1 = 0.2 (red line), ¢ = 1.25, p1 = 0.25 (blue line).
Q critplot.xpl
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Adaptive Copula estimation and moving Window

i S

! i

a ! |

E H !

i — 12
)

i, e

H [

o |

* 1

|

Y .
]

i AT

H [

s |

- 1

|

- Y .
R I

4-12

Figure 8: Pointwise mean (blue) based on 200 simulations of the data, simulated from the Gumbel-Hougaard cop-
ula and real parameter (dashed); jump size 2 (left panel), jump size equal 1 (right panel); with parameters mp = 20,

p2 = 03and ¢ = 1.1, py = 0.1 (upper panel); ¢ = 1.2, py = 0.2 (middle panel); ¢ = 1.25, p; = 0.25 (low
Q thetaplotmean.xpl
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Adaptive Copula estimation and moving Window

Figure 9: Pointwise median (red) and quartiles (dashed) , based on 200 simulations of the data, simulated from the
Gumbel-Hougaard copula; jump size 2 (left panel), jump size equal 1 (right panel); with parameters my = 20, p» = 0.3 and
¢ =1.1,py = 0.1 (upper panel); ¢ = 1.2, p; = 0.2 (middle panel); ¢ = 1.25, py = 0.25 (lower panel). @ thetaplot.xpl
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Detection delays with parameters my = 20, ¢ = 1.25, py = 0.25, p» = 0.3

to the first

jump att =80 mean  standard deviation ~ maximum  minimum
40% rule 9.215 3.596 21 1
50% rule 9.475 3.697 21 2
60% rule 9.740 3.860 24 2

to the second

jumpatt=160 | mean standard deviation maximum  minimum
40% rule 6.175 3.158 15 1
50% rule 6.890 3.216 17 1
60% rule 7.605 3.634 21 2

Table 1: Descriptive statistics for the detection speeds to sudden jumps of the Gumbel-
Hougaard copula dependence parameter with a jump size of 2. The results are obtained
with parameters @ = 0.05, my = 20, ¢ = 1.25, p1 = 0.25 and p» = 0.3. Statistics are based

on 200 simulations.
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Adaptive Copula estimation and moving Window 4-15

Detection delays with parameters mg = 20, ¢ = 1.25, p1 = 0.25, p» = 0.3

to the first

jump at t = 80 mean standard deviation ~ maximum  minimum
40% rule 10.210 5.829 28 1
50% rule 11.535 5.150 29 1
60% rule 13.030 5.801 37 1

to the second

jump at t = 160 mean standard deviation ~ maximum  minimum
40% rule 8.885 5.428 28 1
50% rule 10.075 5.719 32 1
60% rule 11.800 7.880 61 1

Table 2: Descriptive statistics for the detection speeds to sudden jumps of the Gumbel-
Hougaard copula dependence parameter with a jump size of 1. The results are obtained
with parameters @ = 0.05, my = 20, ¢ = 1.25, p1 = 0.25 and p» = 0.3. Statistics are based

on 200 simulations.
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Simulated Examples

A set of 240 observations was simulated from a bivariate Clayton
copula
Co(u,v) = (U9 +v0— 1)1

with parameter:
1 if 1<t<80
0p=4 3 or 2 if 81<t<160
1 if 161 <t<240
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Simulated critical values
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Figure 10: Critical values for a = 0.05 (solid line) and @ = 0.1 (dashed line), computed by
simulations using Clayton copula with parameters mp = 20, p» = 0.3 and ¢ = 1.1, p1 = 0.1

(black line), ¢ = 1.2, p1 = 0.2 (red line), ¢ = 1.25, p = 0.25 (blue line). Q@ critplot.xpl
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Adaptive Copula estimation and moving Window 4-18

Figure 11 Pointwise mean (blue) based on 200 simulations of the data, simulated from the Clayton copula and real
parameter (dashed); jump size 2 (left panel), jump size equal 1 (right panel); with parameters mg = 20, p» =0.3andc = 1.1,
p1 = 0.1 (upper panel); ¢ = 1.2, p; = 0.2 (middle panel); ¢ = 1.25, py = 0.25 (lower panel). @ thetaplotmean.xpl
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Adaptive Copula estimation and moving Window 4-19
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Figure 12: Pointwise median (red) and quartiles (dashed) , based on 200 simulations of the data, simulated from the
Clayton copula; jump size 2 (left panel), jump size equal 1 (right panel); with parameters mg = 20, p» = 0.3 and ¢ = 1.1,
p1 = 0.1 (upper panel); ¢ = 1.2, p1 = 0.2 (middle panel); ¢ = 1.25, py = 0.25 (lower panel). @ thetaplot.xpl
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Adaptive Copula estimation and moving Window 4-20

Detection delays with parameters my = 20, ¢ = 1.25, py = 0.25, p» = 0.3

to the first

jump at t = 80 mean standard deviation ~ maximum  minimum
40% rule 10.940 6.519 32 1
50% rule 12.440 7.326 39 1
60% rule 13.410 7.708 39 1

to the second
jump at t = 160 mean standard deviation ~ maximum  minimum

40% rule 9.688 6.716 36 1
50% rule 10.764 7.416 53 1
60% rule 12.352 8.109 53 1

Table 3: Descriptive statistics for the detection speeds to sudden jumps of the Clayton
copula dependence parameter with a jump size of 2. The results are obtained with param-
eters @ = 0.05, myp = 20, ¢ = 1.25, p1 = 0.25 and p» = 0.3. Statistics are based on 200
simulations.
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Adaptive Copula estimation and moving Window 4-21

Detection delays with parameters my = 20, ¢ = 1.25, py = 0.25, p = 0.3

to the first

jump at t = 80 mean standard deviation ~ maximum  minimum
40% rule 10.100 10.051 60 1
50% rule 11.745 10.918 60 1
60% rule 13.870 11.912 60 1

to the second
jump at t = 160 mean standard deviation ~ maximum  minimum

40% rule 16.626 14.837 74 1
50% rule 19.843 17.547 75 1
60% rule 21.727 18.064 79 1

Table 4: Descriptive statistics for the detection speeds to sudden jumps of the Clayton
copula dependence parameter with a jump size of 1. The results are obtained with param-
eters @ = 0.05, myp = 20, ¢ = 1.25, p1 = 0.25 and p» = 0.3. Statistics are based on 200
simulations.
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Kullback-Leibler Divergence

© Kullback-Leibler divergence is defined as:

p(y, )
p(y,¥")

K1,2) K(1,3) K@2,1) K@, 1)
Gumbel-Hougaard | 123.01 339.36 79.377 158.08
Clayton 24938 84.439 18.096 48.803

K(Py, Py) = Eglog ——=

Table 5: Kullback-Leibler information number K61, 62) and K (62, 61) for fixed 61 = 1

and parameter 6> = 2.0, 3.0; for the Gumbel-Hougaard and the Clayton copula.

> density p(y,?) = dPy(y)/dP
» Py is dominated by a o-finit measure P
» Py belongs to some parametric family P
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Kullback-Leibler K (thetal theta2)

K(thetal theta2)* E2
9 5 1 15 %

T T
5 10
theta2

Kullback-Leibler K(theta2,thetal)

K (theta thetal)* E2
?

theta2

Figure 13: Kullback-Leibler information number K(6+,62) (upper panel) and K(6z,61)
(lower panel) plotted against 6 for fixed 61 = 1. The blue line refers to the Gumbel-Hougaard

copula and the red line to the Clayton copula. @ KullbackLeibler.xpl
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Applications and Backtesting 5-1

Applications

Data sets from the DAX portfolio: DaimlerChrysler, Volkswagen, Bayer,
BASF, Allianz and Miinchener Rickversicherung, 20000101-20031231.

Marginal parameters SL,- = ‘5},," j=1,2 (DaimlerChrysler, Volkswagen)
are estimated at time t by exponential smoothing:

St,j = OA'?’] = (e/l - 1)2 e"l("s)st’j
s<t
Xsj denotes log returns at time s and 0 < A < 1 is a smoothing parameter
(set A =1/20).
Choose Gumbel-Hougaard copula:
Co(u, v) = exp [— {(— log u)? + (= log v)9}1/9]

Recall: 6 = 1 indicates independence.
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Stock price process

stock price

time

Return process

9 5 10

-5

log returns*E-2

-10
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Figure 14: stock price process (upper panel), log returns (middle panel) and copula dependence parameter 6 (lower
panel) for DaimlerChrysler (black line) and Volkswagen (red line). The estimates of 6 are obtained with parameters mg = 20,
c=1.25,p1 = 0.25, po = 0.3 and @ = 0.05. @ plotDCXVi.xpl
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Esimated density, DCX Esimated density, VW
I\

05

Figure 15: Kernel density estimator of the residuals from DaimlerChrysler (left panel, blue
line) and Volkswagen (right panel, blue line) and of the normal density (black line); confidence
bands (dashed red lines) at level 0.05. Quartic Kernel is used with i = 2.786-n02.

Q densest.xpl

Inhomogeneous Dependence Modelling with Time Varying Copulae



http://www.quantlet.org/mdstat/codes/talks/Copula/densest.html

Applications and Backtesting 5-4

Copul a parameter theta
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Figure 16: Upper panel: estimated copula dependence parameter 6 for DaimlerChrysler and Volkswagen (blue line)
and its mean (red line). Lower panel: estimated intervals of time homogeneity. The results are obtained with pa)
mp = 20, ¢ = 1.25, py = 0.25, pp = 0.3 and @ = 0.05. @ realthetahomlength.xpl
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Applications

Marginal parameters (ASL,» = &ij, j=1,..,6 are estimated at time by
exponential smoothing:

§ij=0%=(e" - 1)) e 9xZ

s<t

Choose Gumbel-Hougaard copula since it allows to generate a lower tail
dependence that is crucial for VaR estimation:

Co (Ui, Ug) = (U + o+ U —d + 1)7/°
with copula density
d d d —(1/6+d)
co (U1, ...,Uq) = H (1+(G-18) ﬂ u;(6+1) {Z uj—H _d+ 1}
= j=1 =

Recall: 6 = 0 indicates independence.
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Copula parameter theta
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Figure 17: Upper panel: estimated copula dependence parameter 6 for 4-dim data: DaimlerChrysler, Volk-swagen,
Bayer and BASF (blue) and its mean (red). Lower panel: estimated intervals of time homogeneity; with parameters mg = 20,
¢=1.25,p1 =0.25,pp = 0.3 and a = 0.05. @ realthetahomlength.xpl
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Figure 18: Upper panel: estimated copula dependence parameter 6 for 6-dim data: DaimlerChrysler, Volk-swagen,
Bayer, BASF, Allianz and Miinchener Rickversicherung (blue) and its mean (red). Lower panel: estimated intervals of time

homogeneity; with parameters mg = 20, ¢ = 1.25, p1 = 0.25, pp = 0.3 and a = 0.05. @ realthetahomlength.x
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Backtesting

compare the estimated values for the VaR with the true realizations
{l;} of the P&L function

the exceedances ratio is given by

-
N 1 ——
&= ;th < VaRy(a))
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Figure 19: paL (dots) and VaR() at level a1 = 0.05, a3 = 0.005, a4 = 0.005, a; = 0.001, w = (3.2.3,2,3,-1)7,

estimated using RiskMetrics approach. @ RiskMetrics.xpl
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Table 6: Exceedances ratio & for different portfolios, calculated using Riskmetrics.

Exceedances ratio a(x102)

Portfolio 5 1 0.5 0.1
1,1,1,1,1,1) 7.4583 3.6310 3.0422 1.7664
(1,2,3,2,1,3) 7.5564 3.631 3.0422 1.6683
(2,1,2,3,1,3) 6.6732 3.4347 2.6497 1.5702
3,2,3,2,3,1) 9.2247 41217 3.7291 2.3553
3,1,2,1,3,2) 8.4396 3.7291 3.3366 2.1590
(1,3,1,2,3,1) 5.3974 2.9441 2.3553 0.68695
(2,1,3,2,1,3) 8.2434 3.8273 3.6310 2.0608
(2,3,3,2,1,1) 7.8508 3.8273 3.3366 2.1590
(3,1,2,2,2,3) 7.8508 3.7291 3.1403 1.8646

(3,2,3,2,3,-1) 10.3040 4.8086 4.0236 2.6497
3,1,2,1,3,-2) 12.3650 7.7527 5.6919 41217
(1,3,1,2,3,-1) 6.3788 3.5329 2.5515 1.1776
(2,1,8,2,1,-3) 7.8508 3.7291 3.2385 1.6683
2,3,3,2,1,-1) 8.6359 4.2198 3.6310 2.4534
3,1,2,2,2,-3) 8.7341 4.2198 3.4347 2.2571
2,3,1,1,2,-3) 10.2060 5.0049 4.4161 2.7478
2,3,2,3,2,-3) 6.7713 3.3366 2.8459 1.1776
3,2,3,2,3,-3) 10.0100 4.9068 41217 2.9441

avg. 7.8958 3.9091 3.2180 1.8973

std.dev. 1.8337 1.0768 0.8886 0.8178
S wew (@ — a)? 2.7859 22977  1.9547 0.9291

Swew (@ — a)?/a 0.5572 22977  3.9093 9.2909
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VaR - Clayton Copula (Moving Window)

P&L*E2

2001 2002 2003 2004 2005
time

Figure 20: paL (dots) and VaR() at level a1 = 0.05, a3 = 0.005, ay = 0.005, a1 = 0.001, w = (3.2.3,2,3,-1)7,

estimated with Clayton copula using moving window approach. @ MovingWindow.xpl
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Table 7: Exceedances ratio & for different portfolios, calculated using Moving Window.

Exceedances ratio a(x102)

Portfolio 5 1 0.5 0.1
1,1,1,1,1,1) 6.6732 1.2758 0.7851 0.3925
(1,2,3,2,1,3) 6.9676 1.1776 0.5888 0.3925
2,1,2,3,1,3) 6.9676 1.2758 0.5888 0.3925
3,2,3,2,3,1) 6.9676 1.0795 0.7851 0.3925
3,1,2,1,3,2) 6.5751 1.4720 0.6869 0.2944
(1,3,1,2,3,1) 6.3788 1.3739 0.6869 0.1963
(2,1,3,2,1,3) 7.1639 1.2758 0.5888 0.3925
(2,3,3,2,1,1) 7.1639 1.3739 0.6869 0.3925
3,1,2,2,2,3) 6.6732 1.0795 0.7851 0.2944

(3,2,3,2,3,-1) 7.0658 1.1776 0.6869 0.3925
(3,1,2,1,3,-2) 6.8695 1.3739 0.6869 0.2944
(1,3,1,2,3,-1) 6.5751 1.2758 0.7851 0.2944
(2,1,8,2,1,-3) 7.262 1.3739 0.8832 0.4907
(2,3,3,2,1,-1) 6.8695 1.472 0.6869 0.3925
3,1,2,2,2,-3) 7.0658 1.3739 0.7851 0.4907
2,3,1,1,2,-3) 6.5751 1.2758 0.8832 0.2944
(2,3,2,3,2,-3) 6.9676 1.4720 0.8832 0.3925
3,2,3,2,3,-3) 6.869 1.4720 0.7851 0.3925

avg. 6.8449 1.3371 0.7565 0.3762

std.dev. 0.2854 0.1352 0.0937 0.0899
Swew (@ — a)? 0.8356  0.0315  0.0178  0.0202

Swew(@-a)?/a | 01671  0.0315  0.0356  0.2016
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VaR - Clayton Copula (Adaptive estimation)

P&L*E2

Figure 21: paL (dots) and VaR() at level a1 = 0.05, a3 = 0.005, a4 = 0.005, a1 = 0.001, w = (3.2.3,2,3,-1)7,

estimated with Clayton copula using adaptive estimation procedure. @ LoChaP.xpl
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Table 8: Exceedances ratio & for different portfolios, calculated using LoChaP procedure.

Exceedances ratio a(x102)

Portfolio 5 1 0.5 0.1
1,1,1,1,1,1) 7.5564 1.7664 0.9814 0.3925
(1,2,8,2,1,3) 7.5564 1.7664 0.8832 0.3925
@,1,2,3,1,3) 7.1639 1.6683 0.9813 0.3925
(3,2,3,2,3,1) 7.5564 1.7664 0.9814 0.2944
(3,1,2,1,8,2) 7.3602 1.9627 1.1776 0.3925
(1,3.1,2,3,1) 6.8695 1.6683 0.7851 0.1963
2,1,3,2,1,3) 7.6546 1.7664 0.8832 0.4907
2,8,3,2,1,1) 7.7527 1.6683 0.8832 0.2944
3,1,2,2,2,3) 7.5564 1.9627 1.0795 0.2944

3,2,3,2,3,-1) 7.5564 1.4720 0.9814 0.2944
(3,1,2,1,3,-2) 7.1639 1.5702 0.88322 0.1963
1,3,1,2,3,-1) 6.9676 1.668 0.6869 0.1963
(2,1,3,2,1,-3) 7.6546 1.4720 0.8832 0.3925
2,8,3,2,1,-1) 7.6546 1.6683 0.8832 0.2944
(3,1,2,2,2,-3) 7.6546 1.4720 0.9814 0.2944
2,3,1,1,2,-3) 6.3788 1.2758 0.6869 0.3925
2,3,2,3,2,-3) 7.1639 1.5702 0.9813 0.1963
(3,2,8,2,8,-3) 7.3602 1.6683 0.9813 0.2944

avg. 7.3561 1.6519 0.9364 0.3189

std.dev 0.3393 0.1912 0.1417 0.0880
Swew (@ — a)? 1.3587  0.1104 0.0503 0.0133

Swew(@—-@?2/a | 02717 0.1104 0.1006 0.1328
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Summary

Table 9: Relative squared deviation Y, (& — @)?/a for Riskmetrics, Mov-
ing Window and LoChaP approach.

Exceedances ratio a(x10°)
Method 5 1 0.5 0.1
Riskmetrics 0.5572 2.2977 3.9093 9.2909
Moving Window | 0.1671 0.0315 0.0356 0.2016
LoChaP 0.2717 0.1104 0.1006 0.1328
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Conclusion

@ Copula was used to estimate the Value-at-Risk from the
6-dimensional portfolio (DCX, VW, ALV, MUV, BAY and BAS)
using Riskmetrics, adaptive estimation and moving window
approach

o Backtesting is used to compare the performance of the
copula-based Value-at-Risk estimation with a Value-at-Risk
estimation using Riskmetrics approach

@ All three methods overestimate on average the Value-at-Risk
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Conclusion

@ The adaptive procedure allows a dynamic selection of the
estimation interval for dependence structure

@ The moving window and adaptive copula outperform a
Riskmetrics in a sense of Value-at-Risk estimation

@ The performance of Value-at-Risk for a fixed estimation
interval (moving window) is at least as good as with an
adaptive method
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Appendix |

Forall u = (uy,...,uq)" €[0,1]9, every copula C satisfies
W(ui,...,ug) < C(Uuy,...,ug) < M(uq, ..., ug)

where
M(u,...,Ug) = min(uy,..., Ug)

and

d
W(uy,...,Uq) = max[Zui—d+1,0}

i=1

o M(uy,...,uUg) is called Fréchet-Hoeffding upper bound
o W(uy,...,uy) is called Fréchet-Hoeffding lower bound

(Hoeffding, 1940)
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Appendix I

For a random vector X = (Xq, X2)"
@ upper tail dependence coefficient is defined as

6 = lim P X > F W |Xe > Fx! )
@ lower tail dependence coefficient is defined as
y = lim P{X: < Fx!W]Xe < Fl )

X is upper/lower tail dependent if 6 > 0 resp. v > 0.
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@ upper tail dependence coefficient for Copula C:

5= lim 1-2u+ C(u,u)
u—1 1-u

@ lower tail dependence coefficient for Copula C:

» Gaussian copula: 6 =y =0
» Clayton copula: § =0, y = 2/
» Gumbel copula: 6 =2-2"¢ y=0
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Appendix

Appendix Il

@ let P denote the underlying measure, i.e.
XT ~ C{FX1 (X1 )7 sy FXd(Xd)’HT} =P

= let Py denote parametric measure corresponding to the model
with a constant parameter 6
@ Small modelling bias condition (SMB) for an interval I:

AO) = ) K(Pa, Py) < A,

tel
where 6 is constant.

K(Py, Py) = Eglog 5(%9,)) denotes Kullback-Leibler
divergence
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Copula dependence parameter 6; depends on the interval /

@ “Oracle” (ideal) choice: largest interval | such that SMB holds
@ Aim: mimic “Oracle” choice

@ practically speaking: estimate the dependence parameter in
time varying interval
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Theorem 1 (parametric case):

Under the local parametric assumption 6 can be estimated by@ in
an interval | such that it holds:

Ep, |L (5,,9)|r < Ror

o Ro, is a constant
@ L denotes log-likelihood ratio
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Theorem 2 (non parametric case):

Under the SMB condition (i.e. Ai(0) < A) it holds
r/2
Ep|L(0,6)] <Ry exp(a),

i.e. 6 is a “good” estimator of § in an interval /.

o Ro, due to Theorem 1

@ “good” means “of parametric quality” up to the factor exp(A),
which is a payment for the model misspecification
(approximation of a non parametric by a local parametric)
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Theorem 3 (critical values):

There are exist 1g, ¢ such that holds 4;, < plog K + «(K — k).

= simplified procedure: select ¢, ¢ due to Theorem 1 such that

holds r
Ev, |L (04-03,)| < pRer

@ p is a constant

@ under the local parametric assumption @,k is a“good” estimator
of 6, i.e. ), provides “Oracle” quality
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Theorem 4 (“Oracle”):

For57" denoting “Oracle” estimator, & provides a “good” estimator
for5, in an Interval I, such that under the SMB holds:

Ee |L (47.0)

r/2
< R;ﬁz -exp(A) + 4.

T exp(A) is a payment for approximation
@ A, is a payment for adaptation
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