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Abstract

We develop a behavioral model as a a computer testbed we can use to study
the probable performance of a wide range of mechanisms prior to testing them in
a laboratory or using them in practice. In this paper, we describe an implemen-
tation of our model and the computer testbed methodology to Groves-Ledyard
(1977) mechanisms for provision of public goods. Previous experimental evi-
dence, and some theory, strongly suggest that the value of a free mechanism
parameter is important for the dynamic performance of the mechanism (when it
is simulated as a repeated game). In our model messages converge to the Nash
Equilibrium for all of the values of the mechanism parameter that we studied.
However, the convergence times depend on the value of the parameter. Our
analysis suggests there are values of the free parameter that result in the fastest
convergence. The range of values is robust with respect to the changes in the
behavioral model’s parameter values and details of the updating procedures.
This prediction is validated with data from experiments with human subjects.
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1 Introduction

Mechanism design has become very sophisticated since its introduction by Hurwicz
in 1960. It is now a well developed body of theory taking into account informational
and incentive constraints. However, its applications remain difficult and not at all
straightforward. Three main roadblocks still exist: (1) much of the theory is about
one-shot games while many applications involve repeated play against the same, or
very similar, opponents1, (2) there is no generally accepted view as to the right model
of individual and group behavior and (3) we have not yet incorporated computational
limitations, of either the mechanism or the agents, into the theory. In this paper we
report on the beginnings of our development of a method to provide support for those
doing applied design when repeated play, behavior, and computation are important.
In this paper, we use the design of a public goods mechanism as an example of what
might be accomplished.

The framework of mechanism design is reasonably simple and well-known. A
mechanism specifies the rules of the game - who should communicate with whom
and how, as well as what actions to take and when. Given a set of individuals,
their preferences and their endowments (all part of the environment), the outcome
we observe will be the result of both the mechanism rules and the choices made by
the agents. A particularly interesting question is whether individuals in a group are
better off under one mechanism than another. To answer this we must be able to
evaluate the performance of mechanisms. In order to do that we need to be able to
predict what outcomes will occur in each environment when that mechanism is used.
We need a model of behavior - how agents choose their actions given the mechanism
and the environment. Unfortunately there is as yet no generally accurate and agreed
upon standard game-theoretic model of behavior. Among the candidates are the use
of dominant strategies (if they exist), Bayesian equilibrium, and Nash equilibrium.

Absent a unique, compelling model of behavior some economists have turned to
the use of the experimental economics laboratory as a testbed for new mechanisms
in much the same way that early aircraft designers turned to the wind-tunnel to test
their designs. In this approach, one picks a mechanism design, picks a few environ-
ments, puts people in place, and then runs the mechanism. Performance is measured
and comparisons between mechanisms are made. But this is expensive and time con-
suming. It would be extremely helpful if one had a computer testbed one could, at
least, use to eliminate bad designs. Better, one would want to be able to identify the
few mechanisms and environments that should be tested in the lab. To create a com-
puter based testbed one needs to come up with a model of behavior that is accurate
and robust. Accurate means that when a test pair, of environment and mechanism,
are chosen and tested in the computer, then the outcome from the behavior modeled
in the computer is close to what would be produced in laboratory experiments with

1Even when repeated play is acknowledged, one often invokes the Revelation Principle which
masks interesting dynamic features of a problem such as an inability to commit.
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human subjects. Robust means that the computer modeled behavior has to be accu-
rate over a wide range of environments and mechanisms and that parameters of the
models do not have to be re-estimated whenever there are substantial changes in the
class of mechanisms or environments.

The key issue in testbed construction is the model of the agents’ behavior. Our
approach to modeling behavior is based, to some extent, on evolutionary algorithms2

such as genetic algorithms, classifier systems, genetic programming, evolutionary pro-
gramming, etc. A large number of applications have focused on models of social
learning where a population of agents (each agent is represented by a single strat-
egy) evolves over time such that the entire population of agents jointly implements a
behavioral algorithm. However, in some applications (e.g. Arifovic, 1994 and Mari-
mon, McGrattan, and Sargent, 1989), these algorithms have been used as models of
individual learning, where evolution takes place on a set of strategies that belong to
an individual agent. We follow the latter approach.

In this paper, to illustrate our approach and to provide some evidence that it can
be successful, we consider a specific class of mechanisms for the provision of a public
good - Groves-Ledyard mechanisms.3 Theory establishes for their tax and allocation
rules, in a one-shot game, that the mechanisms yield a Nash equilibrium outcome
at a Pareto-optimal level of the public good. But the theory is mostly silent on the
dynamics of such a mechanism in a repeated play situation. Two exceptions are the
papers by Muench and Walker (1983) and by Chen and Tang (1998), both of which
suggest that the dynamics might depend on the value of a free parameter, even though
that parameter does not affect the Nash equilibrium outcomes. Muench and Walker
(1983) relies on Cournot strategies for their analysis. Chen ant Tang (1998) produce
results that apply more broadly to any adaptive learning strategies. Although there is
no serious game-theoretic reason to assume agents would adopt adaptive strategies,
evidence from the experiments with human subjects does support this theoretical
insight. In experiments with human subjects (Chen and Plott, 1996; Chen and Tang,
1998), the Groves-Ledyard mechanism was implemented as a repeated stage game.
In these experiments, messages did not converge to Nash equilibrium for a low value
of the free parameter, but did converge for a high value. (Chen and Tang, 1998).

To study the dynamics of Groves-Ledyard mechanisms in repeated play, we use
our testbed to simulate the dynamics in a particular environment for a wide range of
values of the free parameter. The class of mechanisms is described in Section 2. The
testbed is described in Section 3. The results of the simulations of the mechanisms
in the testbed are contained in Section 4. A comparison of the testbed results to
experimental data from humans is contained in Section 5.

2For surveys, see Arifovic, 2000 for applications to macroeconomic models, see LeBaron, 1999 for
applications in finance, and see Dawid, 1999 for general overview of applications in economics and
game theory.

3See Groves-Ledyard 1977.
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2 The Groves-Ledyard Mechanisms4

We restrict our attention to environments in which a public good is produced using
a constant returns to scale production function with a per unit cost of production,
z. The total cost of production is equal to Xz. There are N agents, i ∈ {1, . . . , N},
each of whom has a quasi-linear, quadratic utility function for the public good

V i(X) = AiX −BiX2 + αi .

A mechanism takes messages from agents and computes a level of public good and
a tax payment for each agent. Let M be the set of messages. Each agent i selects an
element mi ∈ M . The total amount of public good produced is:

X(m) =
N∑

i=1

mi .

The message mi can be thought of as representing agent i’s requested addition to the
total amount of public good (given the proposed additions of other agents). Agents
are free to misrepresent their requests for the public good and, if this were a voluntary
mechanism, we would expect them to do so. However, the tax and allocation rules
of the mechanism are specifically designed so that in Nash equilibrium it is in each
agent’s individual self-interest to reveal her true incremental demand for the public
good. The GL mechanism uses the following tax computation:

T i(m, γ) = (X(m)/N)z + (γ/2)

[
N − 1

N

(
mi − µ−i

)2 − σ2
−i

]

where T i is the amount of tax paid by agent i, γ is an arbitrary free parameter

greater than 0, µ−i =
∑

h 6=i mh

N−1
is the mean value of messages of all the other agents,

and σ2
−i =

∑
h 6=i(mh−µ−i)

2

N−2
is the squared deviation from this mean. The reader should

notice that different values of γ imply different outcome functions and, therefore,
different mechanisms.

The payoff of agent i, if the messages are m, is:

U i(m) = V i(X(m))− T i(m, γ)

The mechanism, [X(m), T (m, γ)] is an incentive compatible mechanism with a
balanced budget on and off the equilibrium path. It is well known that, in this
environment with quasi-linear preferences, if the agents follow Nash equilibrium be-
havior, then the Nash equilibrium public good outcome of the one-shot game will be

4This section is intended mainly as a reminder to the reader of the structure of the problem. For
more details, see Groves and Ledyard (1977) or Chen and Plott (1996).
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the unique, Pareto optimal level of public good.5 So, in particular, in quasi-linear
environments, the equilibrium outcome level of the public good is independent of γ.

In a repeated play version of the public good allocation problem, it is assumed
that the public good lasts only for 1 period. Further, payoffs are additive over time
without discounting. So, at each iteration t, an amount of the public good and taxes
are chosen. An agent’s payoff from the sequence (X1, T1, ..., Xt′ , Tt′) is

U∗i =
t′∑

t=1

U i(mt)

=
t′∑

t=1

V i(Xt)− T i
t .

What can we say about the theory of the Groves-Ledyard mechanism in repeated
play? Groves and Ledyard are themselves silent on any aspect of dynamics. But, it
can be shown, at least for agents following adaptive strategies, that γ is important
for the dynamic performance of the mechanism. Chen and Tang (1998) derive a
sufficient condition for the convergence of the mechanism in repeated play in which
agents play best responses given the messages of the other agents.6 If agents use best
responses in a sequence of repeated stage GL mechanisms, messages will converge
to Nash equilibrium if agents’ strategies are strategic complements; i.e., if the stage
game

∂2U i/∂mi∂mj ≥ 0.

This is true for quadratic preferences iff γ ≥ 2NBi for all i . Thus, the strategic
complementarity condition is satisfied for a sufficiently high value of γ.7

Can experiments shed any light on the properties of the Groves-Ledyard mecha-
nism in repeated play? In experiments with human subjects (Chen and Plott, 1996;
Chen and Tang, 1998), messages did not converge to Nash equilibrium for a low
value of γ = 1 in 100 experimental periods, but did converge for a high value of
γ = 100 (Chen and Tang, 1998). It was, however, not obvious what behavioral re-
sponses the agents were actually using in these experiments or whether the cut point
of γ ≥ max{2NBi}, predicted by strategic complementarity, was a determining factor
in the dynamics.

These interesting, although limited, results leave open questions about the im-
pact of different values of γ on the dynamics of the Groves-Ledyard mechanism in
the experimental environment. Most theoretical results, such as the theory of super-
modular games, provide predictions about convergence in the limit but do not make
predictions about the speed of convergence. We are interested in the more precise

5In more general environments, there can be multiple Pareto-optimal allocations but the Nash
equilibria of the Groves-Ledyard mechanism will select one of these.

6See also, Muench and Walker 1983 for further analysis of these dynamics.
7For the set of the parameter values in Chen and Tang 1998, this condition holds for the values

of γ greater than 80.
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predictions. Does the time that it takes to converge to equilibrium monotonically
decrease with an increase in γ? Or is there a value of γ that results in the fastest
convergence? Does the mechanism with γ = 1 ever converge to Nash equilibrium
and, if not, is there some other basin of attraction? We will address these questions
in the context of our testbed.

3 The Testbed

In a repeated game, in every round, each agent must select a message from M , given
the mechanism and given history. Our testbed is created by implementing a particular
behavioral model for that selection.8 In each round, agents will send messages to the
mechanism based on random selection from a set; that is, they use a mixed strategy.
The mechanism will pick outcomes and inform the agents about them. It will also
(as part of the mechanism design) provide other information. The agents will then
adjust both the set from which they are selecting and the probability density that
determines their selection. The testbed is driven, stochastically, over time by the
sequence of mixed strategies and outcomes. Since the updating process takes place
for each of the N agents, the mixed strategy of each agent co-evolves, through the
mechanism, with the mixed strategies of the other agents.

3.1 Agent behavior

At the beginning of round t ∈ {1, 2, ..., Tmax}, each agent i ∈ [1, . . . , N ] has a collection
Ai

t of possible alternative messages at time t. Ai
t consists of J alternatives9 where

ai
j,t ∈ M , for j ∈ {1, . . . , J}. At each t, an agent selects an alternative randomly from

Ai
t using a probability density10 πi

t on Ai
t. This alternative is her message mi

t to the
mechanism. We construct the initial set Ai

1 by randomly selecting, with replacement,
J messages from the set of all possible messages. We construct the initial probability
πi

1 by letting πi
1(a

i
j,1) = 1/J.

After receiving mi
t from each i, the taxes and level of public good are deter-

mined by the mechanism using the Groves-Ledyard outcome function, g(mt). Agents
are then informed about Xt and Ti

t. They are also informed about the value of
si

t+1 = (µ−i,t, σ
2
−i,t) as defined in Section 2. Using the information in si

t+1, each agent
computes a new Ai

t+1 and πi
t+1. This computation is the heart of our behavioral model

and consists of three pieces: foregone utility, experimentation, and replication.

8In this section, we describe our “baseline” model. Later, we will consider a number of variations
in our baseline model in order to test its robustness.

9J is a free parameter of the behavioral model that can be varied in the simulations. It can be
loosely thought of as a measure of the processing and/or memory capacity of the agent.

10In essence the pair (Ai
t,πi

t) is a mixed strategy for i at t.
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3.1.1 Foregone utility

In updating Ai
t and πi

t, the first step is to calculate what we call foregone utilities for
each alternative in the set. This is the (expected) payoff, given the signal si

t, that the
alternative ai

j,t would have received if it had been actually used, taking the behavior
of other agents as given.11 We use the notation U i(ai

j|si
t) to represent this utility.

Given, si
t an agent can compute

X(ai
j, µ

i
t) = ai

j + (N − 1)µi
t

for each alternative ai
j ∈ Ai

t. Then they can compute

U i(ai
j|si

t) = Vi(X(ai
j, µ

i
t))− Ti(a

i
j, µ

i
t, σ

i
t)

= Vi(X(ai
j, µ

i
t))−X(ai

j, µ
i
t)z − (γ/2)

((
N − 1

N

) (
ai

j − µi
t

)2 − σi2
t

)

This is i’s foregone utility for ai
j.

3.1.2 Updating Ai
t

We modify Ai
t with processes of experimentation and replication.

Experimentation We first modify Ai
t as follows. For each j = 1, ..., J, with proba-

bility ρ we select one message at random from M and replace ai
j,t with that message.

For our baseline simulations we use a normal density for this experimentation and a
rate of experimentation ρ = 0.033 . For each j, the mean value of the distribution is
set equal to the value of the alternative, ai

j,t that is to be replaced by a ‘new’ idea.
The standard deviation is set to 1.

This, apparently random, experimentation introduces new alternatives that oth-
erwise might not ever have a chance to be tried. This insures that a certain amount
of diversity is maintained. But, this experimentation is not as random as it looks.
While it is true that an alternative is selected at random from M , we will see that the
alternative selected must have a reasonably high foregone utility relative to the last
period or future periods to have any chance of ever being used. A newly generated
alternative has to increase in frequency in order to increase its selection probability.
This can happen only if it proves successful over several periods.

There are at least two possible interpretations of our experimentation process.
One is that it is a trembling hand mistake and the other is that it is purposeful exper-
imentation intended to improve an agent’s payoff. We feel the latter interpretation is
most appropriate because a choice generated through experimentation is implemented

11This is an entirely retrospective and myopic view of the situation an agent faces. At this stage
in the development of our testbed, we have decided to refrain from including expectations forma-
tion, complex intertemporal strategies (e.g., grim triggers, tit-for-tat, etc.), and other complexities
introduced by repeated play. We intend to address these issues in our future research.
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only if it demonstrates a potential for bringing a higher payoff. Thus, we call this
method directed experimentation since only those newly generated alternatives that
appear promising are actually tried out.12

Replication After experimentation, using the foregone utility computations, we
construct Ai

t+1 to reinforce messages that would have been good choices in previous
rounds. We allow potentially better paying alternatives (using their foregone payoffs
at t) to replace those that might pay less. For j = 1, . . . , J , we let ai

j,t+1 be cho-
sen as follows. Pick two members of Ai

t randomly (with uniform probability) with
replacement. Let these be ai

k,t and ai
l,t. Then

ai
j,t+1 =

{
ai

k,t

ai
l,t

}
if

{
U(ai

k,t|st) ≥ U(ai
l,t|st)

U(ai
k,t|st) < U(ai

l,t|st)

}

Replication for t+1 favors alternatives with a lot of replicates at t and alternatives
that would have paid well at t if they had been used. So it is a process with a form
of averaging over past periods - if the actual messages of others have provided a
favorable situation for an alternative ai

j,t on average then that alternative will tend to
accumulate replicates in Ai

t, (it is fondly remembered), and thus will be more likely to
be actually used in the mechanism. Over time, the sets Ai

t become more homogeneous
as most alternatives become replicates of the best performing alternative.

3.1.3 Updating πi
t

Given Ai
t+1, we now update the selection probabilities. Let

πi
k,t+1 =

U i(ai
k,t+1|st) + εi

t+1∑J
j=1(U

i(ai
j,t+1|st) + εi

t+1)

for all i ∈ {1, . . . , N} and k ∈ {1, ..., J} and where

εi
t+1 = aε ∈ Ai

t+1min{0, U(aε|st)}.
This implies that if there are negative foregone payoffs in a set, payoffs are nor-

malized by adding a constant to each payoff that is, in absolute value, equal to the
lowest payoff in the set, U(aε|st).

We now have completed our model. We have Ai
t+1, and πi

t+1.

3.2 Some remarks

3.2.1 Free parameters

Our model is not entirely determined a priori. There remain several free parameters.
These are: (1) J - the size of A (a measure of cognitive capacity) and its initial seeding,

12We discuss this in much greater detail below in 3.2.3
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(2) ρ - the rate of experimentation and the random process that is used to generate
new values during experimentation, (3) the way replication is performed, and (4) the
way in which the selection probabilities are calculated as well as their initial values.
We will vary all of them in order to examine the robustness of our results to changes
in the model’s specification. We defer further discussion until Section 4.3.3.

3.2.2 Large strategy sets

Our model shares some common features with other learning models in the literature.
For example, like the Experience Weighted Attraction Model, EWA, (Camerer and
Ho, 1999), the probabilities that particular messages will be actually selected are
based on their hypothetical (foregone) payoffs. Also, the choice of a player’s actual
message is probabilistic. However, there are important differences. For example,
unlike other models studied in the literature, our model is well suited to handle large
strategy spaces. For example, the Groves-Ledyard mechanism which uses a continuum
of possible messages for each agent. In order to apply other models of learning, the
continuum must be discretized as, for example, in Chen and Tang (1998). However,
discretization causes problems when there are very fine differences in equilibrium
values between different mechanisms. Our model handles that problem well. While
it does start out with randomly chosen sets of alternatives for each agent, due to
directed experimentation, there is a sufficiently high probability that any important
omitted messages, such as the Nash Equilibrium messages, will be added to the set.

3.2.3 The Role of Directed Experimentation

Experimentation, and the subsequent replication, plays a very important role in our
model. Because of its role, it is worthwhile to discuss the way in which experimenta-
tion affects the outcomes in greater detail.

Consider an example where, at time t, a set of an agent’s alternatives is homoge-
neous, and represented by a single value, a∗, which will also be that agent’s actual
message. Thus, ai

j(t) = a∗ for all j. Suppose that at the beginning of t + 1, a
new value is generated, via experimentation. Denote this value by aρ

i (t + 1) = b 6=
a∗. Next, its foregone payoff is evaluated. Suppose that given µ−i(t) and σ2

−i(t),
U(b) > U(a∗). That is, b results in a higher foregone payoff relative to all the other
alternatives that are represented by a∗. However, at that point, the probability of
message b of actually being selected, πρ

i,j(t + 1), is quite small since the probabil-
ity mass of the remaining alternatives in the set is relatively large and is given by
(J − 1)U(a∗)/[U(b) + (J − 1)U(a∗)].

In order for there to be a reasonable probability that b will be played it has to
receive more replicates for the several subsequent periods. This will eventually happen
if it continues to receive high foregone payoffs. Through updating of frequencies, it
will then receive more and more replicates and increase its probability mass in the set.
This actually can happen fairly fast. A rough, approximate calculation using expected
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values, based on the assumptions that ρ = .03 (and is uniform) and that there are
about 1% of the messages of M that are better (in the sense of foregone utility) than
a∗, suggests it will only take about 7 rounds before a∗ is entirely replaced by better
messages. So if µ−i and σ−i remain constant the better alternative will replace the
previous best fairly rapidly. If µ−i and σ−i change and b no longer yields higher
forgone utility, it can disappear from Ai

t before it is ever used. Before a message
drawn through experimentation stands a chance of becoming an actual message, that
alternative has to prove successful over a number of periods. Thus when a new
alternative (idea) occurs to an agent, she evaluates it over a time span of several
periods. Only if it proves successful and increases its frequency in the set, does its
probability of being chosen increase.

In general, there may be periods when agents experiment a lot with their actual
messages, and those when they just adhere to their choices from previous period(s).
What happens depends on the payoff landscape that a player is facing which is de-
termined by the exogenous parameters of the mechanism as well as by the actions of
other players. If there is room for improvement, given the existing choices, experi-
mentation will help in finding alternatives that result in the improvement of agent’s
performance and the agent will experiment more with her actual messages. On the
other hand, if the payoff landscape is such that there is not much room for further
improvement then there will be less experimentation with actual choices.

Experimentation of one agent might lead to more experimentation in actual choices
of the others if a different response is called for. Even if there is not much room for
improvement given the payoff landscape, agents might experiment more frequently if
the payoff structure is such that the punishment for deviation from ‘good’ messages
is not too severe.

4 Testbed results

In this section we report performance results from our testbed for a wide range of
values of the mechanism free parameter γ. The range we consider is γ ∈ {1, 100}
in increments of 1, and γ ∈ {120, 1000} in increments of 20. We focus on two
measures of performance: time of convergence to Nash Equilibrium and the stability
of convergence. In addition, we report the results of sensitivity analyses we used to
examine the robustness of our testbed to changes in values of its free parameters.

4.1 The testbed parameters

The parameter values, related to the agents’ utility functions and to the cost of
producing a unit of public good, are precisely those used by Chen and Tang.

Parameters of the
testbed environment

10



agent Ai Bi αi

1 26 1 200
2 104 8 10
3 38 2 160
4 82 6 40
5 60 4 100∑

310 21 500

The cost, z, of producing a unit of the public good is set to 100.
For each value of γ (and a given set of parameter values), we simulate a series of

repeated one-shot games of the Groves-Ledyard mechanism. We call this simulation,
a run, r ∈ {1, . . . , R}, where R = 10, 000. Each run is terminated 100 periods after a
convergence criterion is fulfilled. The convergence criterion is defined in terms of how
close all agents’ messages are to the equilibrium messages. Our convergence criterion
is fulfilled when the difference between the equilibrium value and the value of the
selected message of each agent is less than or equal, in absolute terms, to 0.1; i.e.,
when |ma

i −me
i | ≤ 0.1 for all i.13

4.2 Performance measures

There are many possible measures of performance but the most important for this
paper are: (1) the time of first passage through equilibrium and (2) an index of
equilibrium stability.

Does convergence to the predicted Nash Equilibrium messages occur? If so, how
fast? The period when the convergence criterion is fulfilled is the time of the first
passage through equilibrium, T γ,r

c for run r and given γ. The average time of the first
passage through equilibrium for R runs, T̄ γ

c is given by:

T̄ γ
c =

∑R
r=1 T γ,r

c

R
.

We denote the standard deviation from this value, across the R runs, by σT γ
c
.

What happens to the sets of alternatives, Ai
t, once the first passage through equi-

librium has been recorded? Tne time of first passage would not be very interesting if
the agents just rushed on by and the outputs cycled around, occasionally coming back
near to the equilibrium. So we want to know how stable is the system after the first
passage? In order to answer these questions, we have created a measure called the
index of equilibrium stability Eγ

s . It measures the frequencies with which equilibrium
values of messages are represented in the entire sets of agents’ alternatives during 100
periods after the first passage through equilibrium. It is given by:

13The maximum number of periods for each run was set at tmax = 20, 000. If the convergence
criterion is not fulfilled by that time, a run is terminated.
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Eγ,r
s =

∑T γ,r
c +100

t=T γ,r
c +1

∑N
i=1

∑J
j=1 ai

j,tE
i
j,t

NJ

where Ei
j,t is an index variable such that Ei,j(t) = 1 if ai

j,t = me
i and Ei,j(t) = 0 if

ai
j,t 6= me

i . It can take values between 0 and 100 and represents stability of equilibrium
in percentage terms. We denote the average of this index across the R runs by Ēγ

s .
We denote the standard deviation from this value, across the R runs, by σEγ

S
. Notice

that this measure takes into account the values of the messages in the whole set of
each agent, not just those that are actually selected to be sent. For that reason it
may underestimate the percentage of messages sent after T γ

c that are equilibrium
messages.

4.3 The testbed findings

There are three main groups of findings. (1) There is convergence to Nash equilibrium
messages for all of the values of γ within the range that we simulated. Convergence
is relatively fast for a much larger set of the values of γ then that predicted by the
strategic complementarity condition. And, T̄ γ

c , the time to first convergence, is U-
shaped in γ. (2) The Nash equilibria of the model are stable in the sense that once
the model first passes through the equilibrium, it remains in its neighborhood. (3)
The above features characterize the dynamics of all of the different versions of the
model that we examined.

4.3.1 Convergence to Nash Equilibrium

Table 2 contains detailed data for the average time of first passage through equilib-
rium, for 10, 000 runs.

[Table 2 about here]

The first column gives the value of γ, the second indicates the total number of runs
(10, 000 for each value of γ), the third column presents the average values of times
of first passage through equilibrium (averaged over 10, 000 runs), T̄ γ

c , and the values
of standard deviations, σT γ

c
, in the parenthesis. In Figure 1, we present, graphically,

the results for γ ∈ {1, . . . 100}, and in figure 2 the data for γ ∈ {10, 100}. Figure 3
shows the data for γ between 120 and 1000 in the increments of 20.

The first thing to note is that our simulations converge on average to Nash equi-
librium for all the values of γ, although there is a difference in the average time of the
first passage across values of γ. T̄ γ

c does not decrease monotonically with increases in
γ. It has a very high value for γ = 1, and then drops to a much lower value even for
γ = 2. It reaches values below 100 once γ = 10. The average times to convergence
are not much different for the values of γ between 10 and 100. For example, T̄ c

20 for
γ = 20 is within a minus one standard deviation of T̄ c

50 for γ = 50 (and also, T̄ c
50 is
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within a plus one of its own standard deviation of T̄ c
20). Similar relationships can be

observed for all the values of γ up to 100. A decreasing pattern is observed until γ
reaches the values in the range {40, . . . , 60}. After this, T̄ γ

c starts increasing, and its
behavior results in a U -shaped curve. It appears that the curve in Figure 1, plotting
the behavior of T̄ γ

c , just levels off and stays flat. However, when the scale changes,
as in figure 2 where we plot the same data starting with γ = 10, a U -shaped curve
emerges, showing that the minimum values of T̄ γ

c are reached for the range of values
of γ between 40 and 60. After that, for γ > 60, T̄ γ

c starts increasing although, even
for γ = 100, T̄ γ

c is below 100. As γ increases further, the average time to convergence
T̄ γ

c starts increasing monotonically for all the values of γ up to 1000 (See Figure 3).
The standard deviation of T̄ γ

c decreases with the increases in γ, drops to the lowest
values for γ ∈ {40, 60} , but then slightly increases for the values of γ > 60. As can be
seen from Table 2, runs for γ = 50 have a lower standard deviation and less variance
than the runs for γ = 80 or γ = 100.

4.3.2 Stability of equilibrium

The fourth column in table 2 gives the values of the measure that we use to study
the stability of equilibrium after the first passage. This is of interest particularly
because of the random, but directed, experimentation of our testbed agents. It is
possible that the experimentation could create instability and drive things very far
from equilibrium for very long times. But that doesn’t happen. The values of this
measure are above 85% for all of the values of γ ∈ {1, . . . , 100}. It is above 90% for
γ ≥ 10 and equal or above 95% for γ ≥ 20. This reflects a high degree of homogeneity
in the sets of alternatives Ai

t after convergence, despite the fact that experimentation
is present at the same exogenously given rate. Standard deviations from Ēγ

s that are
reported in the parentheses in the fourth column of Table 2 are generally low, but are
also decreasing as γ increases. Thus our measure of the stability of equilibria shows
system robustness despite the continuing exogenous shocks due to experimentation.

4.3.3 Sensitivity analysis

We ultimately would like to be able to use our testbed as a reliable, first-cut substitute
for expensive, experimental analyses of mechanisms. In order to do so, we need the
testbed not only to be accurate but also to be robust to changes in the free parameters.
In this section, we examine how the performance of the mechanism changes as we
change these testbed parameters. In Table 3, we list the different values of the testbed
parameters that we use. Unless otherwise specified below, we keep the other baseline
parameters fixed. A detailed description of our sensitivity analysis are reported in
Arifovic and Ledyard (2005). Here we provide a brief overview of our robustness
analysis.

[Table 3 about here]
Increases in the size of Ai

t, J , sped up the rate of convergence, at least for the
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range we have considered. For J = 200, we observed, on average, 1/3 increase in the
speed of convergence. However, further increases, to J = 500, and J = 1, 000 did not
bring further significant decreases.

The experimentation process does have some effect on the speed of conver-
gence. Experimentation using the uniform distribution results in higher values of
T̄ γ

c . The time to convergence under the historically independent experimentation
is roughly twice that for the historically dependent normal experimentation. For a
given distribution, increases in the rate of experimentation seem to increase the time
of convergence although the effect seems small.14

Regarding the replication process, in addition to tournament replication, we
tried replicating the alternatives via proportional replication. However, this method
resulted in a consistently large increases in the times of convergence.

Selection We will consider two types of probabilistic selection of messages from the
set Ai

t: proportional and exponential selection. Our baseline uses the proportional
approach as described in Section 3.1.3. For exponential selection, one computes se-
lection probabilities, using exponentialized payoffs,

πi
k,t+1 =

eλU(ai
k,t+1|si

t+1)

∑J
j=1 eλU(ai

j,t+1|si
t+1)

.

for every i and j, where λ is an exogenously given parameter. A number of models of
individual learning use this method to compute the probabilities because it directly
maps negative foregone payoffs into positive probabilities. However, this method,
does introduce another free parameter, λ. So we need to see whether changes in
λ have any significant effect. We report, in Table 4, the convergence times for 4
different values of λ, for γ = 1, 50 and 100 using uniform experimentation with the
rate ρu = 0.033.

[ Table 4 around here]
Surprisingly, at least to us, exponentialized payoffs as a basis for selection resulted

in essentially the same behavior as proportional selection with no significant differ-
ences in the values T̄ γ

c . In fact, even more surprisingly, the value of the parameter
λ seems to have no effect on the times of the first passage through equilibrium, or
on the dynamics in general. We conducted simulations for a number of values that
ranged from very small to relatively large and found no significant differences.15 This
is interesting since the performance of other learning models that use this approach to
update the payoffs is very sensitive to the value of this parameter and rather different
dynamics are generated as this value varies. See for example the effect on quan-
tal response equilibria (McKelvey and Palfrey, 1995), experience weighted attraction
learning (Camerer and Ho, 1999), and reinforcement learning (Roth and Erev, 1995).

14The results of comparison between simulation and experimental results favor experimentation
from the normal distribution.

15For the analysis of why λ does not affect the dynamics of the system, see Arifovic, Ledyard and
Tse, 2002.
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5 Comparison with experimental data

The testbed would not be very interesting or useful if it did not, at least approxi-
mately, correspond to actual behavior. In this section, we compare the behavior of
our model to the behavior of human subjects in several experiments using two sets of
data. One set is described in Chen and Tang (1998). They conducted 7 experiment
sessions each with γ = 1 and γ = 100. The second set was generated by us at the
California Institute of Technology in April and May 2002. We conducted 4 experi-
ment sessions each with γ = 50 and γ = 150.16 Data from these, compared to our
baseline data, can be found in Table 8.

[Table 8 around here]

A quick look at the two key statistics, time to equilibrium and stability, reveals
there is a reasonable correspondence between our testbed and the experiments.17

The first statistic of interest is the average time of the first passage through equi-
librium (T̄ γ

c ). For γ = 1, the experiments run by Chen and Tang did not converge
to the equilibrium within 100 experimental periods for any of the 7 sessions that
were conducted. For γ = 1, the baseline simulations from our model produced really
high average convergence times that are close to or over 1, 000 periods regardless of
the model’s exact specification. Thus the experimental and simulation evidence are
consistent with each other. For γ > 1, convergence occurred, according to the 0.1
criterion, in all of the experiment sessions except one with γ = 50. In this session, one
of the subjects kept her message consistently 0.2 units below the equilibrium value
of 1 for the entire session.18 We do not include the data from this session in our
subsequent analysis. In the other experimental sessions, convergence is relatively fast
for all of the three values of γ. The time to convergence is less than 20 periods on
average which is even faster than the baseline simulations.

The second statistic of interest is the measure of stability (Eγ
s ).19 The stability

measures for the experimental sessions are all very high, averaging over 0.9 with small

16Our experimental design is very similar to Chen’s and Tang’s. However, we introduced two
modifications. First, in Chen and Tang, subjects could make only integer number choices. We let
the subjects make real number choices, with a two decimal points restriction. Second, we added a
calculator to the windows interface that allowed the subjects to calculate their payoffs varying the
size of µ−i and σ−i.

17We note that we did not make any special effort to calibrate the free parameter values of our
model to this particular situation.

18There might be two reasons why this would happen. The subject might be trying to manipulate
the others in the manner of a Stackelberg equilibrium. Or, the subject is just lazy or confused. If
the first were true then the subject should be making a higher payoff than subjects equally situated
in other sessions. Those subjects made 229.44 and 230.41 experimental francs on average in each
of their periods. The subject who stayed .2 units away from the equilibrium made only 225.27
experimental francs on average in their periods. So we infer from this that if they were trying to be
strategic in some unknown way it didn’t work. But then they would have ultimately given up and
adjusted. Since they didn’t we will not use this session in our data analysis.

19Because Ai
t is not observed in our experiments, we need to use a slightly different measure than
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standard deviations. These numbers correspond to the numbers we reported in Table
2.

But we need more than a quick look at the statistics. We should really subject
them to a more rigorous test. We turn to that now.

5.1 The statistical analysis

The question we address in this section is, could the laboratory observations from
the experiments have come from a population generated by our testbed? In partic-
ular, we ask whether the mean and standard deviation of T̄ γ

c , the average time to
convergence, from the experiments could have been generated by a particular testbed
with high probability. This is a standard statistical hypothesis test using, respec-
tively, a Student’s t-test for the mean and a Chi-squared test for the variance. We
provide two caveats up front. First, our experimental sample sizes are really small so
the confidence intervals are pretty large. Second, the population distributions (those
generated from the testbed) are not symmetric. Together these suggest one should
be very careful in dealing with our statistical evidence. Nevertheless, we believe these
statistics do provide important information.

We proceed as follows. We first select values for the two basic free variables
for our testbed: J , the number of strategies tracked by an agent, and ρ, the rate
of experimentation by an agent. Then for some γ, we complete 1000 runs of the
simulation and, from those we compute the mean and variance of the average time
to completion. We assume these are the true mean and variance for the population
generated by that mechanism in that model. We can then think of an experimental
trial as a draw from some population and ask whether the means and variances of
the sample experimental data could have been generated by the population of our.
We can compute confidence intervals into which the experimentally generated means
and variances should fall with some probability if that data came from the model
population. For the means this is a two-tailed t-test and for the variances this is
a two-tailed Chi-squared test. Given (J, ρ), if the mean and variance of the sample
values lie outside these intervals for some γ, then we can say, with 95% confidence that
the behavior exhibited in the experiment is not the same as the behavior predicted
by (J, ρ) or, put another way, there is a 95% chance that the model (J, ρ) is not
consistent with the experimental evidence.

We did not run through all possible values of (J, ρ) to find what is best. We did
look at the parameter values of J = 50, 100, 200, ρ = 0.033, 0.25, and γ = 50, 100. We
also considered experimentation using a uniform density and a normal density. For
every variation we considered, there is at least one mechanism γ for which at least
one of the statistics from the experiments lies outside its 95% confidence region.20 A

we do in the testbed simulations. For the experimental data, we take the remaining number of periods
of a particular session once the first passage through equilibrium is achieved, about 80 periods on
average, and compute the the percentage of actual messages that are equilibrium messages.

20If we raise the bar for rejection to 99%, then there is one set of parameter values for which no
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summary of those facts is given in Table 9. If an entry reads ”too high” that means
that the sample statistic, based on the experiments, lies below the 95% confidence
interval based on that model. So if the model mean is ”too high”, that means that
the simulations do not converge as fast as the experiments. And if the model variance
is ”too low”, that means that the simulations do not show as much variation in ”time
to equilibrium” as do the experiments.21

[Table 9 around here]

If we look first at the mean ”time to equilibrium”, we see that there is only one
model that is not rejected for at least one of the γ. This is ρ = 0.033, normal
density, and J = 200. We also see that when a rejection of a model occurs it is
always because that model is too slow. There is a natural explanation for this.22

Humans subjects know more at the beginning of an experiment than do our models.
In particular, humans know their payoff function.and can do some preliminary culling
of bad strategies and identification of good strategies before even playing - a type of
one round elimination of dominated strategies. But our model initially seeds the
A0 sets randomly with J draws. That is, all strategies are treated equally whether
dominated or not. This probably gives humans a headstart over our model, but that
can presumably be changed with a slightly different initialization process for A0.

Looking at the variance of the ”time to equilibrium”, we can see a significant
difference between the models that use a normal density for experimentation and
those that use the uniform density. Those that use the normal are almost never
rejected on the grounds of the variance. However, those that use the uniform are
almost always rejected. It is possible that a new initialization process could lower
rejections of the uniform since it would lower any variance due to the initial seeding
of A0.

Clearly, more data and a better initialization procedure are both called for in
future research.

6 Conclusion

We are ultimately interested in constructing a model that can capture the significant
qualitative features of experimental behavior, and can also be used to make predic-
tions for a wide variety of mechanisms. If the model calibrates well with experimental
data, it can then be used to predict the outcomes in the absence of experimental data.
If the model is robust it can do this for many different mechanisms. Measurements
from the testbed can then be used as a guide to what type of experiments should be
conducted. This is desirable because conducting experiments is much costlier in terms

rejection occurs for either γ = 50 or 100. That is the case in which J = 100, ρ = .25, and the normal
density is used for experimentation.

21All of the numbers for these various means, variances, and confidence intervals can be found in
Arifovic and Ledyard (2005).

22The following remarks have significantly benefitted from the report of a referee.
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of time and monetary resources required for their implementation. In this paper we
have seen that our testbed is both accurate and robust for the mechanisms studied.

Our testbed appears to be accurate at a minimum in its predictions of average
times of first passage to Nash Equilibrium. In the context of the Groves-Ledyard
mechanism, we have seen that, in our testbed, messages converge to Nash Equilibrium
for all values of the free parameter γ between 1 and 100 and, as well, for all values
between 120 and 1000 in increments of 20. Very low values, between 1 and 10, and
very high values between 200 and 1000, take very long time to converge. Any value
of γ greater than 10 and less than 200 results in relatively fast convergence. These
predictions of our model have been confirmed in experimental sessions with γ = 50,
100 and 150. In addition, the experimental data indicate that the mechanism γ = 50
results in faster convergence than the mechanism γ = 100 or 150 which is also a
prediction of our model.

One interesting implication of these findings is that strategic complementarity is
not a necessary condition for convergence in the lab or in our testbed. (Remember
for the utility functions we are using, strategic complementarity obtains for all γ ≥
80.) Further, strategic complementarity can not be used as a guide to the rate of
convergence. This is a bit surprising since our behavioral model has a significant
element of best reply in its formulation.

The performance of our testbed is not entirely independent of variations in its ”free
parameters”. Given the experimental data, it appears the testbed model with tour-
nament replication, historically dependent normal experimentation and proportional
selection is the right one. There does seem to be sensitivity to the size of the memory,
J, and the rate of experimentation, ρ. Higher J and higher ρ both appear to increase
the average time to first passage.23 Our testbed is, however, statistically consistent
with the experimental data for both (J, ρ) = (50, 0.25) and for (J, ρ) = (100, 0.033).
We intend to explore this relationship in our future work.

Directed experimentation is very important for our model’s dynamics. It is worth-
while to point out that this is different from experimentation or mutation traditionally
discussed in the literature on learning or evolutionary game theory. Directed experi-
mentation gives our model the ability to quickly adjust to changes in the environment
if changes in their actions are called for. This will happen even after the sets have
converged to a single (equilibrium) value and remained there for a long time. This
ability to adjust to changes in the environment (shifts in regime) has not been demon-
strated in other models of individual behavior studied in the literature. This is an
important issue that has not been given much attention in the studies of models of
learning. However, it should be addressed in greater detail in future research.

23It is our current conjecture that both J and ρ can be large enough to cause problems for
convergence. But, we do not yet have the simulations to support this.
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Table 2 - A set of baseline runs

γ R T̄ c
γ (σT c

γ
) Eγ

s (σEγ
s
)

1 10000 903.38 (273.97) 85.13 (8.41)
10 10000 34.81 (15.98) 94.12 (2.51)
20 10000 17.18 (7.61) 94.95 (1.59)
30 10000 14.61 (6.17) 95.21 (1.35)
40 10000 13.67 (5.65) 95.29 (1.22)
50 10000 13.48 (5.76) 95.31 (1.21)
60 10000 13.79 (5.98) 95.28 (1.29)
70 10000 14.48 (6.4) 95.24 (1.33)
80 10000 15.50 (7.15) 95.18 (1.43)
90 10000 17.42 (8.68) 95.12 (1.50)
100 10000 19.65 (10.52) 95.00 (1.74)

Table 3
Parameters of the behavioral model

γ J replication
{1, 100} 50 tournament
{120, 1000} 100 proportional

200
1,000

experimentation selection of ma
i (t) initial Ai

t, πi
t

ρu = 0.033 proportional random
ρu = 0.25 exponential from prior equilibrium
ρn = 0.033

Table 7
First passage through equilibrium for different values of λ

with ρu = .033.

λ γ 1 50 100
0.0001 2924.57 (1065.42) 27.07 (22.83) 59.23 (40.07)
0.006 2621.51 ( 991.68) 29.44 (25.15) 43.40 (31.62)
1 3363.33 (1344.17) 28.00 (21.14) 38.27 (31.03)
3 2775.08 (1086.73) 30.60 (22.16) 52.01 (36.10)

proportional 2556.53 (999.18) 28.59 (23.56) 46.28 (35.39)
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Table 8
Convergence Times and Stability of Equilibria

Comparison of experimental and simulated data

experimental simulated
γ T̄ c

γ (σT c
γ
) Eγ

s (σEγ
s
) T̄ c

γ (σT c
γ
) Eγ

s (σEγ
s
)

50 5.75 (4.42) 98.00 (1.00) 13.48 (5.76) 95.31 (1.21)
100 18.86 (12.034) 99.00 (1.00) 19.65 (10.52) 95.00 (1.74)
150 20.00 (17.20) 92.00 (4.00) 38.89 (22.81) 94.72 (2.09)

Table 9
Statistical Test of the Models Compared to Experimental Data

Model Parameters Mechanism Model Mean Model Variance
J = 50, ρ = .033, normal

γ = 50 too high
γ = 100

J = 100, ρ = .033, normal
γ = 50 too high
γ = 100

J = 200, ρ = .033, normal
γ = 50
γ = 100 too low

J = 100, ρ = .25, normal
γ = 50 too high
γ = 100

J = 100, ρ = .033, uniform
γ = 50 too high
γ = 100 too high too high

J = 100, ρ = .25, uniform
γ = 50 too high
γ = 100 too high too high
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