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Abstract

The use of various moving average (MA) rules remains popular with financial market

practitioners. These rules have recently become the focus of a number empirical studies, but

there have been very few studies of financial market models where some agents employ

technical trading rules of the type used in practice. In this paper, we propose a dynamic

financial market model in which demand for traded assets has both a fundamentalist and a

chartist component. The chartist demand is governed by the difference between current price

and a (long-run) MA. Both types of traders are boundedly rational in the sense that, based on

a fitness measure such as realized capital gains, traders switch from a strategy with low fitness

to the one with high fitness. We characterize the stability and bifurcation properties of

the underlying deterministic model via the reaction coefficient of the fundamentalists, the

extrapolation rate of the chartists and the lag length used for the MA. By increasing the

intensity of choice to switching strategies, we then examine various rational routes to

randomness for different MA rules. The price dynamics of the MA rule are also examined and

one of our main findings is that an increase of the window length of the MA rule can
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destabilize an otherwise stable system, leading to more complicated, even chaotic behaviour.

The analysis of the corresponding stochastic model is able to explain various market price

phenomena, including temporary bubbles, sudden market crashes, price resistance and price

switching between different levels.

r 2006 Elsevier B.V. All rights reserved.

JEL classification: D83; D84; E21; E32; C60
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1. Introduction

Technical analysts, also known as ’chartists’, attempt to forecast future prices by
the study of patterns of past prices and a few other related summary statistics about
security trading. Basically, they believe that shifts in supply and demand can be
detected in charts of market movements. In an environment of efficient markets,
technical trading rules should not be useful for generating excess returns. However,
despite all the evidence presented in academic journals that security prices follow
random walks, and consequently that these security markets are at least weak-form
efficient, as defined by Fama (1970), the use of technical trading rules still seems to
be widespread amongst financial market practitioners.

There have been various studies of the use and profitability of technical analysis.
Taylor and Allen (1992) document the enduring popularity of the trading rules in
their survey of currency traders in London. Of the respondents, 90% replied that
technical trading rules are an important component of short-term investment
strategies. Allen and Taylor (1990) suggest that this is an important finding given the
apparent ability of exchange rates to move far from fundamentals over protracted
periods of time, as documented by Frankel and Froot (1986,1990). Earlier empirical
literature on stock returns finds evidence that daily, weekly and monthly returns are
predictable from past returns. Pesaran and Timmermann (1994,1995) present
evidence on the predictability of excess returns on common stocks for the S&P 500
and Dow Jones Industrial portfolios, and examine the robustness of the evidence on
the predictability of U.S. stock returns. Brock et al. (1992) investigate the sources of
the predictability by applying the bootstrap technique to two of the simplest and
most popular trading rules, the moving average (MA) and the trading range break
rules. They find that returns obtained from buy (sell) signals are not likely to be
generated by four popular null models, the random walk, the AR(1), the GARCHM
and the EGARCH models. They document that buy signals generate higher returns
than sell signals and the returns following buy signals are less volatile than returns
following sell signals. This asymmetric nature of the returns and the volatility of the
Dow series over the periods of buy and sell signals suggest the existence of
nonlinearities in the data generating mechanism. Recent studies, such as Lo et al.
(2000), Boswijk et al. (2000) and Goldbaum (2003), have also examined explicitly the
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profitability of technical trading rules and the implications for market efficiency. The
profit generating potential of trading rules has also been scrutinised within the
genetic programming framework by Neely et al. (1997) and by the use of artificial
neural networks by Gencay (1998) and Fernandez-Rodriguez et al. (2000). Griffioen
(2003) contains extensive statistical testing of the profitability of technical trading
rules, after correcting for transaction costs and data snooping, of many stock market
indices including the Dow Jones index.

Most of the cited research has focused on empirical studies. There is also a rapidly
expanding related literature on heterogeneous agent models (HAMs) of financial
markets, see e.g. the recent surveys by Hommes (2006) and LeBaron (2006) and
many references therein. Many of these HAMs have two groups of traders,
fundamentalists versus technical analysts. However, most of these models are either
complex artificial market simulation models or stylized models in which chartists use
oversimplified technical trading rules. This paper develops a simple behavioural
HAM with a group of fundamentalists and a group of chartists using a (long-run)
MA rule similar to the rules used in financial practice. The technical analysts are
assumed to react to buy-sell signals generated by the difference between a long-run
and a short-run MA. Both types of traders are boundedly rational in the sense
that, based on a fitness measure given by realized capital gains, traders switch
from strategies with low fitness to ones with high fitness. The main objectives
of this paper are to analyze the stability properties of the model, particularly
in relation to the MA trading strategies, and the potential for the model to gene-
rate complex dynamics, and to examine the impact of the MA trading rules on the
market dynamics.

The plan of the paper is as follows. In the following section, we focus on one of the
simplest cases when the fundamentalist demand is determined by mean reversion to
the fundamental price, while the technical analyst demand is based on the difference
between current price and a MA. Based on certain fitness measures, such as observed
differences in payoffs, the traders can make an endogeneous selection of which
trading strategies to use, as in Blume et al. (1994), Brock and Hommes (1997,1998),
Brock and LeBaron (1996) and Brown and Jennings (1989). Consequently, an
adaptive heterogeneous asset pricing model with a market maker scenario is
developed. In Section 3, the existence, local stability and bifurcations of the
fundamental steady state, in terms of the reaction coefficient of the fundamentalists,
the extrapolation rate of the technical analysts, the lag lengths used for the MAs, and
switching intensity, are analyzed when the lag lengths of the long MA are small. The
analysis, combined with some results on general window length for some special
cases, gives us some important insights into the effect of increasing the length of the
MA. In Section 4 rational routes to randomness, that is, bifurcation routes to
complicated asset price dynamics when the switching intensity increases, induced by
the MA rule are examined numerically. One of our main findings is that an increase

of the window length of the MA rule can destabilize an otherwise stable system, leading
to more complicated, even chaotic behaviour. Section 5 introduces a stochastic
fundamental price and noise-trader demand processes, and examines the effect of
these noise processes when the prices of the corresponding deterministic system are
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switching between bull and bear markets. This non-linear stochastic model illustrates
a range of phenomena observed in real markets such as temporary bubbles,
sudden market crashes, price switching between different levels and price resistance.
Section 6 concludes the paper.
2. An asset pricing model with a market maker

Following the framework of Brock and Hommes (1998), this section sets up an
asset pricing model with different types of heterogeneous traders who trade
according to different trading rules, such as fundamental analysis and technical
analysis. The market price is arrived at via a market maker scenario in line with
Beja and Goldman (1980), Day and Huang (1990) and Chiarella and He (2003b)
rather than the Walrasian scenario used in Brock and Hommes (1998) and Chiarella
and He (2002). Whilst the market maker and Walrasian auctioneer mechanisms
are highly stylized accounts of how the market price is arrived at, the former may
be closer to what is going on in real markets. To focus on the price dynamics
of the trading rules, we motivate the excess demand functions of different types
of traders by their trading rules directly, rather than deriving the demand func-
tions from utility maximization of their portfolio investment with both risky
and risk-free assets (as for example in Brock and Hommes, 1998; Chiarella and He,
2002, 2003b).

Consider an asset pricing model with only one risky asset. Let Pt be the
price (cum dividend) per share of the risky asset at time t. Let nh;t be the
market fraction of type h traders at time t with h ¼ 1; 2; . . . ;H and

PH
h¼1 nh;t ¼ 1.

Let the excess demand for the risky asset of representative trader from type h

at time t be Dh
t . Then the population weighted aggregate excess demand at time t is

given by Dt ¼
PH

h¼1 nh;tD
h
t . We assume that prices are set period by period via a

market maker mechanism and adjusted according to the aggregate excess demand
Dt, i.e.

Ptþ1 ¼ Pt½1þ s��t� þ mDt ¼ Pt½1þ s��t� þ m
XH
h¼1

nh;tD
h
t , (2.1)

where �t�Nð0; 1Þ captures a random excess demand process either driven by
unexpected news about fundamentals, or representing noise created by noise traders,
s�X0 is a constant and the parameter m40 measures the speed of price adjustment
(or the aggregate risk tolerance) of the market maker to the excess demand.

For simplicity, we assume throughout this paper that there are only two types of
traders: fundamentalists and technical analysts, who in fact are the most widespread
types of traders in financial markets and whose trading strategies and excess demand
functions are specified in the following discussion. Let the market fraction of
fundamentalists and technical analysts at time t be given by, respectively, nf ;t and nc;t.
The population weighted aggregate excess demand Dt at time t is then given by
Dt ¼ nf ;tD

f
t þ nc;tD

c
t , where Df

t and Dc
t are the excess demands (to be defined below)

of the representative fundamentalist and technical analyst, respectively. Set mt ¼
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nf ;t � nc;t; so that nf ;t ¼ ð1þmtÞ=2 and nc;t ¼ ð1�mtÞ=2. Using (2.1), the market
price of the risky asset is then determined by

Ptþ1 ¼ Pt½1þ s��t� þ
m
2
½ð1þmtÞD

f
t þ ð1�mtÞD

c
t �. (2.2)

Fundamentalists: The fundamentalists believe that the market price should be
given by the fundamental price that they have estimated based on various types of
fundamental information, such as earnings, exports, general economic forecasts and
so forth. They buy/sell the stock when the current price is below/above the
fundamental price. For simplicity, we first assume that1 the fundamental price is a
positive constant P� and the average excess demand of the fundamentalists is given
by Df

t ¼ aðP� � PtÞ, where the parameter a40 is a combined measure of the
aggregate risk tolerance of the fundamentalists and their reaction to the mis-pricing.

Technical analysts: Unlike the fundamentalists, the technical analysts trade based
on charting signals generated from the costless information contained in the history
of the price, such as MAs and various other technical trading rules used in financial
markets. The technical analyst average excess demand is here assumed to be based
on signals generated by MAs.2 More precisely, a MA of length L at time t is defined
as maL

t ¼ ð1=LÞ
PL�1

i¼0 Pt�i where LX1 is a positive integer. A trading signal is defined
as the difference between the current price3 and a MA maL

t , namely, cL
t ¼ Pt �maL

t .
For the technical analysts, their average excess demands are assumed to be governed
by Dc

t ¼ hðcL
t Þ; where the function h has the general properties hð0Þ ¼ 0; h0ðxÞ40,

xh00ðxÞo0. This corresponds to one of the very popular technical trading rules
whereby technical analysts wish to be long (short) when the current price is above
(below) the MA. In this paper, we select hðxÞ ¼ tanhðaxÞ and assume a ¼ h0ð0Þ40.
Note that this form of technical analyst excess demand function has been used in the
literature (e.g. Chiarella, 1992) and it allows us to capture some elements of the
filtered MA rules.This is so since, when a is small, the technical analysts initially react
cautiously to the long/short signals, in a sense waiting to confirm the maintenance of
the change in sign of the signal. In this way they minimize the costs incurred if the
signal changes frequently in a short time period. Also, the fact that �1ohðxÞo1
captures the limited long/short positions, risk averting behaviour and traders’ budget
constraints.

Fitness measure and population evolution: In order to introduce the adaptive
behaviour of agents, we follow the mechanism of Brock and Hommes (1998) and
define the fitness functions pf ;t, pc;t as their realized net profit:

pf ;t ¼ Df
t�1ðPt � Pt�1Þ � Cf ; pc;t ¼ Dc

t�1ðPt � Pt�1Þ � Cc, (2.3)
1A constant fundamental price is assumed for our stability and bifurcation analysis of the deterministic

model, while a random walk fundamental price will be introduced in Section 5 for the stochastic version of

the model.
2There is a large practitioner literature on the way MA rules are used to generate buy/sell signals. See for

instance Pring (1991) and Neely (1997).
3More generally, the current price can be replaced by a short-run MA maS

t . For mathematical

tractability, we consider the case S ¼ 1 only in this paper and leave the study of the general case S41 to

future work.
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where Cf ;CcX0 are the costs of their strategies. When the number of agents in each
group tends to infinity, the population fractions are then updated by the well known
logit model probabilities (e.g. Manski and McFadden, 1981)

nf ;t ¼
ebU f ;t

ebU f ;t þ ebUc;t
; nc;t ¼

ebUc;t

ebU f ;t þ ebUc;t
, (2.4)

where

U f ;t ¼ pf ;t þ ZU f ;t�1; U c;t ¼ pc;t þ ZU c;t�1, (2.5)

and Z 2 ½0; 1� measures the memory of the cumulated fitness function and bX0 is the
intensity of choice measuring how quickly agents switch between the two strategies.
In particular, if b ¼ 0, there is no switching between strategies, while for b ¼ 1 all
agents immediately switch to the best strategy. See Brock and Hommes (1998) for a
more extensive discussion of this switching mechanism.

A complete asset pricing model: Based on (2.2) and the above analysis, the market
price of the risky asset is determined according to

Ptþ1 ¼ Pt½1þ s��t� þ
m
2
½ð1þmtÞaðP� � PtÞ þ ð1�mtÞhðPt �maL

t Þ� (2.6)

and, from (2.3)–(2.4), the difference of population fractions mt evolves according to

mt ¼ tanh
b
2
ðUt � CÞ

� �
; C ¼ Cf � CcX0, (2.7)

where mX0 measures the speed of price adjustment of the market maker based on the
excess demand, and

Ut ¼ ½D
f
t�1 �Dc

t�1�½Pt � Pt�1� þ ZUt�1, (2.8)

with the first term representing the difference in the realized capital gains of the two
strategies. Note that we have set C ¼ Cf � Cc which will be positive if we assume
that the fundamentalists incur greater costs than the chartists. By setting s� ¼ 0, the
nonlinear stochastic dynamical system (2.6)–(2.8) becomes a nonlinear deterministic
system where the price follows

Ptþ1 ¼ Pt þ
m
2
½ð1þmtÞaðP� � PtÞ þ ð1�mtÞhðPt �maL

t Þ�. (2.9)

In general system (2.7)–(2.9) is an Lþ 2 dimensional non-linear difference system.
We seek principally to understand how its dynamic behaviour is affected by the
reaction coefficient a of the fundamentalists, the excess demand function h of the
technical analysts, the switching intensity b, and in particular, the lag length L used
for the MA rule.
3. Stability and bifurcation analysis

In this section, we consider the local stability and local bifurcations of the
deterministic system (2.7)–(2.9). The main results are summarized in Proposition 3.1.
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Proposition 3.1. For the deterministic system (2.7)–(2.9), assume Z 2 ½0; 1Þ. Denote

m� :¼ tanhð�bC=2Þ, n�f :¼ ð1þm�Þ=2, n�c :¼ ð1�m�Þ=2 and ā :¼ amn�f , ā :¼ amn�c .
(i)
4Reso

eigenva

eigenva

L ¼ 1,

resonan

Chiarel

(e.g. So

resonan

Theoret

complic

481–482
5We
There exists a unique steady state ðPt;mt;UtÞ ¼ ðP
�;m�; 0Þ, where P� is the

constant fundamental price.

(ii)
 If ā ¼ 1þ ā, then the steady state price P� is locally asymptotically stable

(LAS) for 0oāoL. At ā ¼ L, there occurs a 1 : Lþ 1 resonance Hopf

bifurcation.4
(iii)
 A necessary condition for the steady state price to be LAS is given by 0oāoL

and 0oāo2þ ā for even L and 0oāo2þ ððL� 1Þ=LÞā for odd L (see Fig. 1).

(iv)
 For all L, P� is LAS if ðā; āÞ 2 DSðā; āÞ :¼ fðā; āÞ; 2āoāo2g (see Fig. 1).

(v)
 For sufficiently large L, P� is unstable if ā4ā (see Fig. 1).5
(vi)
 For L ¼ 1, P� is LAS for ðā; āÞ 2 D11ðā; āÞ :¼ fðā; āÞ; 0oāo2; 0oāg. In

addition, flip and saddle-node bifurcations occur when ā ¼ 2 and ā ¼ 0,
respectively (see Fig. 2(a)).
(vii)
 For L ¼ 2, P� is LAS for ðā; āÞ 2 D12ðā; āÞ :¼ fðā; āÞ; 0oāoāþ 2; 0oāo2g.
Furthermore, a saddle-node bifurcation occurs when ā ¼ 0, a Hopf bifurcation

occurs when ā ¼ 2, and a flip bifurcation occurs when ā ¼ āþ 2 (see Fig. 2(b)).

(viii)
 For L ¼ 3, P� is LAS for ðā; āÞ 2 D13ðā; āÞ :¼ fðā; āÞ; 0oāo 2

3
āþ 2;

āð2� āþ āÞo3g. Furthermore, a saddle-node bifurcation occurs when ā ¼ 0,
a Hopf bifurcation occurs when āð2� āþ āÞ ¼ 3, and a flip bifurcation occurs

when ā ¼ 2
3

āþ 2 (see Fig. 2(c)).

(ix)
 For L ¼ 4, P� is LAS for ðā; āÞ 2 D14ðā; āÞ :¼ fðā; āÞ; 0oāo 3

4 āþ

2; 0oāo4; ð5ā� 4āÞð4þ āÞ2oāð8þ 3ā� 4āÞ2g (see Fig. 2(d)).
A proof of Proposition 3.1 is given in the Appendix. Here we discuss some

underlying economic intuition using Figs. 1 and 2 illustrating the (in)stability regions
and the bifurcation curves. Result (i) of Proposition 3.1 assures that the fundamental
price is the unique steady state price and the population fractions of the
fundamentalists and chartists at the steady-state are given by n�f and n�c , respectively.
Obviously, n�f ¼ n�c ¼ 0:5 when C ¼ 0. However, if C40, that is costs for
fundamentalists’ strategies exceed the costs for technical trading rules, then there
are more chartists than fundamentalists at the steady state, i.e., n�cXn�f .
nance bifurcations occur when the complex eigenvalues lie on the unit circle. When ā ¼ L, the

lues are given by lk ¼ e2knpi with k ¼ 1; 2; . . . ;L and n ¼ 1=ðLþ 1Þ. Geometrically, the L

lues correspond to the Lþ 1 unit roots distributed evenly on the unit circle, excluding l ¼ 1. When

a flip or period-doubling bifurcation occurs. When L ¼ 2, the bifurcation is known as a 1:3 strong

ce, which may lead to two sets of period three cycles with one set stable and other set unstable (e.g.

la and He, 2000, 2003a). For LX2, the bifurcation is accompanied by 1 : Lþ 1 periodic resonances

nis, 2000). For L1 ¼ L2 ¼ L ¼ 3; 4, instability of the steady state leads to 1:4 and 1:5 periodic

ce bifurcations, respectively, and similar dynamics to the 1:3 resonance bifurcation are also found.

ical analysis of such types of bifurcation of higher dimensional discrete systems can be exceedingly

ated and is not yet completely understood, (e.g. Example 15.34 in Hale and Kocak, 1991, pp.

). See Kuznetsov (2004) for an extensive mathematical treatment of bifurcation theory.

would like to thank Florian Wagener for providing a proof of this result.
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Fig. 1. The common stability region DS for general lag length L and necessary stability boundaries ā ¼ L,

ā ¼ 2þ ā for even lag L and ā ¼ 2þ āðL� 1Þ=L for odd lag L. On the horizontal (vertical) axis we have

the population weighted reaction coefficient of the fundamentalists (chartists) at the steady state, i.e.

ā :¼ amn�f , ā :¼ amn�c .
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Both parameters ā ¼ amn�f and ā ¼ amn�c play an important role in determining the
stability/instability of the fundamental price. The market maker’s price adjustment
speed m shows up as a scaling factor in ðā; āÞ. Given this scaling factor, ā and ā are
determined by the population weighted (at the steady state) reaction coefficients of the
fundamentalists and chartists, respectively. Intuitively we would expect the
fundamentalists to represent a stabilizing force and the activities of the chartists to
destabilize an otherwise stable market price. The results of Proposition 3.1 describe
how the (local) stability of the market depends on the balance of these forces
(captured by ā and ā) and the lag length of the MA, as we explain in the following
discussion.

Result (ii) of Proposition 3.1 relates to the stability of the fundamental price along
the line ā ¼ 1þ ā, for general L, as illustrated in Fig. 1. This line plays an important
role in the stability analysis of the model. Along this line, the stability region is
proportionally enlarged as the lag length of the MA process (L) increases. For fixed
lag L, the stability line segment ā ¼ 1þ ā for 0oāoL is part of the stability region
in the ðā; āÞ parameter plane. To see the economic intuition behind this result, let us
examine the price behaviour near the fundamental price. The linearization of (2.6)
reduces to Ptþ1 ¼ Pt þ āðP� � PtÞ þ āðPt �matÞ, or equivalently, in deviations X t :
¼ Pt � P� from the fundamental price

X tþ1 ¼ ½1þ ā� ā�X t �
ā

L

XL�1
i¼0

X t�i. (3.1)

Along the line 1þ ā ¼ ā, the stabilizing force from the fundamentalists (ā) and the
destabilizing force from the chartists (1þ ā) just balance each other. Accordingly,
along this line, Eq. (3.1) becomes X tþ1 ¼ �ðā=LÞ

PL�1
i¼0 X t�i and stability of the

fundamental price is determined exclusively by the MA process. In this case, the
stability region of parameter ā is enlarged as the lag for the MA increases. More
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Fig. 2. Stability regions and bifurcation boundaries for (a) L ¼ 1, (b) L ¼ 2, (c) L ¼ 3, (d) L ¼ 4 and (e)

comparison of stability regions and bifurcation boundaries D1L for L ¼ 1; 2; 3; 4. On the horizontal

(vertical) axis we have the population weighted reaction coefficient of the fundamentalists (chartists) at the

steady state, i.e. ā :¼ amn�f , ā :¼ amn�c .
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precisely, local stability is achieved when ā=Lo1 (see Chiarella and He, 2000 for the
mathematical proof of this result).

Based on the above analysis, we may conjecture that the stability region is
enlarged as the lag length L increases. However, this conjuncture is not true in
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general and this becomes clear from the results for L ¼ 1; 2; 3 and 4. Certainly, a
longer MA does reduce the impact of a single period event on chartists’ beliefs (and
so stabilizes the price process), however the contained price information becomes less
significant as the lag length increases. Hence, when both the stable and unstable
forces are balanced, as we have just discussed, the stability of the market price is
maintained. However, when such forces become unbalanced, particularly with large
ā, sudden shifts in demand can trigger an unstable fundamental price, leading to
price overshooting, as the lag length increases. This observation is basically the
underlying mechanism involved in the change of the local stability region as the lag
length of the MA increases.6

Given the mathematical difficulty in determining the local stability conditions for
general lag length L in the ā and ā parameter space, it is useful to have some
information about the potential unstable regions and common stable regions for all
lags. Result (iii) in Proposition 3.1 give us necessary conditions for stability. In other
word, the fundamental price is unstable outside the regions that are bounded on the
right by the two dotted lines and above by ā ¼ L in Fig. 1. Result (iv) give us
sufficient conditions for the stability in terms of ā and ā for general lag length L, and
the common stability region DS is illustrated in Fig. 1. It indicates that, for all lag
length L, the fundamental price is stable when the population weighted coefficients
of fundamentalists and chartists are balanced and bounded (i.e. 2āoāo2). On the
other hand, when the coefficient of the chartists exceeds that of the fundamentalists,
result (v) shows that increasing the lag length L in the end destabilizes the system and
this is a more interesting result. The intuition for this instability result is the
following. Chartist demand depends on the difference between the long-run MA and
the current price. As L increases, the MA becomes smoother and more sluggish.
When ā4ā, the relative effect of chartists at the steady state is bigger than that of
fundamentalists, a small change in the price leads to a relatively large increase of
chartists demand destabilizing the price.

For L ¼ 1; 2; 3; 4, Proposition 3.1 describes explicitly the regions of LAS in the
ðā; āÞ plane and the bifurcation behaviour at the boundaries of those regions where
local asymptotic stability turns to instability. These regions are illustrated in Fig. 2.

For L ¼ 1, the technical analysts have no impact on the market price. We go back
to the set up of the model and let mt ¼ 1. Consequently, the price equation is
simplified to Ptþ1 � P� ¼ ½1� am�ðPt � P�Þ. Hence the stability condition is given by
0oāo2, where ā ¼ ma is the product of the speed of the price adjustment of the
fundamentalists towards the fundamental price (a) and the speed of price adjustment
of the market maker (m). Thus the stability of the steady state price P� is maintained
only when the under(over)-reaction from the fundamentalists is balanced by the over
(under)-reaction from the market maker. The over-reaction from both may lead to
price overshooting, through a flip bifurcation when ā ¼ 2.

For L ¼ 2, the stability region D12 and bifurcation boundaries are plotted in
Fig. 2(b) in the ðā; āÞ parameter plane. The Hopf bifurcation boundary is defined by
ā ¼ 2 and ā 2 ð0; 4Þ. For L ¼ 3, the stability region D13 and the bifurcation
6The authors would like to thank an anonymous referee to bringing this point to our attention.
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boundaries are plotted in Fig. 2(c). Different from the previous two cases, the Hopf
bifurcation now depends on both parameters ā and ā. For L ¼ 4, the stability region
D14 is plotted in Fig. 2(d).

For comparison all stability regions D1L for L ¼ 1; 2; 3 and 4 are plotted in
Fig. 2(e). The changes of the local stability regions as L increases are in line with our
previous discussion concerning the stability near the line 1þ ā ¼ ā. As L increases,
sudden shifts in demand can trigger an unstable price when the reaction speeds are
unbalanced.

Given the large variety of MA rules used in financial markets and the difficulty of
eigenvalue analysis for high-order characteristic equations, it is not clear how
different MA rules influence the stability of the steady state price and types of
bifurcation that may occur. However, the analysis has given some important insights
into the fact that local asymptotic stability depends on some subtle balance between
the reaction coefficients of fundamentalists and technical analysts. Based on our
analysis, we conjecture that as the lag length L increases, the stability region tends to

shrink towards, but stretch along, the line ā ¼ 1þ ā with common stability region DS.
This conjecture is partly verified by the numerical simulations in the following
section.

Our stability analysis also yields insight as to how the other parameters, the price
adjustment factor m, the intensity of choice b, the cost difference C between
fundamental and technical trading strategies and the lag length L affect the local
stability of the fundamental steady state. Increasing the price adjustment factor m
moves the point ðā; āÞ in Figs. 1 and 2 in the North-East direction leading either to a
flip bifurcation (when the population weighted reaction coefficients of the
fundamentalists is relatively large) or to a Hopf-bifurcation (when the population
weighted reaction coefficient of the chartists is relatively large). When C40, an
increase in b leads to an increase in n�c , the fraction using the cheap technical trading
strategy. Hence, for C40, an increase in b moves ā upwards and ā downwards, so
that the point ðā; āÞ in Figs. 1 and 2 moves in the North-West direction and the
fundamental steady state may lose stability through a Hopf bifurcation. When there
is no cost difference between fundamental and chartist strategies, an increase in b
does not change ā and ā, so there is no change in the local stability of the steady
state. Furthermore increasing C is similar to increasing b. Finally, the fact that the
stability regions become more narrow for higher lags L suggests that an increase in L

may destabilize the system, especially when ā4ā, i.e. the relative impact of chartists
at the steady state is larger than that of the fundamentalists. The global dynamics,
for different values of the intensity of choice and the lag length L, will be investigated
in Section 4.
4. Dynamics of the nonlinear system

In this section, we examine the global dynamics of the nonlinear system (2.7)–(2.9)
by focusing on the effects of the switching intensity (Section 4.1) and of the lag length
of the MA (Section 4.2).
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4.1. The effect of the switching intensity – Rational routes to randomness

Brock and Hommes (1997,1998) have proposed simple adaptive belief systems to
model economic and financial markets, where agents adapt their beliefs over time by
choosing from different predictors or expectations functions, based upon their past
performance as measured by realized profits. Brock and Hommes (1998) show that,
as the intensity of choice to switch to better strategies increases, the model is able to
generate the entire ’zoo’ of complex behaviour from local stability to high order
cycles and even chaos and this is the so-called rational routes to randomness (RRR for

short). In this section, we consider the effect of the switching intensity on the price
dynamics of the deterministic system (2.7)–(2.9) with two different MAs using L ¼ 4
and L ¼ 100. We choose the parameter set a ¼ 1, m ¼ 2, Z ¼ 0:2, a ¼ 1, C ¼ 1.

Note that for b ¼ 0, we have ā ¼ amn�f ¼ 1 and ā ¼ amn�c ¼ 1, so that for L ¼ 4
and b ¼ 0, according to Proposition 3.1 (ix) the fundamental price P� is locally
stable. On the other hand, since C40, for b ¼ 1, we have ā ¼ amn�f ¼ 0 and
ā ¼ amn�c ¼ 2, so that for L ¼ 4 and b ¼ 1, according to Proposition 3.1 (ix) the
fundamental steady state is unstable. As the switching intensity b increases we
therefore expect that the fundamental steady state becomes unstable by a Hopf
bifurcation. This is indeed confirmed by numerical simulations as illustrated by the
phase plots ðPt;mtÞ, for different values of b ¼ 0:2; 0:3; 0:49; 0:52; 0:555 and 0:57 in
Fig. 3. It is found that, once the fundamental price P� becomes unstable, the
solutions converge to figure-eight shaped attractors for low switching intensity (e.g.
the cases of b ¼ 0:2 and 0.3). Recall that for L ¼ 4 we have a six-dimensional system,
and the figure-eight shaped attractors are in fact two-dimensional projections of an
invariant circle around the unstable fundamental steady state in the six-dimensional
phase space. As the switching intensity increases, the figure-eight shaped attractor
grows initially (for b ¼ 0:3; 0:35) and then stretches to a scissors-shaped attractor (for
b ¼ 0:49). As the intensity increases further, the simple attractor becomes more
complicated (for b ¼ 0:52) and eventually leads to strange attractors (for b ¼ 0:555
and 0.57). One can see that the market price variation increases as the switching
intensity increases. It is interesting to note that these patterns are similar to the
rational routes to randomness studied extensively in Brock and Hommes
(1997,1998).

For L ¼ 100, b ¼ 0, we have ā ¼ amn�f ¼ 1 and ā ¼ amn�c ¼ 1 and we conjectured
earlier that this point lies outside the stability region for L large and this is confirmed
by numerical simulations for L ¼ 100. To illustrate the effect of the switching
intensity b, we include phase plots, in terms of ðPt;mtÞ, for different values of b ¼
0:05; 0:1; 0:2; 0:3; 0:35; 0:42; 0:45 and 0.4652 in Fig. 4. As b increases, the (projection
of the) attractor starts with narrow figure-eight shapes (for b ¼ 0:05 and 0.1) and is
then stretched (or extrapolated) by the technical analysts towards the extreme high/
low price levels (for b ¼ 0:2). The attractors are then broken down to Lorenz-like

attractors, similar to those of the celebrated Three-dimensional continuous Lorenz
system, see Peitgen et al. (1992) for b between 0.3 and 0:35. As the switching intensity
increases further, the Lorenz-like attractors merge into one connected strange
attractor (for b ¼ 0:42) and then to strange attractors (for b ¼ 0:45 and 0.4652).
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Fig. 3. Phase plots of ðmt;PtÞ for L ¼ 4 and various b ¼ 0:2; 0:3; 0:49; 0:52; 0:555 and 0:57.
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Also, as the switching intensity increases, the volatility of both price and population
increases.

The corresponding price time series are illustrated for b ¼ 0:1; 0:3; 0:35; 0:42 and
0.46 in Fig. 5. One can see that an increase of the switching intensity can generate
very interesting price patterns. With a lower switching intensity ðb ¼ 0:1Þ, the
fundamental price is unstable and extrapolation of the price trend by the technical
analysts pushes the price away from the fundamental price. Because of their limited
long/short position, their fitness or utility becomes smaller when they reach their
limit position. This leads traders to switch back to the fundamental strategy,
bringing price back towards the fundamental price. Because of the increase of the
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Fig. 4. Phase plots of ðmt;PtÞ for L ¼ 100 and various b ¼ 0:05; 0:1; 0:2; 0:3; 0:35; 0:42; 0:45 and 0.4652.
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fitness of the technical analysts, the price is pushed further beyond the fundamental
price to the opposite extreme. As the switching intensity increases (for b ¼ 0:3; 0:35),
such switching from high/low extreme to low/high extreme happens very quickly. At
the same time, the price becomes more volatile. This result can be used to explain
regular boom and bear markets. As the intensity increases further, the regular
switching pattern of the price between two extreme levels is destroyed, leading to
highly volatile price patterns (for b ¼ 0:46). This phenomenon of the price switching
between upper and lower levels gives some economic basis to the notion of upper and
lower resistance levels that are frequently discussed in the practitioner literature on
technical analysis (see e.g. Pring, 1991).
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Fig. 5. Price time series for L ¼ 100 and b ¼ 0:1 (a), 0.3 (b), 0.35 (c), 0.42 (d) and 0.46 (e).
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4.2. The effect of the lag length – Dynamics of the moving average

We now consider the effect of the lag length L of the MA rule on the price
dynamics of the deterministic system (2.7)–(2.9). As an illustrative example, we
choose the parameters a ¼ 1, m ¼ 2, b ¼ 0:4, Z ¼ 0:2, a ¼ 1, C ¼ 0, for which ā ¼ 1
and ā ¼ 1. The fundamental price is locally stable for L ¼ 2; 3; 4, but it is unstable
for LX5. Fig. 6 illustrates how the phase plot (in terms of ðPt;mtÞ) changes as the lag
length L increases.

For L ¼ 5, the (2-D projection of the) attractor is given by a figure-eight shaped

closed curve with small price variation (about 1% of the fundamental price level)
and there is a tendency among traders to switch from fundamental analysis to
technical analysis. For L ¼ 8, the size of the attractor is enlarged, implying that
the deviations of both price and population from the fundamental value, which is
P� ¼ 100 and n�c ¼ n�f ¼ 0:5, are enlarged. Hence an increase in the MA window L

destabilizes the price dynamics. This destabilizing effect becomes more signifi-
cant when L is increased further to L ¼ 9; 10; 50 and the price dynamics become
even more complicated for L ¼ 90 and 100, as indicated by the phase plots in
Fig. 6.

In order to get more insight into these destabilizing effects of the long-run MA, let
us examine the time series of prices and corresponding MAs in Fig. 7. It is found
that, following a cross over of the long run MA and the market price, both the
technical analysts and fundamentalists take the same long/short position initially,
but soon after they take opposite positions. This helps to accentuate either the up or
the down trend, pushing the price to either a higher or a lower level initially, but
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Fig. 6. Phase plots of ðmt;PtÞ for fixed b ¼ 0:4 and various L ¼ 5; 8; 9; 10; 50; 90 and 100.
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soon after, their different positions slow down the trend built up initially and bring
the price back towards its fundamental level. The time taken for the price to return
back to its fundamental value is proportional to the lag L. When the lag L for the
MA is small, the reversion back to the fundamental happens quickly; as L increases,
this reversion takes a longer time.

The destabilizing effect of the lag length L holds in general for the parameters
located within regions in which the fundamental price is locally stable for lower lags
and unstable for higher lags, as discussed in the above. However, this may not
always be the case. As a matter of fact, when the reaction coefficients from both
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Fig. 7. Price time series for fixed b ¼ 0:4 and various L ¼ 5; 10; 50 and 200.
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types of traders are carefully balanced (such that ā ¼ 1þ ā), an increase of the lag
length can stabilize an otherwise unstable system, as indicated in Proposition 3.1.7
5. Time series analysis of the stochastic model

The nonlinear dynamic model considered in the previous sections can be treated as
the deterministic skeleton of the corresponding stochastic model. The prices
observed in real markets are presumably the outcome of the interaction of both
non-linear and stochastic elements. Rigorous analytical tools for the analysis of non-
linear stochastic dynamical system are still in a development phase (see e.g. Arnold,
1998 for an up-to-date account). The analytical results that exist deal mainly with
affine systems so it seems difficult at the moment to apply these tools to our
nonlinear model. In this section we attempt to gain some insights into the behaviour
of the nonlinear stochastic model through numerical simulations.

Recall from Section 2, Eq. (2.1) that we already introduced a noise term �t
representing noise created by noise traders. In addition to noisy demand, we also
introduce a random walk fundamental price process. We assume that the
fundamental price follows a random walk

P�tþ1 ¼ P�t ½1þ sddt�, (5.1)

where sdX0 is a constant measuring the volatility of the return and dt�Nð0; 1Þ.
Notice that this specification ensures that relative price changes are stationary.
7Numerical simulations (not reported here) indicate that, in this case, an increase in L can cause an

explosive system to become a (locally) stable system.
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To illustrate a typical example, we select the parameters a ¼ 0:5, b ¼ 0:3, a ¼ 1,
m ¼ 1, Z ¼ 0:2, C ¼ 1, L ¼ 100, P�0 ¼ P0 ¼ $100. To see the effect of the two noise
processes on the price dynamics of the deterministic model, we compare four
different cases in terms of ðs�;sdÞ: (a) ð0; 0Þ, (b) ðs�; 0Þ, (c) ð0;sdÞ and (d) ðs�; sdÞ with
s� ¼ 0:5% and sd ¼ s=K, s ¼ 5% per annum and K ¼ 250 (corresponding to 250
trading days per year). The comparison is conducted over the first 500 time steps (a
trading period of about two years). In all three noise cases, Fig. 8(A) compares the
market price Pt, together with the fundamental price and the long-run MA, Fig. 8(B)
compares the difference of the market population fractions mt ¼ nf ;t � nc;t, and
Fig. 8(C) compares the demand functions of the fundamentalists and the technical
analysts.

Case (a) reduces to the corresponding deterministic case. In this case, the constant
fundamental price P� ¼ 100 is unstable and the market price Pt displays periodic
switching between bull and bear markets, as illustrated in Fig. 8(A)–(a). From
Fig. 8(C)–(a), one can see that the fundamentalists and the technical analysts take
opposite (long/short) positions in most of the time period. Because of limits on the
position the technical analysts can take8 and the stabilizing role of the
fundamentalists, such off-setting positions cause the price to stay bounded.
However, the market switches when both of them have the same position and such
a transition happens very quickly. In addition, the market is dominated by the
technical analysts most of the time, as indicated by the fact that the trend of the
market price in Fig. 8(A)–(a) follows closely the demand pattern of the technical
analysts in Fig. 8(C)–(a) and that traders tend to switch from the steady state level to
technical analysis as indicated by Fig. 8(B)–(a).

Case (b) examines the effect of the noisy demand on the price dynamics. Because
of this noisy demand, the market price becomes more volatile. However, the market
price (in Fig. 8(A)–(b)) and the demand functions (in Fig. 8(C)–(b)) are still
dominated by the underlying price dynamics of the deterministic case (a), although
the switching between two types of trading strategies is intensified (see Fig. 8(B)–(b)),
spreading between m ¼ �60% and 60%.

Case (c) examines the effect of the noisy fundamental price on the price dynamics.
One can see from Fig. 8(A)–(c) that the market price Pt closely follows the
fundamental price P�t , though the variation of the market price increases (because of
the strong extrapolation of the technical analysts). Fig. 8(B)–(c) shows that traders
tend to switch to fundamentalist analysis from time to time. However, a comparison
of the market price trend in Fig. 8(A)–(c) and the demand function pattern in
Fig. 8(C)–(c) shows that the market price is above (below) the fundamental price
when the technical analysts take long (short) position. This means the market price is
still dominated by the technical analysts although it follows closely the fundamental
price.

Case (d) examines the combined effect of the two noise processes on the price
dynamics. Apart from the fact that the market price becomes more volatile (because
8This may be due to their short selling constraint when they hold a short position and consumption

needs when they hold a long position.
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Fig. 8. Time series of the prices (A), population fraction differences (B), and demand functions (C) for

fixed L ¼ 100 with ðsd; s�Þ ¼ ð0; 0Þ in (a); ð0; 0:5%Þ in (b); (5% p.a., 0) in (c) and (5% p.a., 0.5%) in (d).

Here a ¼ 0:5, b ¼ 0:3, m ¼ 1, Z ¼ 0:2, a ¼ 1, C ¼ 1.
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of the noisy demand), it shares similar features as in the cases (b) and (c). That is, the
market price follows the fundamental price and the market is dominated by technical
analysts.

Based on the analysis above, we observe some interesting phenomena. (i) Adding
noisy demand can increase price volatility, but it has less impact on the price pattern
and the market conditions of the underlying price dynamics. (ii) When the
fundamental price follows a stochastic process, the market price closely follows the
fundamental price. (iii) The market is mainly dominated by technical analysts (when
they extrapolate strongly). They may be the winners over short time periods
(indicated by the traders switching to technical analysis), however, over the whole
time period they may be the losers in the sense that most of the time they buy when
the market prices are high and sell when the market prices are low. (iv) The switching
between bull and bear markets happens when both types of traders take the same
position, a very intuitive result. Such transitions can be intensified with the help of
the noise traders, leading to temporary market bubbles and sudden crashes.

6. Conclusions

Within the framework of the Brock and Hommes (1998) asset pricing model with
heterogeneous beliefs, price fluctuations are driven by evolutionary switching
between different expectation schemes. Various rational routes to randomness, i.e.
bifurcation routes to complicated dynamics, are observed when the intensity of
choice to switch prediction strategies is high. In their framework however, the
technical trading rules are very simple and for analytical tractability only a few lags
are involved. Motivated by the popularity of MAs strategies in real markets and
empirical studies, this paper sets out to analyze the impact of long run MA rules on
the market dynamics and potentially rational routes to randomness. In our model of
fundamentalists and technical analysts, who trade on the signals generated by the
crossing of the latest price over the long run MA, we are able to obtain some
important qualitative insights into the impact of MA rules. Intuitively one might
expect that a long run MA smoothes the price dynamics and hence an increase of the
lag length of the MA might be expected to stabilize the market. Surprisingly, our
results show that, within a market maker scenario, this intuition is only true when
both the reaction coefficient a of the fundamentalists and the extrapolation rate a of
the trend followers are balanced in a certain way. In general, as the lag length L

increases, the MA becomes smoother and more sluggish. When the impact between
fundamentalists and chartists is not balanced, especially when the relative impact of
chartists at the steady state is larger than that of fundamentalists, a mall change in
the price leads to a relatively large increase of chartists demand and consequently,
the lag length of the MA rule can destabilize the market price. To the best of our
knowledge, this is a new result concerning market dynamics in the presence of MA
rules. Another contribution of this paper is that for realistic MA rules with a large
lag length L, similar rational routes to randomness occur when the intensity of
choice to switch strategies increases. Finally, time series analysis of a stochastic
version of our model shows the potential to explain various market phenomena such
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as price volatility, bull and bear markets, temporary bubbles and sudden crashes. In
subsequent research it will be useful to study a more realistic model of the market
with a large number of different trading rules, in particular with agents using
different MA strategies of various length, or other types of technical trading rules
used in financial practice, such as genetic algorithms and neural networks.
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Appendix A. Proof of Proposition 3.1

A.1. Existence and uniqueness of the steady state – Proof of Part (i)

The deterministic system (2.7)–(2.9) can be written as follows:

Ptþ1 ¼ F ðX tÞ; Utþ1 ¼ HðX tÞ; mtþ1 ¼ GðX tÞ. (A.1)

where X t ¼ ðPt;Pt�1; . . . ;Pt�ðL�1Þ;Ut;mtÞ and

F ðX tÞ ¼ Pt þ
b
2
½�ð1�mtÞaðPt � P�Þ þ ð1�mtÞhðc

L
t Þ�, (A.2)

HðX tÞ ¼ ½�aðPt � P�� � hðcL
t Þ�½F ðX tÞ � Pt� þ ZUt, (A.3)

GðX tÞ ¼ tanh½bðHðX tÞ � CÞ=2�. (A.4)

One can easily see that, for Z 2 ½0; 1Þ, ðPt;Ut;mtÞ ¼ ðP
�; 0;m�Þ is the unique steady

state of system (A.1), where P� corresponds to the constant fundamental price and
m� ¼ tanhð�bC=2Þ.

A.2. Characteristic equation of the steady state

The characteristic equation of system (A.1) at the steady state is given by GðlÞ :
¼ lðl� ZÞGLðlÞ ¼ 0 where

GLðlÞ :¼ lL
� ð1� āÞlL�1

� ā 1�
1

L

� �
lL�1
þ

ā

L
ðlL�2

þ � � � þ lþ 1Þ ¼ 0.

(A.5)
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In fact, evaluated at the unique steady state, one can see that

qF

qPt

¼ 1þ
m
2
�ð1þm�Þaþ ð1�m�Þa 1�

1

L

� �� �
,

qF

qPt�1
¼

qF

qPt�2
¼ � � � ¼

qF

qPt�ðL�1Þ
¼

m
2
ð1�m�Þa �

1

L

� �
,

qF

qUt

¼
qF

qmt

¼ 0;
qH

qPt

¼
qH

qPt�1
¼ � � � ¼

qH

qPt�ðL�1Þ
¼ 0,

qH

qUt

¼ Z;
qH

qmt

¼ 0;
qG

qPt

¼
qG

qPt�1
¼ � � � ¼

qG

qPt�ðL�1Þ
¼ 0;

qG

qUt

¼ Zb=2;
qG

qmt

¼ 0.

Based on these calculations, the result follows.

A.3. Proof of parts (ii) and (iii)

The proofs of (ii) and (iii) follow from the following Lemma.

Lemma. (i) If ā ¼ 1þ ā, then the eigenvalues li of GL satisfy jlijo1 if and only if
0oāoL. In addition, for ā ¼ L, the li satisfy lia1 and ð1� lL

i Þ=ð1� liÞ ¼ 0. (ii) A
necessary condition for jlijo1 for all i is 0oāoL and 0oāo2þ ā for even L and
0oāo2þ ððL� 1Þ=LÞā for odd L.

Proof. For ā ¼ 1þ ā, GLðlÞ � lL
þ ðā=LÞðlL�1

þ � � � þ lþ 1Þ ¼ 0. It follows from
Chiarella and He Chiarella and He (2002) that jlijo1 iff �1=Loā=Lo1, i.e., āoL

(since ā40). In general, following from Jury’s test, necessary conditions for jlijo1
for all i are ā=Lo1, GLð1Þ ¼ ā40 and ð�1ÞLGLð�1Þ ¼ 2� āþ ā40 for even L and
ð�1ÞLGLð�1Þ ¼ 2� āþ ððLþ 1Þ=LÞā40 for odd L. &

A.4. Proof of part (iv)

Let f ðlÞ ¼ lL and gðlÞ ¼ �ð1� āþ āÞlL�1
þ ðā=LÞ½lL�1

þ � � � þ lþ 1�. Then, on
jlj ¼ 1, jgðlÞjoj1� āþ āj þ ā and jf ðlÞj ¼ 1. If 2āoāo2, then jgðlÞjojf ðlÞj on
jlj ¼ 1. Following from Rouche’s theorem, f ðlÞ and GLðlÞ ¼ f ðlÞ þ gðlÞ have the
same number of zeros inside jlj ¼ 1. Therefore jlijo1 for i ¼ 1; 2; . . . ;L.

A.5. Proof of part (v)

To show that there exists at least one eigenvalue lo such that jloj41 when ā4ā
and L is sufficiently large, we change variables by setting l ¼ 1þ z=L in GðlÞ and
introduce f ðzÞ ¼ limL!1 Gð1þ z=LÞ. Note that for jzj bounded, the limit is uniform.
As L!1, we have lL

¼ ð1þ z=LÞL ! ez; lL�1
¼ ð1þ z=LÞL�1! ez and ð1=LÞPL�1

i¼0 li
¼ ð1=LÞðlL

� 1Þ=ðl� 1Þ ¼ ½ð1þ zLÞ
L
� 1�=z! ½ez � 1�=z. Hence f ðzÞ ¼

ðā� āÞ ez þ ā½ez � 1�=z. Note that f ð0Þ ¼ ā40 and that limz!1 ½ðe
z � 1Þ=z�=ez ¼ 0,

therefore the first term in f dominates the second. Since ā� āo0, we see that for
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large values of z the value f ðzÞ will be negative. Consequently f will have a positive
zero, and G will have a zero larger than one for L sufficiently large.

A.6. Proof of part (vi)– (ix)

For L ¼ 1, G1ðlÞ � l� ð1� āÞ ¼ 0. Hence jljo1 iff 0oāo2. Also l ¼ þ1 for
ā ¼ 0 and l ¼ �1 for ā ¼ 2.

For L ¼ 2, G2ðlÞ ¼ l2 þ c1lþ c2 ¼ 0, where c1 ¼ �ð1� āþ 1
2

āÞ and c2 ¼ ā=2.
Following Jury’s test, jlijo1 iff p1 :¼ 1þ c1 þ c2 ¼ ā40; p2 :¼ 1� c1 þ c2 ¼ 2�
āþ ā40 and p3 :¼ 1� c2 ¼ 1� ā=240. Hence P� is LAS if ðā; āÞ 2 D12ðā; āÞ. Also,
l1 ¼ 1 and jl2jo1 when p1 ¼ 0, l1 ¼ �1, jl2jo1 when p2 ¼ 0 and l1;2 2 C, jl1;2j ¼
1 when p3 ¼ 0.

For L ¼ 3, G3ðlÞ :¼ l3 � ½1� āþ āð1� 1
3
Þ�l2 þ ðā=3Þðlþ 1Þ ¼ 0. Set c1 ¼ �

½1� āþ 2
3

ā�, c2 ¼ c3 ¼ ā=3. Then jlijo1 iff p1 :¼ 1þ c1 þ c2 þ c3 ¼ ā40, p2 :¼
1� c1 þ c2 � c3 ¼ 2� āþ 2

3
ā40 and p3 :¼ 1� c2 þ c1c3 � c23 ¼ 1� ðā=3Þ½2� āþ ā�

40. Hence P� is LAS if ðā; āÞ 2 D13ðā; āÞ. Furthermore, p1 ¼ 0, p2 ¼ 0 and p3 ¼ 0
give the saddle-node, flip and Hopf bifurcation boundaries, respectively.

For L ¼ 4, G4ðlÞ � l4 � ½1� āþ 3
4

ā�l3 þ ðā=4Þðl2 þ lþ 1Þ ¼ 0. Set p ¼ �

½1� āþ 3
4

ā�, q ¼ ā=4. Then, using Jury’s test, jlijo1 iff G4ð1Þ ¼ ā40, G4ð�1Þ
¼ 2� āþ ā40, āo4 and both the determinants of the matrices

A ¼

1 0 q

p� 1 1þ q 0

2q� p p� 1 1þ p� q

0
B@

1
CA; B ¼

1 0 �q

p 1� q �q

0 p� q 1� p

0
B@

1
CA

are positive. It can be verified that jAj40; jBj40 iff ð1þ qÞ2½1þ p� 2q� þ qðp�

1Þ240 and po1, respectively, which leads to the result.
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