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Abstract

Despite the pervasiveness of the efficient markets paradigm in the academic finance literature, the use of various

moving average (MA) trading rules remains popular with financial market practitioners. This paper proposes a stochastic

dynamic financial market model in which demand for traded assets has both a fundamentalist and a chartist component.

The chartist demand is governed by the difference between current price and a (long-run) MA. Our simulations show that

the MA is a source of market instability, and the interaction of the MA and market noises can lead to the tendency for the

market price to take long excursions away from the fundamental. The model reveals various market price phenomena, the

coexistence of apparent market efficiency and a large chartist component, price resistance levels, long memory and

skewness and kurtosis of returns.

r 2006 Elsevier B.V. All rights reserved.
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Despite all the evidence presented in academic journals that security prices follow random walks, and
consequently that these security markets are at least weak-form efficient, as defined in Ref. [1], the use of
technical trading rules still seems to be widespread amongst financial market practitioners. Technical analysts,
also known as ‘‘chartists’’, attempt to forecast future prices by the study of patterns of past prices and a few
other related summary statistics about security trading. Basically, they believe that shifts in supply and
demand can be detected in charts of market movements. There have been various studies (see Refs. [2–5]) of
the use and profitability of technical analysis, we refer the reader to Ref. [6] for an up-to-date survey.

If one remains within the efficient market paradigm there is little scope to introduce apparently ‘‘irrational’’
traders using technical analysis. One strand of literature that does leave some room for such ‘‘irrational’’
agents is that of heterogeneous agent models (HAMs) of financial markets, see, for example Refs. [7–11] and
the recent surveys [12,13] and the many references therein. Ref. [14] have recently proposed a simple
behavioral HAM with a group of fundamentalists and a group of chartists using a (long-run) moving average
(MA) rule similar to the rules used in financial practice. The technical analysts are assumed to react to buy–sell
signals generated by the difference between a long-run and a short-run MA. Both types of traders are
boundedly rational in the sense that, based on a fitness measure given by realized capital gains, traders switch
from strategies with low fitness to ones with high fitness. It is found that the stability properties of the
e front matter r 2006 Elsevier B.V. All rights reserved.
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underlying deterministic model can be characterized by the reaction coefficient of the fundamentalists, the
extrapolation rate of the chartists, the intensity of choice to switching strategies, and the lag length used for the
MA. This paper extends the analysis to the corresponding stochastic model and analyze the stability properties
and dynamic behavior of the model, particularly in relation to the MA trading strategies, and the potential for
the model to generate phenomenon such as long deviations of the price from its fundamental, the coexistence
of apparent market efficiency and a large chartist component, price resistance levels, long memory and
skewness and kurtosis of returns.

The plan of the paper is as follows. We first introduce the model and briefly review the local stability and
bifurcations of the fundamental steady state of the deterministic model. We then introduce stochastic
fundamental price and noise-trader demand processes, and examine the effect of these noise processes when
the prices of the corresponding deterministic system are switching between bull and bear markets. This
nonlinear stochastic model illustrates a range of phenomena observed in real markets.

Consider an asset pricing model with only one risky asset. Let Pt be the price (cum dividend) per share
of the risky asset at time t. Let nh;t be the market fraction of type h traders at time t with h ¼ f

(fundamentalists) and c (chartists) and nf ;t þ nc;t ¼ 1. Let the excess demand for the risky asset of

representative trader of type h at time t be Dh
t . Then the population weighted aggregate excess demand at time

t is given by Dt ¼ nf ;tD
f
t þ nc;tD

c
t . We assume that prices are set each period via a market maker who adjusts

the price according to

Ptþ1 ¼ Pt þ ~Dt þ mDt ¼ Pt þ ~Dt þ m½nf ;tD
f
t þ nc;tD

c
t �, (1)

where ~Dt�Nð0;s2t Þ captures a random excess demand process either driven by unexpected news about

fundamentals, or representing noise created by noise traders, stX0 and the parameter m40 measures the
speed of price adjustment (or the aggregate risk tolerance) of the market maker to the excess demand.

The fundamentalists believe that the market price should be given by the fundamental price that they have
estimated based on various types of fundamental information, such as earnings, general economic forecasts
and so forth. They buy/sell the stock when the current price is below/above the fundamental price. For
simplicity, we first assume that1 the fundamental price is a positive constant P� and the average excess demand
of the fundamentalists is given by D

f
t ¼ aðP� � PtÞ, where the parameter a40 is a combined measure of the

aggregate risk tolerance of the fundamentalists and their reaction to the mis-pricing.
For the technical analysts, their average excess demands are assumed to be governed by Dc

t ¼ tanhðacL
t Þ,

where a40 is a constant, and cL
t ¼ Pt �maL

t defines a trading signal, the difference between the current price
and a MA maL

t ¼ ð1=LÞ
PL�1

i¼0 Pt�i. This captures one of the very popular technical trading rules whereby
technical analysts wish to be long (short) when the current price is above (below) the MA. When a is small, the
technical analysts initially react cautiously to the long/short signals, in a sense waiting to confirm the
maintenance of the change in sign of the signal. In this way they minimize the costs incurred if the signal
changes frequently in a short time period. It also captures the limited long/short positions, risk averting
behavior and traders’ budget constraints.

Following the mechanism in Ref. [9], we define the fitness functions pf ;t;pc;t as the realized net profits of
each group, pf ;t ¼ D

f
t�1ðPt � Pt�1Þ � Cf ;pc;t ¼ Dc

t�1ðPt � Pt�1Þ � Cc, where Cf ;CcX0 are the costs of the
respective strategies. The population fractions are then updated by the well known logit model probabilities
(see, e.g. [15])

nf ;t ¼
ebUf ;t

ebUf ;t þ ebUc;t
; nc;t ¼

ebUc;t

ebUf ;t þ ebUc;t
, (2)

where Uf ;t ¼ pf ;t þ ZUf ;t�1, Uc;t ¼ pc;t þ ZUc;t�1. Here bX0 is the intensity of choice measuring how quickly
agents switch between the two strategies. In particular, if b ¼ 0, there is no switching between strategies, while
for b ¼ 1 all agents immediately switch to the best strategy. Through the parameter Z the Uf ;t, Uc;t are
effectively geometrically declining weighted averages of past realized profits.
1A constant fundamental price is assumed for our analysis of the deterministic model, while a random walk fundamental price will be

introduced for the stochastic version of the model.
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Set mt ¼ nf ;t � nc;t. Based on the above analysis, the market price of the risky asset is determined according
to

Ptþ1 ¼ Pt þ ~Dt þ
m
2
½ð1þmtÞaðP� � PtÞ þ ð1�mtÞ tanh½aðPt �maL

t Þ�� (3)

and, from (2), the difference of population fractions mt evolves according to

mt ¼ tanh
b
2
ðUt � CÞ

� �
; Ut ¼ ½D

f
t�1 �Dc

t�1�½Pt � Pt�1� þ ZUt�1, (4)

where C ¼ Cf � Cc will be positive if we assume that the fundamentalists incur greater costs than the
chartists. By setting ~Dt ¼ 0, (3) becomes a nonlinear deterministic equation of the price

Ptþ1 ¼ Pt þ
m
2
½ð1þmtÞaðP� � PtÞ þ ð1�mtÞ tanh½aðPt �maL

t Þ��. (5)

The dynamics of the deterministic model (4)–(5) is analyzed in Ref. [14]. To guide our analysis on the price
dynamics of the stochastic model, we briefly review the main results in Ref. [14]. For the deterministic model,
the fundamental price P� is the unique steady state price and different lag lengths L of the MA rules play
different roles on the stability of the fundamental price. Intuitively, we would expect the fundamentalists to
represent a stabilizing force and the activities of the chartists to destabilize an otherwise stable market price,
and an increase of the lag length might enlarge the stability region. The stability analysis in Ref. [14] shows
that increasing the lag length L in the end destabilizes the system in general. This is a very interesting result
and the intuition for this instability result is the following. Chartist demand depends on the difference between
the long-run MA and the current price. As L increases, the MA becomes smoother and more sluggish. When
the relative effect of chartists at the steady state is bigger than that of fundamentalists, a small change in the
price leads to a relatively large increase of chartists demand to destabilizing the price.

As an illustrative example, Fig. 1 illustrates how the phase plot (in terms of ðPt;mtÞ) changes as the lag
length L increases, where the fundamental price is locally stable for L ¼ 2; 3; 4, but it is unstable for LX5. One
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Fig. 1. Phase plots of ðmt;PtÞ for fixed b ¼ 0:4 and various L ¼ 5; 8; 9; 10; 50; 90 and 100, where a ¼ 1, m ¼ 2, b ¼ 0:4, Z ¼ 0:2, a ¼ 1,

C ¼ 0.
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can see that, as L increases, the size of the attractor is enlarged, implying that the deviations of both price and
population from the fundamental value are enlarged. Hence, an increase in the MA window L destabilizes the
price dynamics. This destabilizing effect becomes more significant when L is increased further to L ¼ 9; 10; 50
and the price dynamics become even more complicated for L ¼ 90 and 100, as indicated by the phase plots in
Fig. 1. This demonstrates that for large lag lengths the price can take large excursion from the fundamental
and at turning points in the price, the fraction of fundamentalists/chartists can change dramatically.

We now use numerical simulations to attempt to gain some insights into the different behavior of the
nonlinear stochastic model with stochasticity arising from noise created by the noise traders and a noisy
fundamental. We assume that the fundamental price follows the random walk P�tþ1 ¼ P�t ½1þ sddt�, where
sdX0 is a constant measuring the volatility of the return and dt�Nð0; 1Þ. Note that this specification ensures
that relative fundamental price changes are stationary. In addition to a noisy fundamental, we consider two
different forms for ~Dt representing noisy excess demand created by noise traders in (1).

We consider first ~Dt ¼ s��tPt with s�X0 and �t�Nð0; 1Þ, that is the size of the noise depends on the current
market price. For the given set of parameters, Fig. 2(a) and (d) show that the market price follows the
fundamental price in general, although it is above (below) the fundamental price when the technical analysts
take long (short) positions and the market is dominated by technical analysts. Most of the time, the
fundamentalists and trend followers take opposite positions. However, following the cross-overs of the market
price and the MA, there are very short transition periods where they both take the same position. This
immediately pushes the market price away from the fundamental price over long time periods (close to 100
days). This is clearly indicated by the bi-model distribution of the difference pt � p�t in Fig. 2(b). In fact, this
bi-model distribution feature is robust for various combinations of parameters and noise sizes and is
dominated by the bi-model distribution of the underlying price dynamics of the deterministic model. In
addition, it is found from Fig. 2(e)–(i) that the returns rt are close to being normally distributed with no
significant autocorrelation coefficients (ACs) for the raw returns, the absolute and squared returns. This
means that the market can appear to be quite efficient even though it is dominated by technical analysts and
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Fig. 2. Time series, density distributions, and the autocorrelation coefficients (ACs) of the returns, absolute and squared returns for

L ¼ 100 and a ¼ 0:5, b ¼ 0:05, m ¼ 1, Z ¼ 0:2, a ¼ 1, C ¼ 1, sd ¼ 5%. Here the noise demand is proportional to the market price
~Dt ¼ s��tPt with s� ¼ 0:5%.
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the market price is consistently pushed away from the fundamental price. This is a very interesting
observation. We would suggest that Fig. 2 provides a basis for the existence of upper and lower price
resistance levels in an apparent efficient market. These resistance levels are often referred to in the practitioner
literature but are scorned by advocates of the efficient markets paradigm.

An important stylized fact of financial markets is that of long memory. This is characterized by insignificant
ACs for the raw returns but significant ACs for the absolute and squared returns. It would be interesting to
know if the model is able to generate such long memory behavior. We now consider the second form of the
noisy demand ~Dt ¼ s��t, which is independent from the market price. With this choice, Fig. 3 illustrates
the corresponding time series, distributions, and ACs for sd ¼ 20% for a fixed s� ¼ 1 (which is about 1% of
the fundamental value). In this case, the bi-model distribution observed in Fig. 2(b) disappears. For small sd,
for example 5%, it is found that the fundamental price is less volatile and the market returns are close to a
normal distribution. However, for sd ¼ 20%, the fundamental price is more volatile, and Fig. 3 shows a
nonnormal distribution of the market returns with some skewness and high kurtosis. Furthermore, the AC
patterns of the market returns in Fig. 3(b), (g)–(i) show insignificant ACs for the returns but significant ACs
for the absolute and squared returns. This indicates, when the noisy demand is independent from the market
price, a high volatility of the fundamental price can reduce the market efficiency, generate the long memory
feature as well as the skewness and kurtosis observed in asset returns.

Based on the analysis above, we observe some interesting phenomena. (i) When the fundamental price
follows a stochastic process, the market price closely follows the fundamental price. (ii) The switching between
bull and bear markets happens when both types of traders take the same position, a very intuitive result.
(iii) Different forms of the noise demand created by the noise traders can have a different impact on the price
dynamics. When the noise trader demand is proportional to the market price, the price dynamics are
dominated by the underlying price dynamics of the deterministic model. In addition, the market can appear
efficient even though the market is dominated by technical analysts and the market price is consistently pushed
away from the fundamental price. When the noise trader demand is independent of the market price, some
stylized facts, including skewness, high kurtosis, and possible long memory, can be generated when the
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Fig. 3. Time series, density distributions, and the autocorrelation coefficients (ACs) of the returns, absolute and squared returns for

L ¼ 100 and a ¼ 0:5, b ¼ 0:05, m ¼ 1, Z ¼ 0:2, a ¼ 1, C ¼ 1, sd ¼ 20%. Here the noise demand is independent from the market price
~Dt ¼ s��t with s� ¼ 1.
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volatility of the fundamental price is high. In future research on models of the type presented here there is a
need to analyze in more depth the interaction of the nonlinear and stochastic elements.
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