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Abstract

Long-range dependence in volatility is one of the most prominent examples in financial

market research involving universal power laws. Its characterization has recently spurred

attempts to provide some explanations of the underlying mechanism. This paper contributes

to this recent line of research by analyzing a simple market fraction asset pricing model with

two types of traders – fundamentalists who trade on the price deviation from estimated

fundamental value and trend followers whose conditional mean and variance of the trend are

updated through a geometric learning process. Our analysis shows that agent heterogeneity,

risk-adjusted trend chasing through the geometric learning process, and the interplay of noisy

fundamental and demand processes and the underlying deterministic dynamics can be the

source of power-law distributed fluctuations. In particular, the noisy demand plays an

important role in the generation of insignificant autocorrelations (ACs) on returns, while the

significant decaying AC patterns of the absolute returns and squared returns are more

influenced by the noisy fundamental process. A statistical analysis based on Monte Carlo
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simulations is conducted to characterize the decay rate. Realistic estimates of the power-law

decay indices and the (FI)GARCH parameters are presented.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that (high-frequency) financial time series share some common
features, the so called stylized facts1; including excess volatility (relative to the dividends
and underlying cash flows), volatility clustering (high/low fluctuations are followed by
high/low fluctuations), skewness, and excess kurtosis. Traditional economic and finance
theory based on the representative agent with rational expectations has encountered
great difficulties in explaining these facts. As a result there has been an increase in
interest in models incorporating heterogeneous agents and bounded rationality. These
models characterize the dynamics of financial asset prices resulting from the interaction
of heterogeneous agents having different attitudes to risk and having different
expectations about the future evolution of prices.2 Some of these models derive their
price dynamics from nonlinear trading rules while others consider some nonlinear
switching mechanism between different trading strategies.

One of the key aspects of these models is that they exhibit feedback of expectations
– the agents’ decisions are based upon predictions of future values of endogenous
variables whose actual values are determined by equilibrium equations. In particular,
Brock and Hommes (1997, 1998) proposed an Adaptive Belief System model of
economic and financial markets. The agents adapt their beliefs over time by choosing
from different predictors or expectations functions, based upon their past
performance. The resulting nonlinear dynamical system is, as Brock and Hommes
(1998) and Hommes (2002) show, capable of generating a wide range of complex
behaviour from local stability to high order cycles and chaos. They are also capable
of explaining some of the stylized facts of financial markets. It is very interesting to
find that adaptation, evolution, heterogeneity, and even learning, can be
incorporated into the Brock and Hommes type of framework. This broader
framework also gives rise to rich and complicated dynamics and can be used to
obtain a deeper understanding of market behaviour.3 Moreover, recent works by
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1See Pagan (1996) for a comprehensive discussion of stylized facts characterizing financial time series.
2For a representative sample of this literature see, Frankel and Froot (1987), Day and Huang (1990), De

Long et al. (1990), Chiarella (1992), Dacorogna et al. (1995), Lux (1995, 1997, 1998), Brock and LeBaron

(1996), Arthur et al. (1997), Brock and Hommes (1997, 1998), Chen and Yeh (1997, 2002), Lux and

Marchesi (1999), Bullard and Duffy (1999), LeBaron et al. (1999), LeBaron (2000, 2001, 2002), Iori (2002),

Hommes (2002) and Farmer and Joshi (2002).
3In this regard see, Gaunersdorfer (2000), Hommes (2001, 2002), Chiarella and He (2001, 2002, 2003),

Chiarella et al. (2002), De Grauwe and Grimaldi (2003) and Westerhoff (2003).
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Westerhoff (2004), Chiarella et al. (2005, 2006a) and Westerhoff and Dieci (2006)
show that complex price dynamics may also result within a multi-asset market
framework.

Among the stylized facts, volatility clustering and long-range dependence (that is,
insignificant autocorrelations (ACs) of raw returns and hyperbolic decline of ACs of
the absolute and squared returns) have been extensively studied since the seminal
paper of Ding et al. (1993). Recently, a number of universal power laws4 have been
found to hold in financial markets. This finding has spurred attempts at a theoretical
explanation and the search for an understanding of the underlying mechanisms
responsible for such power laws.5 This paper contributes to the development of this
literature.

Various models have been developed to explain the power-law behaviour. For
instance the popular GARCH class processes, initiated in Engle (1982), model
returns as a random process with a time-varying variance that shows autoregressive
dependence. These models produce fat tails of the unconditional distribution and
capture the short-run dynamics of volatility ACs. However, the implied decay of the
volatility AC of these models is exponential rather than the hyperbolic as observed in
high frequency (e.g. daily) data. In addition, the GARCH class of models does not
provide an explanation of the empirical regularities referred to earlier.

As a consequence of developments in the rational bubble models literature,
multiplicative stochastic processes (with multiplicative and additive stochastic
components) have been used to explain the power-law behaviour (see Kesten,
1973; Lux, 2004). The power-law exponent can be determined from the distribution
of the multiplicative component, not the additive noise components. However, as
shown by Lux and Sornette (2002), the range of the exponent required for the
rational bubble models is very different from the empirical findings. In addition,
rational bubble models share the conceptual problems of economic models with fully

rational agents.
Herding models of financial markets have been developed to incorporate herding

and contagion phenomena.6 Using a stripped down version of an extremely
parsimonious stochastic herding model with fundamentalists (who trade on observed
mispricing) and noise traders (who follow the mood of the market), Alfarano et al.
(2005) show that price changes are generated by either exogenous inflow of new
information about fundamentals or endogenous changes in demand and supply via
the herding mechanism. The model is able to produce relatively realistic time series
for returns whose distributional and temporal characteristics are astonishingly close
to the empirical findings. This is partly due to a bi-modal limiting distribution for the
fraction of noise traders in the optimistic and pessimistic groups of individuals and
partly due to the stochastic nature of the process leading to recurrent switches from
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4They include cubic power distribution of large returns, hyperbolic decline of the return AC function,

temporal scaling of trading volume and multi-scaling of higher moments of returns.
5We refer to Lux (2004) for a recent survey on empirical evidence, models and mechanisms of various

financial power laws.
6See Kirman (1991, 1993), Lux (1995, 1997, 1998), Lux and Marchesi (1999), Chen et al. (2001), Aoki

and Yoshikawa (2002), and Alfarano et al. (2005).
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one majority to another. Lux and Marchesi (1999) argue that the indeterminateness
of the market fractions (MFs) in a market equilibrium and the dependence of
stability on the MFs exist in a broad class of behaviour al finance models. This
argument is supported by Giardina and Bouchaud (2003) and Lux and Schornstein
(2005). However, with the increase of the population size, the law of large numbers
comes into effect and the indeterminacy and power-law statistics disappear.

As discussed earlier, the Brock and Hommes’ framework and its various
extensions are capable of explaining various types of market behaviour and
important stylized facts. For example, a mechanism of switching between predictors
and co-existing attractors is used in Gaunersdorfer and Hommes (2007) to
characterize volatility clustering. The highly nonlinear deterministic system may
exhibit co-existence of different types of attractors and adding noise to the
deterministic system may then trigger switches between low- and high-volatility
phases. Their numerical simulations show quite satisfactory statistics between the
simulated and actual data. Compared to the herding mechanism, Brock and
Hommes’ framework allows an infinite population of speculators. However, like
most of the analytical heterogeneous agent literature developed so far, the
comparison with empirical facts is mainly based upon visual inspection, or upon a
few realizations of the model. A formal investigation of the time series properties of
the heterogeneous agent models, including the estimation of power-law indices, is
still lacking. This paper seeks to fill this gap in the literature.

Overall both the herding and switching models discussed above have shown their
potential to explain power-law behaviour.7 To generate realistic time series, some
kind of intermittent dynamics and self-amplification of fluctuations via herding or
technical trading are necessary. As pointed out by Lux (2004), ‘‘one of the more
important problems of these models is the relationship between system size,
deterministic forces and stochastic elements’’.

In this paper, we consider the MF model established in He and Li (2005) and
explore the potential mechanism of the model to generate the power-law feature
observed in empirical data. The MF model is a simple stochastic asset pricing model,
involving two types of traders (fundamentalists and trend followers) under a market
maker scenario. He and Li (2005) aim to explain various aspects of financial market
behaviour and establish the connection between the stochastic model and its
underlying deterministic system. Through a statistical analysis, the paper shows that
convergence of market price to fundamental value, long- and short-run profitability
of the two trading strategies, survivability of trend followers and various under- and
over-reaction AC patterns of the stochastic model can be explained by the dynamics,
including the stability and bifurcations, of the underlying deterministic system.

This paper builds on He and Li (2005) and reveals the potential of the MF model
to characterize the volatility clustering and the long-range dependence of asset
returns. We show that heterogeneity, risk-adjusted trend chasing through a
geometric learning process, and the interplay of a stable deterministic equilibrium
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7Other behavioural finance explanations for volatility clustering exist. Manzan and Westerhoff (2005)

develop a model in which traders tend to over or under-react to the arrival of new information.
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and stochastic noisy processes can be the source of power-law distributed
fluctuations. This is further verified via a Monte Carlo simulation, a statistical
analysis of the decay patterns of AC functions of returns, the squared returns and the
absolute returns, and the estimates of (FI)GARCH (1, 1) parameters. Both the
analysis of the generating mechanism and the statistical estimates via a Monte Carlo
simulation of the power-law behaviour are the main contributions of the current
paper.

The remainder of the paper is organized as follows. Section 2 reviews the MF
model established in He and Li (2005). Section 3 is devoted to an analysis of the
potential of the MF model to generate the power-law behaviour. In Section 4 we
estimate the power-law decay parameters of the AC of returns, the squared returns
and the absolute returns and (FI)GARCH(1,1) parameters for the DAX 30, the
FTSE 100, the NIKKEI 225 and the S&P 500 stock market daily closing price
indices. The power-law properties of the MF model and the comparison with the
actual data is analyzed in Section 5. Section 6 concludes.

2. The MF model

The MF model is a standard discounted value asset pricing model with
heterogeneous agents. It is closely related to the framework of Brock and Hommes
(1997, 1998) and Chiarella and He (2002). Here we outline the model and refer the
readers to He and Li (2005) for full details.

Consider an economy with one risky asset and one risk free asset. It is assumed
that the risk free asset is perfectly elastically supplied at gross return of R ¼ 1þ r=K ,
where r stands for a constant risk-free rate per annum and K stands for the trading
frequency measured in units of a year.8 Let Pt and Dt be the (ex dividend) price and
dividend per share of the risky asset at time t, respectively. Then the wealth of a
typical investor-h at tþ 1, W h;tþ1, is given by

W h;tþ1 ¼ RW h;t þ ½Ptþ1 þDtþ1 � RPt�zh;t, (2.1)

where zh;t is the number of shares of the risky asset purchased by investor-h at t. Let
Eh;t and Vh;t be the beliefs of type h traders about the conditional expectation and
variance at tþ 1 based on their information at time t. Denote by Rtþ1ð¼ Ptþ1 þ

Dtþ1 � R PtÞ the excess capital gain on the risky asset at tþ 1. Assume that type h

traders have constant absolute risk aversion (CARA) utility functions with the risk
aversion coefficient ah (that is UhðW Þ ¼ �e

�ahW ) and their optimal demands for the
risky asset zh;t are determined by maximizing their expected utility of wealth. Then it
turns out that

zh;t ¼
Eh;tðRtþ1Þ

ahVh;tðRtþ1Þ
. (2.2)
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8Typically, K ¼ 1; 12; 52 and 250 representing trading periods of year, month, week and day,

respectively. To calibrate the stylized facts observed from daily price movement in financial market, we

select K ¼ 250 in our discussion.
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Given the heterogeneity and the nature of asymmetric information among traders,
we consider two popular trading strategies corresponding to two types of boundedly
rational traders – fundamentalists and trend followers. Assume that the MFs
of the fundamentalists and trend followers are n1 and n2, respectively. Let
m ¼ n1 � n2 2 ½�1; 1�, then m ¼ 1ð�1Þ corresponds to the case when all the traders
are fundamentalists (trend followers). Assume zero supply of outside shares. Then,
using (2.2), the population weighted aggregate excess demand ze;t is given by

ze;t � n1z1;t þ n2z2;t ¼
1þm

2

E1;t½Rtþ1�

a1V 1;t½Rtþ1�
þ

1�m

2

E2;t½Rtþ1�

a2V 2;t½Rtþ1�
. (2.3)

To complete the model, we assume that the market is cleared by a market maker.
The role of the market maker is to take a long (when ze;to0) or short (when ze;t40)
position so as to clear the market. At the end of period t, after the market maker has
carried out all transactions, he or she adjusts the price for the next period in the
direction of the observed excess demand. Let m be the speed of price adjustment of
the market maker (this can also be interpreted as the market aggregate risk
tolerance). To capture unexpected market news or the excess demand of noise
traders, we introduce a noisy demand term ~dt which is an i.i.d. normally distributed
random variable with ~dt�Nð0;s2dÞ. Based on these assumptions and (2.3), the
market price is determined by

Ptþ1 ¼ Pt þ
m
2
ð1þmÞ

E1;t½Rtþ1�

a1V1;t½Rtþ1�
þ ð1�mÞ

E2;t½Rtþ1�

a1V 2;t½Rtþ1�

� �
þ ~dt. (2.4)

Now we turn to discuss the beliefs of fundamentalists and trend followers.
Fundamentalists: Denote by F t ¼ fPt;Pt�1; . . . ;Dt;Dt�1; . . .g the common infor-

mation set formed at time t. Apart from the common information set, the
fundamentalists are assumed to have superior information on the fundamental value,
P�t , of the risky asset which is introduced as an exogenous news arrival process. More
precisely, the relative return ðP�tþ1=P�t � 1Þ of the fundamental value is assumed to
follow a normal distribution, and hence we write:

P�tþ1 ¼ P�t ½1þ s�~�t�; ~�t�Nð0; 1Þ; s�X0; P�0 ¼ P̄40, (2.5)

where ~�t is independent of the noisy demand process ~dt. This specification ensures
that neither fat tails nor volatility clustering are brought about by the exogenous
news arrival process. Hence, emergence of any AC pattern of the return of the risky
asset in our later discussion would be driven by the trading process itself, rather than
news. The fundamentalists also realize the existence of non-fundamental traders,
such as trend followers to be introduced in the following discussion. The
fundamentalists believe that the stock price may be driven away from the
fundamental value in the short-run, but it will eventually converge to the expected
fundamental value in the long-run. Hence the conditional mean and variance of the
fundamental traders are assumed to follow:

E1;tðPtþ1Þ ¼ Pt þ a½E1;tðP
�
tþ1Þ � Pt�; V1;tðPtþ1Þ ¼ s21, (2.6)

ARTICLE IN PRESS
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where s21 stands for a constant variance of the fundamental value. Here the
parameter a 2 ½0; 1� represents the speed of price adjustment of the fundamentalists
toward their expected fundamental value and it measures how fast the fundamen-
talists believe the price converges to the fundamental value and reflects how
confident they are in the fundamental value. In particular, for a ¼ 1, the
fundamental traders are fully confident about the fundamental value and adjust
their expected price in the next period instantaneously to the expected fundamental
value. For a ¼ 0, the fundamentalists become naive traders.

Trend followers: Unlike the fundamental traders, trend followers are technical
traders who believe the future price change can be predicted from various patterns or
trends generated from the historical prices. They are assumed to extrapolate the
latest observed price change over a long-run sample mean price and to adjust their
variance estimate accordingly. More precisely, their conditional mean and variance
are assumed to satisfy

E2;tðPtþ1Þ ¼ Pt þ gðPt � utÞ; V 2;tðPtþ1Þ ¼ s21 þ b2vt, (2.7)

where g; b2X0 are constants, and ut and vt are the sample mean and variance,
respectively, which may be generated from some learning processes. The parameter g
measures the extrapolation rate and high (low) values of g correspond to strong
(weak) extrapolation by the trend followers. The coefficient b2 measures the influence
of the sample variance on the conditional variance estimated by the trend followers
who believe in more volatile price movements. Intuitively, the trend followers reduce
their demand for the risky asset when the estimated risk is high. It turns out that this
risk-adjusted demand mechanism plays a very important role in the price dynamics.9

Various learning schemes (see for example Chiarella and He, 2002, 2003) can be used
to estimate the sample mean ut and variance vt. Here we assume that

ut ¼ dut�1 þ ð1� dÞPt; vt ¼ dvt�1 þ dð1� dÞðPt � ut�1Þ
2, (2.8)

where d 2 ½0; 1� is a constant. These processes for the sample mean and variance are
the limit of a geometric decay process when the memory lag length tends to infinity.10

Basically, a geometric decay probability process ð1� dÞf1; d; d2; . . .g is associated
with the historical prices fPt;Pt�1;Pt�2; . . .g. The parameter dmeasures the geometric
decay rate.11The rationale for the selection of this process is two fold. First, traders
tend to put a high weight on the most recent prices and less weight on the more
remote prices when they estimate the sample mean and variance. Secondly, we
believe that this geometric decay process may contribute to certain AC patterns, in
particular the power-law feature observed in real financial markets. In addition, the
geometric decay process has the mathematical advantage of affording a degree of
tractability to the subsequent analysis.

ARTICLE IN PRESS

9A similar set up under a different learning process is used in Chiarella et al. (2006c) who show that the

time-varying second moment can alter the resulting nonlinear dynamics, particularly when the steady state

is unstable.
10See Chiarella et al. (2006b) for the proof.
11For d ¼ 0, the sample mean ut ¼ Pt, which is the latest observed price, while d ¼ 0:1; 0:5; 0:95 and

0:999 give half lives of 0.43 day, 1 day, 2.5 weeks and 2.7 years, respectively.
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To simplify the calculations, we assume that the dividend process Dt follows
Dt�NðD̄;s2DÞ, the expected long-run fundamental value is given by P̄ ¼ D̄=ðR� 1Þ,
and the unconditional variances of the price (s21) and dividend (s2D) over the trading
period are related12 by s2D ¼ qs21. Based on (2.6), we have E1;tðRtþ1Þ ¼ aðP�t � PtÞ �

ðR� 1ÞðPt � P̄Þ;V1;tðRtþ1Þ ¼ ð1þ qÞs21 and hence the optimal demand of the
fundamentalist is given by

z1;t ¼
1

a1ð1þ qÞs21
½aðP�t � PtÞ � ðR� 1ÞðPt � P̄Þ�. (2.9)

Similarly, from (2.7), E2;tðRtþ1Þ ¼ Pt þ gðPt � utÞ þ D̄� RPt ¼ gðPt � utÞ � ðR� 1Þ
ðPt � P̄Þ, V 2;tðRtþ1Þ ¼ s21ð1þ qþ bvtÞ, where b ¼ b2=s21. Hence the optimal demand
of the trend followers is given by

z2;t ¼
gðPt � utÞ � ðR� 1ÞðPt � P̄Þ

a2s21ð1þ qþ bvtÞ
. (2.10)

Subsisting (2.9) and (2.10) into (2.4), the market price under a market maker is
determined by the following four-dimensional stochastic difference system:

Ptþ1 ¼ Pt þ
m
2

1þm

a1ð1þ qÞs21
½aðP�t � PtÞ � ðR� 1ÞðPt � P̄Þ�

�

þð1�mÞ
gðPt � utÞ � ðR� 1ÞðPt � P̄Þ

a2s21ð1þ qþ b vtÞ

�
þ ~dt;

ut ¼ dut�1 þ ð1� dÞPt;

vt ¼ dvt�1 þ dð1� dÞðPt � ut�1Þ
2;

P�tþ1 ¼ P�t ½1þ s�~�t�:

8>>>>>>>>>>><
>>>>>>>>>>>:

(2.11)

By using Monte Carlo simulation and statistical analysis, He and Li (2005) found
that the long-run behaviour and convergence of the market prices, long (short)-run
profitability of the fundamental (trend following) trading strategy, survivability of
trend followers, and various under- and over-reaction AC patterns of returns can be
characterized by the dynamics, including the stability and bifurcations, of the
underlying deterministic system. The analysis provides some insights into the
generating mechanism of various types of market behaviour (such as under/over-
reaction), market dominance and stylized facts in high frequency financial markets.
In the following discussion, we reveal the potential of the MF model to characterize
the volatility clustering and the long-range dependence of asset returns by examining
the AC patterns under different noise structures and by estimating the decay indices
and (FI)GARCH parameters.

ARTICLE IN PRESS

12Let sP̄ be the annual volatility of P�t and D̄t ¼ rP�t be the annual dividend. In this paper, we choose

s21 ¼ s2
P̄
=K and q ¼ r2. In fact, the annual variance of the dividend is s̄2D ¼ r2s2

P̄
. Therefore,

s2D ¼ s̄2D=K ¼ r2s2
P̄
=K ¼ r2s21. For all numerical simulations in this paper, we choose P̄ ¼ $100; r ¼ 5%

p.a. s ¼ 20% p.a., sP̄ ¼ sP̄ and K ¼ 250. Correspondingly, R ¼ 1þ 0:05=250 ¼ 1:0002; s21 ¼ ð100�

0:2Þ2=250 ¼ 8
5
and s2D ¼

1
250

.
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3. Analysis of the volatility clustering and power-law behaviour

We now proceed with an analysis of the volatility clustering and power-law
mechanism of the MF model. The aim of the analysis is to explore possible sources
of volatility fluctuations. In doing so, we provide some insights into the interplay
between system size, deterministic forces and stochastic elements, in particular, the
potential for this interplay to generate realistic time series properties.

Aside from the parameter values of which were given previously, the parameters
used for the simulations are given in Table 1.13

Following from the stability and bifurcation analysis in He and Li (2005), the
constant steady state fundamental price P̄ of the underlying deterministic system is
locally asymptotically stable for the chosen parameter constellations. The intuition
behind this selection of parameters comes from the analysis of the return AC
patterns near the Hopf bifurcation boundary conducted in He and Li (2005). When
the market prices converge to the fundamental values in an oscillating manner, the
significant AC patterns of returns are washed out by the noisy market demand
process with reasonable volatility. On the other hand, the noisy fundamental process
seems necessary to generate more realistic price series. The oscillatory convergence of
the underlying deterministic system and the noisy fundamental process lead to
volatility clustering – high (low) volatility is more likely followed by high (low)
volatility.

To see how the price dynamics, in particular, the AC patterns of returns, are
affected by different noise processes, we consider the four cases listed in Table 2.
Case-00 corresponds to the deterministic case. Case-01 (Case-10) corresponds to the
case with noisy fundamental price (noisy excess demand) only and both noise
processes appear in Case-11.

Fig. 1 illustrates the price series for the four cases for a typical simulation. The
corresponding return series and their density distributions are given in Fig. 2 for the
three cases involving noise. Fig. 3 shows the ACs of returns, absolute returns and
squared returns. For comparison, the same set of noisy demand and fundamental
processes is used in Case-11. Each simulation is run for 6000 time periods and the

ARTICLE IN PRESS

Table 1

Parameter settings and initial values

a g a1 a2 m m d b s� sd P0 P�0

0.1 0.3 0.8 0.8 2 0 0.85 1 0.01265 1 100 100

13The return volatility s� of the fundamental value corresponds to an annual volatility of 20% (hence

s� ¼ ð20=
ffiffiffiffi
K
p
Þ% with K ¼ 250) and the volatility of the noisy demand sd ¼ 1, which is about 1% of the

average fundamental price level P̄ ¼ $100. In addition, simulations (not reported here) show that the

results obtained in this paper are robust under slight modifications of these parameters.
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first 1000 are dropped to wash out the initial effect of the estimates of densities and
ACs of returns and to make the estimates robust.

Both Figs. 2 and 3 show significantly different impacts of the different noise
processes on the volatility. In Case-01, the stochastic fundamental price process is
the only noise process. The market price displays a strong under-reaction14 AC
pattern of returns, which is characterized by the significantly positive decaying ACs
shown in the top left panel in Fig. 3. This significant AC pattern is also carried
forward to the AC patterns for the absolute and squared returns. In Case-10, the
noisy excess demand is the only noise process. The market price displays no volatility
clustering, which is characterized by insignificant AC patterns for return, the
absolute and squared returns shown in the middle row in Fig. 3. In Case-11, both the
noisy excess demand and noisy fundamental price processes appear. We observe
relatively high kurtosis in Fig. 2 and insignificant ACs for returns, but significant

ARTICLE IN PRESS

Table 2

Four cases of the noisy effect

Cases Case-00 Case-01 Case-10 Case-11

ðsd;s�Þ ð0; 0Þ ð0; 0:01265Þ ð1; 0Þ ð1; 0:01265Þ

0 200 400 600 800 1000

99.975

100.000

100.025

100.050
Case−00

0 900 1800 2700 3600 4500 5400

50

100

150

200

250

300
Case−01

0 900 1800 2700 3600 4500 5400

95

100

105

110 Case−10

0 900 1800 2700 3600 4500 5400

100

200

300 Case−11

Fig. 1. Time series of prices for the four cases in Table 2.

14See He and Li (2005) for more detailed analysis on the generating mechanism for various under- and

over-reaction AC patterns.
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0 1050 2100 3150 4200 5250

0.00

0.01

Case−01

−0.010 −0.005 0.000 0.005 0.010

50

100

0 1050 2100 3150 4200 5250
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ACs for the absolute and squared returns shown in the bottom panel in Fig. 3. In
fact, the estimates in Section 5 based on Monte Carlo simulations show that the
model is able to produce relatively realistic volatility pattern and the power-law
features.

The above result demonstrates that the simple MF model is able to generate
realistic price behaviour and appropriate long range dependence for returns when
both noise processes are present. Because of the interaction of the nonlinear
deterministic dynamics and the noisy processes, an explicit analysis of the generating
mechanism for this outcome seems to be difficult in general. In the following, we try
to do so from three different aspects.15

First, we examine the roles that the two noise processes play on the AC structure
of the stochastic system. When there is no noise process, as illustrated in Case-00 in
Fig. 1, we obtain the underlying deterministic system.16 The market price is
oscillating initially but converging to the fundamental value eventually. When the
fundamental price fluctuates stochastically, as in the Case-01, the fundamental
values are shifted to different levels over time. In this case, the AC pattern in the top
row in Fig. 3 shows a significant ACs for returns and highly dependent volatility
measured by the significant ACs for the absolute and squared returns. This may
be due to the stochastic shift of the fundamental price and the local stability of
the underlying deterministic system. When the market price is also perturbed by the
noisy excess demand process, the returns display insignificant AC patterns (see the
second and third rows in Fig. 3). Our simulations show that the two noise processes
play different roles. For a given noisy fundamental process with s�40, there exists a
critical value s�d ¼ s�dðs�Þ40 for the noisy demand process such that the ACs of the
returns display a significant pattern for sdos�d and an insignificant pattern for
sd4s�d. This implies that the noisy demand has a significant impact on the ACs of
returns. On the other hand, for a given noisy excess demand with sd40, there exists
a critical value s�� ¼ s�� ðsdÞ40 such that the ACs for the absolute and squared
returns display an insignificant pattern for s�os�� and a significant pattern for
s�4s�� . This implies that the noisy fundamental price also has significant impact on
the ACs of the absolute and squared returns. Neither one of the two noise processes
alone is responsible for the power-law feature.

Second, we examine the impact of the noise processes on the market price and its
relation to the fundamental price. The convergence of the market price to the
fundamental price for the underlying deterministic system is destroyed after the
introduction of the two noise processes, however, the market price moves closely to
the fundamental price, as illustrated in the top left panel in Fig. 4. This indicates a
temporary destabilization of the market price to the fundamental price. From the
middle left panel in Fig. 4, one can see that such temporary deviation of the market
price from the fundamental price can be significant from time to time. However, the
density distribution of the differences in the bottom left panel in Fig. 4 shows that
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15The authors would like to thank an anonymous referee to bringing some of the following points to

their attention.
16We refer to He and Li (2005) for the stability and bifurcation analysis in this case.
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the market prices are more concentrated near the fundamental prices most of the
time. For comparison, we show the relation of the market price and the geometric
moving averaged price in the right panels in Fig. 4. The moving averaged price is less
volatile. Also, its difference from the market price is less concentrated near zero,
compared to the difference of the market price from the fundamental price. The
reaction of the fundamentalists to the deviation of the market price from the
fundamental price and the extrapolation of the trend followers lead to a more
realistic price behaviour in this model.

The third important factor possibly affecting the volatility clustering is the
endogenous learning process engaged in by the risk averse trend followers. The
endogenous development of the expected mean and variance of the trend followers
produces a simple feedback effect. The trend followers tend to push the market price
away from the fundamental value by extrapolating the trend, leading to high
volatility. Because of the perceived increase of risk, their demand/supply is then
reduced. The partial withdrawal of the trend followers then leads to less volatile
dynamics, which makes the trend followers revise the risk downward so that
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eventually their demand/supply increases again. This simple feedback mechanism is
clearly illustrated in Figs. 5 and 6. In Fig. 5, we plot the time series for the geometric
moving variance vt (the top panel) and the excess demands of the trend followers z2t

(the middle panel) and of the fundamentalists z1t (the bottom panel) over a short
time period. We have low (high) demand from the trend followers following high
(low) perceived volatility. This is further confirmed by the phase plot of ðz2t; vtÞ in the
left panel in Fig. 6 (observe the peaks on either side of zero demand). As expected,
the right panel in Fig. 6 shows that there is no clear evidence of a relationship
between the perceived volatility (vt) of the trend followers and the excess demand of
the fundamentalists.

Overall, we see that the interaction of speculators, the simple feedback of the trend
followers, and the interplay of noises and the underlying deterministic dynamics can
generate realistic volatility behaviour . We should notice that the size of the noise is a
very subtle issue. For the herding mechanism in Lux and Marchesi (2001), a
balanced disposition among noise traders is necessary. For the switching mechanism
in Gaunersdorfer and Hommes (2007), the noisy component added to the excess
demand is responsible for the switching between locally co-existing attractors, and
hence the noise level has to be large to obtain realistic results. In our model, the
distributed fluctuations are due to the fact that the lagged learning and risk adjusted
extrapolation from the trend followers need to be balanced by the noise level of the
excess demand. At this stage, a theoretical analysis of the interplay of deterministic

ARTICLE IN PRESS

500 550 600 650 700 750 800 850 900 950 1000

5

10

15
v(t)

500 550 600 650 700 750 800 850 900 950 1000

−0.25

0.00

0.25

0.50
z2(t)

500 550 600 650 700 750 800 850 900 950 1000

−0.5

0.0

0.5
z1(t)

Fig. 5. The geometric volatility (vt, top) and the demands of the trend followers (z2t, middle) and the

fundamentalists (z1t, bottom).

X.-Z. He, Y. Li / Journal of Economic Dynamics & Control 31 (2007) 3396–3426 3409



Author's personal copy

dynamics and noise seems difficult. Our analysis indicates that the noisy demand
plays a more important role in the insignificant AC patterns for the returns, while the
noisy fundamental process plays a more important role on the significant AC
patterns for the absolute and squared returns.

In the following discussion, we adopt statistical methods based on Monte Carlo
simulation to estimate various models related to a power-law characterization. The
estimates are obtained for both the MF model and the actual data, including the
DAX 30, the FTSE 100, the NIKKEI 225 and the S&P 500. We also compare the
estimates from the actual data with those from the MF model.

4. Empirical evidence and power-law behaviour of the actual data

This section provides a brief statistical analysis of the DAX 30, the FTSE 100, the
NIKKEI 225, and the S&P 500 price indices from Datastream, which will be used as
empirical evidence and benchmarks for our comparison. There are altogether 5306
daily observations for each index which start from 1 February 1984. Use pt to denote
the price index, e.g. the S&P 500, at time t ðt ¼ 0; . . . ; 5305Þ and log returns rt are
defined as rt ¼ ln pt � ln pt�1.

4.1. Statistics and AC of returns

Table A1 in Appendix A gives the summary statistics of rt for the DAX 30, the
FTSE 100, the NIKKEI 225, and the S&P 500. For each index, we can see from
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Table A1 that the kurtosis for rt is much higher than that of a normal distribution.
The kurtosis and studentized range statistics (which is the range divided by the
standard deviation) show the characteristic fat-tailed behaviour compared with a
normal distribution. The Jarque–Bera normality test statistic suggests that rt is far
from a normal distribution.

Ding et al. (1993) investigate ACs of returns (and their transformations) of the
daily S&P 500 index over the period 1928–1991 and find that the absolute returns
and the squared returns tend to have very slow decaying ACs and the sample ACs
for the absolute returns are greater than those for the squared returns at every lag up
to at least 100 lags. This kind of AC feature indicates the long-range dependence or
the power-law behaviour in volatility. The ACs plotted in Fig. A1 in Appendix A
coincide with the findings in Ding et al. (1993).

4.2. Estimates of power-law decay index

Besides the visual inspection of ACs of rt, r2t and jrtj, one can also construct
models to estimate the decay rate of the ACs of rt, r2t and jrtj. For instance, we can
semi-parametrically model power-law behaviour in a covariance stationary series xt,
t ¼ 0, �1; . . ., by

sðoÞ 	 c1o�2d ; o! 0þ, (4.1)

where 0oc1o1, sðoÞ is the spectral density of xt, and o is the frequency. Under
(4.1), sðoÞ has a pole at o ¼ 0 for 0odo 1

2
(when there is a power law in xt), while

dX 1
2 implies the process is not covariance stationary; sðoÞ is positive and finite for

d ¼ 0; for � 1
2
odo0, we have short and negative dependence, or antipersistence.

The ACs can be described by rk 	 c2k2d�1, where c2 is a constant and m � 2d � 1
corresponds to the hyperbolic decay index.

Geweke and Poter-Hudak (1983), henceforth GPH, suggest a semiparametric
estimator of the fractional differencing parameter, d, that is based on a regression of
the ordinates of the log spectral density. Given spectral ordinates oj ¼ 2pj=T

ðj ¼ 1; 2; . . . ;mÞ, GPH suggest estimating d from a regression of the ordinates from
the periodogram IðojÞ. Hence, for j ¼ 1; 2; . . . ;m,

log IðojÞ ¼ c� d logð4 sin2ðoj=2ÞÞ þ vj, (4.2)

where vj is assumed to be i.i.d. with zero mean and variance p2=6. If the number of
ordinates m is chosen such that m ¼ gðTÞ, where gðTÞ is such that limT!1 gðTÞ ¼ 1,
limT!1 gðTÞ=T ¼ 0 and limT!1ðlogðTÞ

2
Þ=gðTÞ ¼ 0, then the OLS estimator of d

based on (4.2) has the limiting distribution

ffiffiffiffi
m
p
ðd̂GPH � dÞ!

d
N 0;

p2

24

� �
. (4.3)

Robinson (1995) provides a formal proof for � 1
2odo 1

2, Velasco (1999) proves the
consistency of d̂GPH in the case 1

2
pdo1 and its asymptotic normality in the case
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1
2
pdo 3

4
. It is clear from this result that the GPH estimator is not T1=2 consistent and

will converge at a slower rate.
Another most often used estimator of d is developed by Robinson and Henry

(1999), henceforth RH. They suggest a semiparametric Gaussian estimate of the
memory parameter d, by considering

d̂RH ¼ argmind RðdÞ; RðdÞ ¼ log
1

m

Xm

j¼1

o2d
j IðojÞ

( )
� 2

d

m

Xm

j¼1

logoj, (4.4)

in which m 2 ð0; ½T=2�Þ. They prove that
ffiffiffiffi
m
p
ðd̂RH � dÞ!

d
Nð0; 1

4
Þ when mo½T=2�

such that 1=mþm=T ! 0 as T !1 and under some further conditions (see
Robinson and Henry, 1999).

A major issue in the application of the GPH and the RH estimators is the choice
of m, due to the fact that some limited knowledge is now available concerning this
issue (see, Geweke, 1998, for instance), it is a wise precaution to report the estimated
results for a range of bandwidths. So in our study, for both the GPH and the RH
estimates of d, we report the corresponding estimates for m ¼ 50, 100,150,200, and
250, respectively, in Appendix A.

For instance, for the DAX 300, Table A2 reports the GPH and the RH estimates
of d for returns, the squared returns, and the absolute returns, respectively. In the
panel of rt in Table A2, the first row reports the results from the GPH and the RH
estimates with m ¼ 50, the second row reports the results of the GPH and the RH
estimates with m ¼ 100, and so on. This also holds for the panels of r2t and jrtj, and
for other tables in Appendix A. The estimates of the parameter d for the FTSE 100,
the NIKKEI 225 and the S&P 500 are summarized in Tables A3, A4, and A5,
respectively.

We see that all of the estimated d for the returns are not significant at all
conventional significance levels while those for the squared returns, and the absolute
returns are significant. Thus, for the DAX 30, the FTSE 100, the NIKKEI 225 and
the S&P 500, there is clear evidence of power law for the squared and the absolute
returns where d is positive, and the persistence in the absolute returns is much
stronger than that in the squared returns. These results coincide with the well-
established findings in the empirical finance literature.

4.3. Volatility clustering, power-law and (FI)GARCH estimates

Another striking feature of the return series is volatility clustering. A number of
econometric models of changing conditional variance have been developed to test
and measure volatility clustering. Engle (1982) suggested a test where the null
hypothesis is that the residuals of a regression model are i.i.d. and the alternative
hypothesis is that the errors are ARCH(q). Suppose the stock returns follow an
AR(1) process with innovations et. If the returns are homoscedastic, then the

variance cannot be predicted and the variations in e2t will be purely random.

However, if ARCH effects are present, large values of e2t will be predicted by large

values of the past squared residuals. This leads to a TR2 test statistic. In order to
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compute the test statistic, we first fit the returns series with an ARð1Þmodel, and then

regress the squared residuals e2t on a constant and e2t�1; . . . ; e
2
t�q. The R2 is then

computed from this regression. Under the null hypothesis that there is no ARCH,
the test statistic is asymptotically distributed as a chi-square distribution with q

degrees of freedom. We implement the test for the four indices and the results
are reported in Table A6 in Appendix A. In all the cases, the null hypothesis is
strongly rejected and, in terms of Engle’s test, the four indices do have clear ARCH
effects.

We now consider the family of ARCH models. The most widely used one is that
introduced by Engle (1982) and its generalization, the GARCH model, introduced
by Bollerslev (1986). Following their specification, for instance, if we model the
returns as an AR(1) process, then a GARCHðp; qÞ model is defined by

rt ¼ aþ brt�1 þ et; et ¼ stzt;

s2t ¼ a0 þ aðLÞe2t þ bðLÞs2t ; zt�Nð0; 1Þ;

(
(4.5)

where L is the lag operator, aðLÞ ¼
Pq

i¼1aiL
i and bðLÞ ¼

Pp
j¼1biL

j. Defining
vt ¼ e2t � s2t , the process can be rewritten as an ARMAðm; pÞ process

½1� aðLÞ � bðLÞ�e2t ¼ a0 þ ½1� bðLÞ�vt (4.6)

with m ¼ maxfp; qg. Table A7 in Appendix A reports the estimates of the GARCH
ð1; 1Þ model, where the mean process follows an AR(1) structure.

Based on the estimates, one can see that a small influence of the most recent
innovation (small a1) is accompanied by a strong persistence of the variance
coefficient (large b1). It is also interesting to observe that the sum of the coefficients
a1 þ b1 is close to one, which indicates that the process is close to an integrated
GARCH (IGARCH) process. Such parameter estimates are rather common when
considering returns from high frequency daily financial data of both share and
foreign exchange markets (see, Pagan, 1996). The GARCH implies that shocks to the
conditional variance decay exponentially. However the IGARCH implies that the
shocks to the conditional variance persist indefinitely.

In response to the finding that most financial time series are power-law volatility
processes, Baillie et al. (1996) consider the fractional integrated GARCH
(FIGARCH) process, where a shock to the conditional variance dies out at a slow
hyperbolic rate. Later on, Chung (1999) suggests a slightly different parameteriza-
tion of the model:

fðLÞð1� LÞd ðe2t � s2Þ ¼ a0 þ ½1� bðLÞ�vt, (4.7)

where fðLÞ ¼ 1�
Pq

i¼1fiL
i, a0 ¼ fðLÞð1� LÞds2, and s2 is the unconditional

variance of the corresponding GARCH model. Table A8 in Appendix A reports the
estimates of the FIGARCH ð1; d; 1Þ model, where the mean process follows an
AR(1) model. The estimate for the fractional differencing parameter d̂ is statisti-
cally very different from both zero and one. This is consistent with the well
known findings that the shocks to the conditional variance die out at a slow
hyperbolic rate.
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5. Econometric characterization of the power-law properties of the MF model

This section is devoted to an econometric analysis on the power-law behaviour
and the volatility persistence of the MF model. Various models are estimated using
the MF model-generated data outlined in Section 3 and then compared with those of
the DAX 30, the FTSE 100, the NIKKEI 225, and the S&P 500 estimated in the
previous section. The analysis and estimates are based on Monte Carlo simulations.
For the chosen set of parameters and two noise processes specified in Case-11 in
Section 3, we ran 1000 independent simulations over 6306 time periods and
discarded the first 1000 time periods to wash out any possible initial noise effect. For
each run of the model we have 5306 observations, which matches the sample size of
the actual data that we used in the previous section.

5.1. ACs of returns

First, we look at the ACs of returns, the squared returns and the absolute returns.
It is interesting to see whether our simulation model can replicate the well known
findings as described in Fig. A1. By running 1000 independent simulations, we
estimate the AC coefficients and calculate Newey–West corrected standard errors of
returns, the squared returns and the absolute returns for each run of the model, and
we then take the average. We plot the ACs and their corresponding confidence
intervals in Fig. 7.

From Fig. 7, we see that for the MF model, not only are the sample correlations of
r2t and jrtj all outside the 95% confidence interval of rt, but they are also all positive
over long lags. Further, the sample ACs for the absolute returns are greater than that
for the squared returns at every lag up to at least 100 lags. Comparing with Fig. A1
for the four indices, we see that the patterns of decay of the AC functions of return,
the squared return and the absolute return are quite similar.
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5.2. Estimates of power-law decay index

We also look at the decay rate of the ACs of returns, the squared returns, and the
absolute returns that are estimated from the GPH the RH method. The resulting
estimates are reported in Table A9 in Appendix A, where the column
‘Sig%’ indicates the percentage of simulations for which the corresponding estimates
are significant at the 5% level over 1000 independent simulations. We find that for
m ¼ 50; 100, most of the estimates of d for returns are not significant, but most of
them are significant for larger m, although the corresponding averaged p-values are
large. However, all of the estimates of d for the squared returns and the absolute
returns are positive. There is a clear evidence of a power law for the squared returns
and the absolute returns, and also the patterns of the estimates of d for the returns,
the squared returns, and the absolute returns are comparable to those of the actual
data (see Tables A2–A5).

5.3. Volatility clustering, power-law and (FI)GARCH estimates

We now check for ARCH/GARCH effects, in order to see whether the MF model is
capable of capturing the feature of volatility clustering. We implement the test
suggested by Engle (1982). Corresponding to the Table A6 of such test for the indices,
the resulting test statistics for the MF model are 140.8, 228.2, 372.7, 391.8 and 710.8
with the percentages, 98.7%, 99.3%, 99.8%, 99.9%, and 100%, respectively, so that the
test statistics are significant at the 5% level over 1000 independent simulations. In terms
of Engle’s test, the MF model does have clear ARCH effects. So, we turn to study the
GARCH and the FIGARCH estimates that describe volatility persistence.

We report the estimates of the GARCH and the FIGARCH models in Tables A10
and A11, respectively. The reported estimates and standard errors are the averages of
those across 1000 independent simulations. The specifications of the models are the
same as what we estimated for the indices. Again, all these estimates are obtained
from the estimates for each run of the simulation model and then averaged over
independent simulations. The results from the GARCH model are astonishingly
similar to what one usually extracts from real life data: a small influence of the most
recent innovation ða1o0:1Þ is accompanied by strong persistence of the variance
coefficient ðb140:9Þ and the sum of the coefficients a1 þ b1 ¼ 0:9928 is close to one.
For the estimates of the FIGARCHð1; d; 1Þ, we see that the estimate of d is
significantly different from zero and one.

Overall, we find that the MF model does provide a mechanism that can gene-
rate the long-range dependence in volatility observed in actual market data. Now we
turn to assess the differences between the MF model and the real world quantitatively.

5.4. Comparing with the actual data in terms of the power-law characteristics

Here we compare the MF model with the four indices in terms of the ACs of
returns, the squared returns and the absolute returns, the power-law decay index d,
and the parameter d in the FIGARCH(1,1) specification, respectively.
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In Fig. 8, we plot the AC coefficients of returns, the squared returns and the
absolute returns for the MF model together with the DAX 30, the FTSE 100, the
NIKKEI 225 and the S&P 500, respectively. For the purpose of comparison, we plot
the corresponding confidence intervals for corresponding quantities coming from the
actual data.

For the returns, we see from the first column of Fig. 8 that all of the ACs of
the MF model lies inside the confidence intervals of the actual data. However, for the
squared returns, we see from the second column of Fig. 8 that while the line of
the MF model looks reasonable compared to the DAX 30, it is different from what
we see from the S&P 500. The last column of Fig. 8 also provides a mixed picture for
the absolute returns, the MF model seems to fit the DAX 30 better than the other
indices, especially for large lags.

For the decay index d of the returns, the squared returns or the absolute returns,
we want to test whether the parameters d estimated from both the actual data (for
instance, the DAX 30) and the MF model are the same. In other words, we want to
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test H0 : dDAX ¼ dMF, apart from checking whether d̂MF lies in the confidence
interval of d̂DAX or not. The null hypothesis can also be tested by the Wald test
by assuming that both the number of simulations and the number of time periods
for each simulation go to infinity. In the construction of the Wald test,
W ¼ ðd̂DAX � d̂MFÞŜ

�1
ðd̂DAX � d̂MFÞ, where Ŝ is simply the variance of d̂DAX.

We note that dMF is estimated from the simulated data by running the MF
model independently many times, so d̂MF converges much faster than that of
d̂DAX and we can ignore the estimation inaccuracy in d̂MF. For a more general
discussion on a comparison of simulation models with the real world data, see
Li et al. (2006a,b). The resulting test statistics are summarized in Table A12
inAppendix A, in the column ‘DAX 30’, the first sub-column reports the test
statistics corresponding to d̂GPH, and the second sub-column corresponding
to d̂RH, and so on. Note that the critical values of the Wald test at 5% and 1%
significant levels are 3.842 and 6.635, respectively. For the returns, we see that the
estimated d of the FTSE 100 and the MF model are not significantly different,
except for the RH estimate with m ¼ 250; in addition, most of the test statistics
are not significant for m ¼ 50; 100, but they are significant for larger m. For the
squared returns, except for the GPH estimates of the DAX 30, the estimated d

of the MF model is significantly different from almost all of those of the actual
data. For the absolute returns, the differences between the estimated d of the
actual data and the MF model are not statistically significant, except for the
m ¼ 50.

We can also test the equality of d in the FIGARCH specification between the
actual data and the MF model by the Wald test. The resulting Wald statistics for
the DAX 30, FTSE 100, the NIKKEI 225 and the S&P 500 are 586, 4.140, 29.5
and 4.853, respectively. So the estimated d in the FIGARCHð1; d; 1Þ model of
the MF model is not significantly different from those of the FTSE 100 and the
S&P 500, but it is significantly different from those of the DAX 30 and the
NIKKEI 225.

The above analysis indicates that the simple MF model is able to replicate
the power-law properties of the actual stock market qualitatively. However, the
formal statistical tests find that the decay rate and the (FI)GARCH estimates
from the MF model do not easily completely match those of any particular
single index.17 This is probably due to the simplicity of the MF model and
different features across different financial markets. The power-law mechanism of
the MF model is different from either herding (for instance, the mechanism
developed in Lux and Marchesi, 1999) or switching mechanisms (such as the
adaptive switching mechanism in Brock and Hommes, 1997, 1998) in terms of
modelling, but it shares the same spirit in a much simpler way. This is one
of the main contributions of this paper. It is this simplicity that makes it possi-
ble to identify potential sources and mechanisms that can generate certain
characteristics.
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17This is not too surprising, we might note that these parameters also differ across stock indices.
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6. Conclusion

Motivated by the recent interest in the power-law behaviour of high frequency
financial market time series and the explanatory power of heterogeneous-agent asset-
pricing models, this paper investigates the power-law properties of a simple MF
model involving two types of traders (fundamentalists and trend followers).
Extending earlier work on long-run asset price behaviour, profitability, survivability,
various under- and over-reaction AC patterns, and their connections to the
underlying deterministic dynamics, we studied in the characterization of the power-
law volatility behaviour of the MF model and its comparison with the real world. We
found that the agent heterogeneity, risk-adjusted trend chasing through the
geometric learning process, and the interplay of noise and the underlying
deterministic dynamics can explain the power-law distributed fluctuations.

It is interesting and important to see how the deterministic dynamics and noise
interact with each other, and further, to understand the connections between the
nonlinear dynamics of the underlying deterministic system and certain time series
properties of the corresponding stochastic system. The theoretical analysis is
important but difficult given the current state of knowledge on nonlinear random
dynamic system. Therefore statistical analysis with powerful econometric tools seems
necessary. Based upon Monte Carlo simulations, statistical analysis, including
estimates of the (FI)GARCH parameters and related tests, we show that the MF
model is able to explain some of the characteristics that are well established in the
empirical finance literature. There is a clear evidence of the power-law and GARCH
effects. It is worth emphasizing that all these interesting qualitative and quantitative
features arise from the simple model with fixed MFs.

Further investigation and extension of the simple model seems necessary. It may
be interesting to extend our analysis to the model established recently by Dieci et al.
(2006), in which part of the MFs are governed by market mood and the rest follows
some adaptive switching process. One way to start might be to estimate the model
first, and then implement misspecification tests. Econometric methods, such as
efficient methods of moments could be used. Allowing for market mood and
switching mechanisms and using these econometric estimation approaches, we may
gain a better characterization and understanding of the mechanisms deriving
financial markets.
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Appendix A

A.1. Statistical results

Fig. A1 plots the autocorrelations of the four indices.
Table A1 gives the summary statistics of rt for the DAX 30, the FTSE 100, the

NIKKEI 225, and the S&P 500. Table A2 reports the GPH and the RH estimates of
d for returns, the squared returns, and the absolute returns. The estimates of the
parameter d for the FTSE 100, the NIKKEI 225 and the S&P 500 are summarized in
Tables A3, A4, and A5, respectively. Engle’s test for the presentence of ARCH/
GARCH effects is presented in Table A6. Tables A7 and A8 report the estimates of
the GARCH(1,1) and FIGARCH ð1; d; 1Þ models, respectively. Table A9 shows the
resulting estimates of the decay rate of the autocorrelations of returns, the squared
returns, and the absolute returns that are estimated from the GPH and the RH
methods. We report the estimates of the GARCH and the FIGARCH for the MF
model in Tables A10 and A11, respectively. See Table A12 for the Wald test of d with
different values of m.
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Fig. A1. Autocorrelations of returns, the squared returns and the absolute returns for the DAX 30 (a), the

FTSE 100 (b), the NIKKEI 225 (c), and the S&P 500 (d). The lines from the bottom to the top are the

autocorrelations for returns, the squared returns, and the absolute returns, respectively.
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Table A1

Summary statistics of rt

Data Mean Std. Skewness Kurtosis Min Max Stud. range Jarque–Bera

DAX 30 0.0003 0.0143 �0.467 8.940 �0.137 0.076 14.91 7991

FTSE 100 0.0003 0.0105 �0.735 13.07 �0.130 0.076 19.60 22 879

NIKKEI 225 0.0000 0.0137 �0.142 10.47 �0.161 0.124 20.78 12 365

S&P 500 0.0004 0.0107 �1.997 45.96 �0.228 0.087 29.35 411 423

Table A2

The estimates of d for the DAX 30 with m ¼ 50; 100; 150; 200; 250

d̂GPH
t p-value 95% CI d̂RH

t p-value 95% CI

rt 0.0884 0.858 0.391 [�0.1136, 0.2903] �0.0034 �0.048 0.962 [�0.1420, 0.1352]

0.0491 0.707 0.480 [�0.0870, 0.1852] 0.0634 1.267 0.205 [�0.0346, 0.1614]

0.0527 0.948 0.343 [�0.0563, 0.1617] 0.0901 2.208 0.027 [0.0101, 0.1702]

0.0348 0.730 0.465 [�0.0586, 0.1281] 0.0528 1.493 0.135 [�0.0165, 0.1221]

0.0434 1.027 0.305 [�0.0395, 0.1264] 0.0609 1.926 0.054 [�0.0011, 0.1229]

r2t 0.4380 4.252 0.000 [0.2361, 0.6400] 0.4156 5.878 0.000 [0.2770, 0.5542]

0.4727 6.807 0.000 [0.3366, 0.6089] 0.4570 9.139 0.000 [0.3590, 0.5550]

0.4111 7.391 0.000 [0.3021, 0.5201] 0.3887 9.521 0.000 [0.3087, 0.4687]

0.3710 7.787 0.000 [0.2776, 0.4643] 0.3649 10.32 0.000 [0.2956, 0.4342]

0.3830 9.054 0.000 [0.3001, 0.4660] 0.3714 11.74 0.000 [0.3094, 0.4334]

jrtj 0.6478 6.287 0.000 [0.4458, 0.8497] 0.6137 8.678 0.000 [0.4751, 0.7522]

0.6013 8.658 0.000 [0.4652, 0.7374] 0.5986 11.97 0.000 [0.5006, 0.6966]

0.5846 10.51 0.000 [0.4756, 0.6936] 0.5565 13.63 0.000 [0.4765, 0.6366]

0.5404 11.34 0.000 [0.4471, 0.6338] 0.5366 15.18 0.000 [0.4673, 0.6059]

0.5215 12.33 0.000 [0.4386, 0.6044] 0.5166 16.34 0.000 [0.4546, 0.5785]

Table A3

The estimates of d for the FTSE 100 with m ¼ 50; 100; 150; 200; 250

d̂GPH
t p-value 95% CI d̂RH

t p-value 95% CI

rt �0.0641 �0.623 0.534 [�0.2661, 0.1378] 0.0109 0.155 0.877 [�0.1277, 0.1495]

�0.0560 �0.806 0.420 [�0.1921, 0.0801] �0.0174 �0.349 0.727 [�0.1154, 0.0806]

�0.0881 �1.582 0.114 [�0.1972, 0.0211] �0.0410 �1.004 0.315 [�0.1210, 0.0390]

�0.0695 �1.458 0.145 [�0.1628, 0.0239] �0.0289 �0.817 0.414 [�0.0982, 0.0404]

�0.0178 �0.421 0.673 [�0.1008, 0.0651] �0.0051 �0.162 0.871 [�0.0671, 0.0569]

r2t 0.2739 2.658 0.008 [0.0719, 0.4758] 0.2958 4.184 0.000 [0.1572, 0.4344]

0.2802 4.035 0.000 [0.1441, 0.4164] 0.2923 5.845 0.000 [0.1943, 0.3903]

0.2469 4.439 0.000 [0.1379, 0.3559] 0.2684 6.575 0.000 [0.1884, 0.3485]

0.2201 4.621 0.000 [0.1268, 0.3135] 0.2560 7.239 0.000 [0.1867, 0.3253]

0.2297 5.430 0.000 [0.1468, 0.3126] 0.2630 8.318 0.000 [0.2011, 0.3250]

jrtj 0.5609 5.444 0.000 [0.3589, 0.7628] 0.5797 8.197 0.000 [0.4411, 0.7182]

0.6044 8.702 0.000 [0.4682, 0.7405] 0.5666 11.33 0.000 [0.4686, 0.6646]

0.5656 10.17 0.000 [0.4566, 0.6746] 0.5242 12.84 0.000 [0.4441, 0.6042]

0.5156 10.82 0.000 [0.4222, 0.6089] 0.5023 14.21 0.000 [0.4330, 0.5716]

0.5134 12.13 0.000 [0.4305, 0.5963] 0.5003 15.82 0.000 [0.4384, 0.5623]
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Table A4

The estimates of d for the NIKKEI 225 with m ¼ 50; 100; 150; 200; 250

d̂GPH
t p-value 95% CI d̂RH

t p-value 95% CI

rt 0.1560 1.514 0.130 [�0.0460, 0.3579] 0.0476 0.673 0.501 [�0.0910, 0.1862]

0.1107 1.594 0.111 [�0.0254, 0.2469] 0.0411 0.821 0.411 [�0.0569, 0.1391]

0.0796 1.431 0.152 [�0.0294, 0.1886] 0.0483 1.183 0.237 [�0.0317, 0.1283]

0.0518 1.088 0.277 [�0.0415, 0.1452] 0.0347 0.981 0.326 [�0.0346, 0.1040]

0.0283 0.668 0.504 [�0.0547, 0.1112] 0.0127 0.403 0.687 [�0.0493, 0.0747]

r2t 0.3277 3.180 0.001 [0.1257, 0.5296] 0.3746 5.298 0.000 [0.2361, 0.5132]

0.3251 4.681 0.000 [0.1890, 0.4612] 0.3250 6.500 0.000 [0.2270, 0.4230]

0.3231 5.810 0.000 [0.2141, 0.4321] 0.3145 7.704 0.000 [0.2345, 0.3945]

0.3211 6.740 0.000 [0.2277, 0.4145] 0.3164 8.948 0.000 [0.2471, 0.3857]

0.3147 7.437 0.000 [0.2317, 0.3976] 0.3059 9.673 0.000 [0.2439, 0.3679]

jrtj 0.6019 5.841 0.000 [0.3999, 0.8038] 0.6060 8.570 0.000 [0.4674, 0.7446]

0.5174 7.449 0.000 [0.3812, 0.6535] 0.5270 10.54 0.000 [0.4290, 0.6250]

0.5356 9.631 0.000 [0.4266, 0.6446] 0.5193 12.72 0.000 [0.4393, 0.5993]

0.5103 10.71 0.000 [0.4169, 0.6037] 0.5112 14.46 0.000 [0.4419, 0.5805]

0.5121 12.11 0.000 [0.4292, 0.5951] 0.5090 16.09 0.000 [0.4470, 0.5709]

Table A5

The estimates of d for the S&P 500 with m ¼ 50; 100; 150; 200; 250

d̂GPH
t p-value 95% CI d̂RH

t p-value 95% CI

rt 0.0606 0.588 0.557 [�0.1414, 0.2625] 0.0575 0.814 0.416 [�0.0811, 0.1961]

0.0375 0.537 0.591 [�0.0994, 0.1744] 0.0306 0.612 0.541 [�0.0674, 0.1286]

0.0287 0.515 0.606 [�0.0804, 0.1378] 0.0137 0.335 0.737 [�0.0663, 0.0937]

0.0232 0.488 0.626 [�0.0701, 0.1166] 0.0028 0.078 0.938 [�0.0665, 0.0721]

0.0155 0.367 0.714 [�0.0674, 0.0985] �0.0023 �0.072 0.943 [�0.0643, 0.0597]

r2t 0.2425 2.354 0.018 [0.0406, 0.4445] 0.2558 3.618 0.000 [0.1172, 0.3944]

0.2249 3.239 0.001 [0.0888, 0.3611] 0.2455 4.909 0.000 [0.1475, 0.3435]

0.1707 3.070 0.002 [0.0617, 0.2797] 0.1905 4.667 0.000 [0.1105, 0.2706]

0.1493 3.133 0.002 [0.0559, 0.2426] 0.1732 4.899 0.000 [0.1039, 0.2425]

0.1418 3.351 0.001 [0.0589, 0.2247] 0.1700 5.374 0.000 [0.1080, 0.2319]

jrtj 0.6241 6.057 0.000 [0.4221, 0.8260] 0.6139 8.682 0.000 [0.4753, 0.7525]

0.6096 8.778 0.000 [0.4735, 0.7458] 0.6084 12.17 0.000 [0.5104, 0.7064]

0.5530 9.943 0.000 [0.4440, 0.6620] 0.5152 12.62 0.000 [0.4352, 0.5952]

0.4888 10.26 0.000 [0.3954, 0.5822] 0.4856 13.74 0.000 [0.4163, 0.5549]

0.4515 10.67 0.000 [0.3686, 0.5344] 0.4659 14.73 0.000 [0.4039, 0.5279]

Table A6

Engle’s test statistics for the presence of ARCH/GARCH effects

Data Lag 1 Lag 2 Lag 5 Lag 10 Lag 50

DAX 30 234.5 440.9 620.5 713.4 809.1

FTSE 100 1415 1433 1462 1497 1596

NIKKEI 225 240.1 261.8 347.4 364.3 438.4

S&P 500 85.65 182.8 280.5 293.6 351.7
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Table A7

GARCH ð1; 1Þ parameter estimates

Data a� 103 b a0 � 104 a1 b1

DAX 30 0.655(0.161) 0.0335(0.0162) 0.048(0.004) 0.1185(0.0049) 0.8604(0.0071)

FTSE 100 0.514(0.120) 0.0404(0.0149) 0.023(0.003) 0.0966(0.0066) 0.8824(0.0085)

NIKKEI 225 0.751(0.138) 0.0415(0.0150) 0.023(0.003) 0.1392(0.0036) 0.8608(0.0046)

S&P 500 0.600(0.119) 0.0267(0.0154) 0.013(0.002) 0.0797(0.0020) 0.9114(0.0036)

Note: The numbers in parentheses are standard errors. This also holds for Table A8.

Table A8

FIGARCH ð1; d; 1Þ parameter estimates

Data a� 103 b a0 � 104 d f1 b

DAX 30 0.694(0.142) 0.0358(0.0144) 0.933(0.057) 0.0675(0.0129) 0.9608(0.0044) 0.9059(0.0088)

FTSE 100 0.528(0.118) 0.0459(0.0143) 0.673(0.093) 0.3270(0.0259) 0.0150(0.0556) 0.2559(0.0739)

NIKKEI 225 20.75(0.070) �0.0460(0.0010) 0.056(0.024) 0.4047(0.0046) 0.1454(0.0029) 0.7542(0.0027)

S&P 500 0.629(0.116) 0.0290(0.0158) 0.665(0.094) 0.3353(0.0202) 0.2765(0.0367) 0.5032(0.0447)

Table A9

The estimates of d for the MF model with m ¼ 50; 100; 150; 200; 250

d̂GPH
t p-value 95% CI Sig% d̂RH

t p-value 95% CI Sig%

rt �0.0500 �0.4856 0.4123 [�0.0564, �0.0436] 13.2 �0.0581 �0.8215 0.3318 [�0.0625, �0.0537] 26.3

�0.0892 �1.2842 0.2890 [�0.0935, �0.0849] 37.4 �0.0916 �1.8311 0.2251 [�0.0947, �0.0885] 47.6

�0.1111 �1.9976 0.2057 [�0.1146, �0.1077] 52.3 �0.1091 �2.6722 0.1513 [�0.1116, �0.1066] 63.6

�0.1133 �2.3783 0.1670 [�0.1163, �0.1104] 60.8 �0.1091 �3.0862 0.1161 [�0.1113, �0.1069] 71.0

�0.1065 �2.5173 0.1340 [�0.1091, �0.1039] 67.1 �0.1021 �3.2294 0.1027 [�0.1041, �0.1002] 76.3

r2t 0.7529 7.3072 0.0000 [0.7465, 0.7593] 100 0.7380 10.436 0.0000 [0.7336, 0.7423] 100

0.5876 8.4603 0.0000 [0.5833, 0.5919] 100 0.5964 11.929 0.0000 [0.5933, 0.5995] 100

0.4884 8.7822 0.0000 [0.4850, 0.4919] 100 0.5175 12.676 0.0000 [0.5150, 0.5200] 100

0.4258 8.9378 0.0000 [0.4228, 0.4288] 100 0.4698 13.288 0.0000 [0.4676, 0.4720] 100

0.3791 8.9610 0.0000 [0.3765, 0.3818] 100 0.4341 13.727 0.0000 [0.4321, 0.4360] 100

jrtj 0.8696 8.4395 0.0000 [0.8632, 0.8760] 100 0.8519 12.048 0.0000 [0.8475, 0.8563] 100

0.7068 10.176 0.0000 [0.7025, 0.7111] 100 0.7125 14.250 0.0000 [0.7094, 0.7156] 100

0.5975 10.741 0.0000 [0.5940, 0.6009] 100 0.6279 15.379 0.0000 [0.6253, 0.6304] 100

0.5235 10.987 0.0000 [0.5205, 0.5265] 100 0.5731 16.208 0.0000 [0.5709, 0.5753] 100

0.4683 11.066 0.0000 [0.4657, 0.4709] 100 0.5327 16.845 0.0000 [0.5307, 0.5347] 100
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Table A10

The GARCH ð1; 1Þ parameter estimates for the MF model

a� 103 b a0 � 104 a1 b

0.0740 0.0725 0.0078 0.0260 0.9738

(0.2300) (0.0139) (0.0035) (0.0032) (0.0033)

47 77.1 17.7 100 100

Note: The numbers in parentheses are the standard errors, and the numbers in the last row are the

percentages that the test statistics are significant at 5% level over 1000 independent simulations. This also

holds for Table A11.

Table A11

The FIGARCH ð1; d ; 1Þ parameter estimates for the MF model

a b a0 � 104 d f1 b

0.0137 0.0769 0.3620 0.3797 0.3439 0.7933

(0.0010) (0.0195) (0.6112) (0.0386) (0.0281) (0.0295)

41.2 72.6 35.6 87.6 83.1 98.5

Table A12

The Wald test of d with m ¼ 50; 100; 150; 200; 250

DAX 30 FTSE 100 NIKKEI 225 S&P 500

rt 1.806 0.599 0.019 0.953 4.000 2.235 1.153 2.674

3.960 9.610 0.228 2.202 8.273 7.044 3.323 5.973

8.679 23.84 0.171 2.786 11.76 14.88 6.322 9.059

9.681 20.92 0.847 5.133 12.03 16.50 8.223 9.992

12.56 26.61 4.397 9.423 10.16 13.20 8.318 9.974

r2t 9.347 20.79 21.63 39.12 17.04 26.42 24.56 46.52

2.733 7.773 19.56 36.99 14.27 29.46 27.23 49.25

1.933 9.966 18.87 37.28 8.839 24.76 32.65 64.24

1.325 8.781 18.67 36.48 4.838 18.78 33.74 70.20

0.009 3.937 12.47 29.32 2.318 16.46 31.47 69.85

jrtj 4.637 11.35 8.983 14.82 6.755 12.10 5.681 11.33

2.304 2.595 2.171 4.259 7.427 6.884 1.956 2.168

0.054 1.020 0.329 2.151 1.240 2.360 0.641 2.541

0.126 0.267 0.028 1.003 0.077 0.767 0.531 1.532

1.582 0.052 1.137 0.210 1.072 0.112 0.158 0.893
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