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ABSTRACT. This paper contributes to the development of the recent literature on the explana-

tion power and calibration issue of heterogeneous asset pricing models by presenting a simple

stochastic market fraction asset pricing model of two typesof traders (fundamentalists and trend

followers) under a market maker scenario. It seeks to explain aspects of financial market behav-

ior (such as market dominance, convergence of the market price to the fundamental price, and

under- and over-reaction) and to characterize various statistical properties (including the con-

vergence of the limiting distribution and autocorrelationstructure) of the stochastic model by

using the dynamics of the underlying deterministic system,traders’ heterogeneous behavior and

market fractions. A statistical analysis based on Monte Carlo simulations shows that the long-

run behavior, convergence of the market prices to the fundamental price, limiting distributions,

and various under and over-reaction autocorrelation patterns of returns can be characterized by

the stability and bifurcations of the underlying deterministic system. Our analysis underpins the

mechanisms on various market behaviors (such as under/over-reactions), market dominance and

stylized facts in high frequency financial markets.
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1. INTRODUCTION

Traditional economic and finance theory is based on the assumptions of investor homogene-

ity and the efficient market hypothesis. However, there is a growing dissatisfaction with models

of asset price dynamics, based on the representative agent paradigm, as expressed for exam-

ple by Kirman (1992), and the extreme informational assumptions of rational expectations. As

a result, the literature has seen a rapidly increasing number of heterogeneous agents models,

see recent survey papers by Hommes (2006) and LeBaron (2006).These models characterize

the dynamics of financial asset prices; resulting from the interaction of heterogeneous agents

having different attitudes to risk and having different expectations about the future evolution

of prices.1 For example, Brock and Hommes (1997, 1998) proposed a simpleAdaptive Belief

Systemto model economic and financial markets. Agents’ decisions are based upon predictions

of future values of endogenous variables whose actual values are determined by the equilibrium

equations. A key aspect of these models is that they exhibit feedback of expectations. Agents

adapt their beliefs over time by choosing from different predictors or expectations functions,

based upon their past performance as measured by the realized profits. The resulting dynamical

system is nonlinear and, as Brock and Hommes (1998) show, capable of generating the entire

zooof complex behavior from local stability to high order cycles and even chaos as various key

parameters of the model change. It has been shown (e.g. Hommes (2002)) that such simple

nonlinear adaptive models are capable of explaining important empirical observations, includ-

ing fat tails, clustering in volatility and long memory of real financial series. The analysis of the

stylized simple evolutionary adaptive system, and its numerical analysis provides insight into

the connection between individual and market behavior. Specifically, it provides insight into

whether asset prices in real markets are driven only by news or, are at least in part, driven by

market psychology.

The heterogeneous agents literature attempts to address two interesting issues among many

others. It attempts to explain various types of market behavior, and to replicate the well docu-

mented empirical findings of actual financial markets, the stylized facts. The recent literature

has demonstrated the ability to explain various types of market behavior. However, in relation

1See, e.g., Arthuret al. (1997), Brock and Hommes (1997, 2002), Brock and LeBaron (1996), Bullard and
Duffy (1999), Chen and Yeh (1997, 2002), Chiarella (1992), Chiarellaet al. (2002), Chiarella and He (2001,
2002, 2003b), Dacorognaet al. (1995), Day and Huang (1990), De Long et al (1990), Farmer andJoshi (2002),
Frankel and Froot (1987), Gaunersdorfer (2000), Hommes (2001, 2002), Iori (2002), LeBaron (2000, 2001, 2002),
LeBaronet al. (1999), Lux (1995, 1997, 1998) and Lux and Marchesi (1999))
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to the stylized facts, there is a gap between the heterogeneous agents models and observed em-

pirical findings. It is well known that most of the stylized facts can be observed only for high

frequency data (e.g. daily) and not for low frequency data (e.g. yearly). However, two unre-

alistic assumptions underpin this literature.2 The first is a risk-free rate of approximately 10

per-cent per trading period.3 Given that this rate is crucial for model calibration in generating

stylized facts4, it is obviously unrealistic. Second, the unrealistic nature of the assumed trading

period is problematic for the quantitative calibration to actual time series. As pointed out by

LeBaron (2002),‘This (unrealistic trading period) is fine for early qualitative comparisons with

stylized facts, but it is a problem for quantitative calibration to actual time series’.

Another more important issue for various heterogeneous asset pricing models is the interplay

of noisy and deterministic dynamics. Given that deterministic models are simplified versions

of realistic stochastic models and stability and bifurcation are the most powerful tools (among

other things) to investigate the dynamics of nonlinear system, it is interesting to know how de-

terministic properties influence the statistical properties, such as the existence and convergence

of stationary process, and the autocorrelation (AC) structure of the corresponding stochastic

system. In particular, we can ask if there is a connection between different types of attractors

and bifurcations of the underlying deterministic skeletonand various invariant measures, and

AC patterns of the stochastic system, respectively. This has the potential to provide insights

into the mechanisms of generating various invariant measures, AC patterns and stylized facts

in financial markets. These issues are investigated in a context of a simple heterogeneous asset

pricing model in this paper. At present, the mathematic theory has not yet been able to achieve

these tasks in general. Consequently, statistical analysisand Monte Carlo simulations is the

approach adopted in this paper.

2See, e.g., Arthuret al. (1997), Brock and Hommes (1997), Chen and Yeh (2002), Chiarella et al (2002), Chiarella
and He (2002, 2003b), Iori (2002), LeBaron (2002), LeBaronet al. (1999), Levyet al. (1994)).
3Apart fromrf = 1% in Gaunersdorfer (2000) and LeBaron (2001) andrf = 0.04% in Hommes (2002).
4In this literature, as risk-free rate of trading period decreases, demand on the risky asset increases. Consequently,
the price of the risky asset become rather larger numbers resulting sometimes in break-down in theoretic analysis
and overflows in numerical simulations. In addition, some ofinteresting dynamics disappear as the risk-free rate of
trading period decreases to realistic level (e.g. (5/250)%per day given a risk-free rate of 5% p.a. and 250 trading
days per year).
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This paper builds upon the existent literature by incorporating a realistic trading period5,

which eliminates the unrealistic risk-free rate assumption, whilst also introducing market frac-

tions of heterogeneous traders into a simple asset-pricingmodel. In this paper this model is

referred to as the Market Fraction (MF) Model. The model assumes three types of participants

in the asset market. This includes two groups of boundedly rational traders—fundamentalists

(also called informed traders) and trend followers (also called less informed traders or chartists),

and a market-maker. The aim of this paper is to show that in theMF model the long-run behavior

of asset prices and the autocorrelation structure of the stochastic system can be characterized

by the dynamics of the underlying deterministic system, traders’ behavior, and market frac-

tions. In addition, this paper also contributes to the literature how to use statistical analysis

based on Monte Carlo simulations to study the interplay of noise and deterministic dynamics

in the context of heterogeneous asset pricing models. The statistical analysis shows that the

long-run behavior and convergence of the market prices, andvarious under- and over-reaction

AC patterns of returns can be characterized by the stabilityand bifurcations of the underlying

deterministic system. Our analysis gives us some insights into the mechanism of various market

behavior (such as under/over-reactions), market dominance, and stylized facts in high frequency

financial markets.

This paper is organized as follows. Section 2 outlines a market fraction model of heteroge-

neous agents with the market clearing price set by a market maker, introduces the expectations

function and learning mechanisms of the fundamentalists and trend followers, and derives a full

market fraction model on asset price dynamics. Price dynamics of the underlying determinis-

tic model is examined in Section 3. Statistical analysis, based on Monte Carlo simulations, of

the stochastic model is given in Section 4. By using the concept of a random fixed point, we

examine the long-run behavior and convergence of the marketprice to the fundamental price

and to an invariant measure. By choosing different sets of parameters near different types of

bifurcation boundaries of the underlying deterministic system, we explore various under and

over-reaction AC patterns. Section 5 concludes and all proofs and additional statistical results

are included in the Appendices.

5In fact, the trading period of the model can be scaled to any level of trading frequency ranging from annually,
monthly, weekly, to daily. However, we focus on a daily trading period (i.e.K = 250) in this paper.
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2. HETEROGENEOUSBELIEFS, MARKET FRACTIONS AND MARKET-MAKER

Both empirical and theoretical studies show that market fractions among different types of

traders have an important role to play in financial markets. Empirical evidence from Taylor and

Allen (1992) suggests that at least 90% of the traders place some weights on technical analysis

at one or more time horizons. In particular, traders rely more on technical analysis, as opposed

to the fundamental analysis, at shorter time horizons. As the length of time horizons increases,

more traders rely on the fundamental rather than technical analysis. In addition, there is a certain

proportion of traders who do not change their strategies over all time horizons. Theoretically,

the study by Brock and Hommes (1997) shows that, when different groups of traders, such as

fundamentalists and chartists, having different expectations about future prices and dividends

compete between trading strategies and choose their strategy according to an evolutionaryfit-

ness measure, the corresponding deterministic system exhibits rational routes to randomness.

The adaptive switching mechanism proposed by Brock and Hommes (1997) is an important

element of the adaptive belief model. It is based on both afitness functionand a discrete choice

probability. In this paper, we take a simplified version of the Brock and Hommes’ framework.

The MF model assumes that the market fractions among heterogeneous agents are fixed para-

meters. Apart from mathematical tractability, this simplification is motivated as follows. First,

because of the amplifying effect of the exponential function used in the discrete choice prob-

ability, the market fractions become very sensitive to price changes and the fitness functions.

Therefore, it is not very clear to see how different group of traders do actually influence the mar-

ket price. Secondly, when agents switch intensively, it becomes difficult to characterize market

dominance when dealing with heterogeneous trading strategies. Thirdly, it is important to un-

derstand how the behaviors of different types of agents are linked to certain dynamics (such as

the autocorrelation structure we discuss later). Such an analysis becomes clear when we isolate

the market fractions from switching. In doing so, we can examine explicitly the influence of the

market fractions on the price behavior.

The set up follows the standard discounted value asset pricing model with heterogeneous

agents, which is closely related to the framework of Day and Huang (1990), Brock and Hommes

(1997, 1998) and Chiarella and He (2002, 2003b). The market clearing price is arrived at via a

market maker scenario rather than the Walrasian scenario. We focus on a simple case in which
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there are three classes of participants in the asset market:two groups of traders, fundamentalists

and trend followers, and a market maker, as described in the following discussion.

2.1. Market Fractions and Market Clearing Price under a Market Maker. Consider an

asset pricing model with one risky asset and one risk free asset. It is assumed that the risk free

asset is perfectly elastically supplied at a gross return ofR = 1 + r/K, wherer stands for a

constant risk-free rate per annum andK stands for the trading frequency measured in a year.

Typically, K = 1, 12, 52 and250 for of trading period of a year, a month, a week and a day,

respectively. To focus on the stylized facts observed from daily price movement in financial

markets, we selectK = 250 in our following discussion.

Let Pt be the (ex dividend) price per share of the risky asset at timet and {Dt} be the

stochastic dividend process of the risky asset. Then the wealth of a typical trader-h at t + 1 is

given by

Wh,t+1 = RWh,t + [Pt+1 + Dt+1 − RPt]zh,t, (2.1)

whereWh,t andzh,t are the wealth and the number of shares of the risky asset purchased by

trader-h at t, respectively. LetEh,t andVh,t be thebeliefsof typeh traders about the conditional

expectation and variance of quantities att + 1 based on their information set at timet. Denote

by Rt+1 the excess capital gain on the risky asset att + 1, that is

Rt+1 = Pt+1 + Dt+1 − R Pt. (2.2)

Then it follows from (2.1) and (2.2) that

Eh,t(Wt+1) = RWt + Eh,t(Rt+1)zh,t, Vh,t(Wt+1) = z2

h,tVh,t(Rt+1). (2.3)

Assume that trader-h has a constant absolute risk aversion (CARA) utility functionwith the risk

aversion coefficientah (e.g.Uh(W ) = −e−ahW ). By expected utility maximization, trader-h’s

optimal demand on the risky assetzh,t is given by

zh,t =
Eh,t(Rt+1)

ahVh,t(Rt+1)
. (2.4)

Given the heterogeneity and the nature of asymmetric information among traders, we con-

sider two most popular trading strategies corresponding totwo types of boundedly rational

traders—fundamentalists and trend followers, and their beliefs will be defined in the following
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discussion. Assume the market fraction of the fundamentalists and trend followers isn1 andn2

with risk aversion coefficienta1 anda2, respectively. Letm = n1 − n2 ∈ [−1, 1]. Obviously,

m = 1 and−1 correspond to the cases when all the traders are fundamentalists or trend fol-

lowers, respectively. Assume a zero supply of outside shares. Then, using (2.4), the aggregate

excess demand per trader (ze,t) is given by

ze,t ≡ n1z1,t + n2z2,t =
1 + m

2

E1,t[Rt+1]

a1V1,t[Rt+1]
+

1 − m

2

E2,t[Rt+1]

a2V2,t[Rt+1]
. (2.5)

To complete the model, we assume that the market is cleared bya market maker. The role

of the market maker is to take a long (whenze,t < 0) or short (whenze,t > 0) position so as to

clear the market. At the end of periodt, after the market maker has carried out all transactions,

he or she adjusts the price for the next period in the direction of the observed excess demand.

Let µ be the speed of price adjustment of the market maker (this canalso be interpreted as the

market aggregate risk tolerance). To capture unexpected market news or noise created bynoise

traders, we introduce a noisy demand term̃δt which is an i.i.d. normally distributed random

variable6 with δ̃t ∼ N (0, σ2
δ ). Based on these assumptions, the market price is determined by

Pt+1 = Pt + µze,t + δ̃t.

From (2.5), this becomes

Pt+1 = Pt +
µ

2

[

(1 + m)
E1,t[Rt+1]

a1V1,t[Rt+1]
+ (1 − m)

E2,t[Rt+1]

a1V2,t[Rt+1]

]

+ δ̃t. (2.6)

It should be pointed out that the market maker behavior in this model is highly stylized. For

instance, the inventory of the market maker built up as a result of the accumulation of various

long and short positions is not considered. This could affect his or her behavior and the market

maker price setting role in (2.6) could be a function of the inventory. Allowingµ to be a function

of inventory would be one way to model such behavior. We should also seek to explore the

micro-foundations of the coefficientµ. Such considerations are left to future research.

6In this paper, we assume a constant volatility noisy demand and the volatility is related to an average fundamental
price level. This noisy demand may also depend on the market price. Theoretically, how the price dynamics are
influenced by adding different noisy demand is still a difficult problem. Here, we focus on the constant volatility
noisy demand case and use Monte Carlo simulations and statistical analysis to gain some insights into this problem.
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2.2. Fundamentalists. Denote byFt = {Pt, Pt−1, · · · ; Dt, Dt−1, · · · } the common informa-

tion set formed at timet. We assume that, apart from the common information set, the funda-

mentalists havesuperiorinformation on the fundamental value,P ∗

t , of the risky asset, which is

assumed to follow a stationary random walk process7

P ∗

t+1 = P ∗

t [1 + σǫǫ̃t], ǫ̃t ∼ N (0, 1), σǫ ≥ 0, P ∗

0 = P̄ > 0, (2.7)

whereǫ̃t is independent of the noisy demand processδ̃t. This specification ensures that neither

fat tails nor volatility clustering are brought about by thefundamental price process. Hence,

emergence of any autocorrelation pattern of the return of the risky asset in our late discussion

would be driven by the trading process itself.

For the fundamentalists, because they realize the existence of non-fundamental traders, such

as trend followers to be introduced in the following discussion, they believe that the stock price

may be driven away from the fundamental value. More precisely, we assume that the conditional

mean and variance of the fundamental traders are, respectively

E1,t(Pt+1) = Pt + α(P ∗

t+1 − Pt), V1,t(Pt+1) = σ2

1, (2.8)

whereσ2
1 is a constant, andα ∈ [0, 1] is the weight on the fundamental price which measures

the speed of price adjustment of the fundamentalists towardthe fundamental value. That is,

the expected price of the fundamentalists is a weighted average of the fundamental price and

the latest market price, while the variance of the price is a constant. In general, the fundamen-

tal traders believe that markets are efficient and prices converge to the fundamental value. A

high (low) weight ofα leads to a quick (slow) adjustment of their expected price towards the

fundamental price.

2.3. Trend followers. Unlike the fundamentalists, trend followers are technicaltraders who

believe the future price change can be predicted from various patterns or trends generated from

the history of prices. The trend followers are assumed to extrapolate the latest observed price

change over prices’ long-run sample mean and to adjust theirvariance estimate accordingly.

More precisely, their conditional mean and variance are assumed to satisfy

E2,t(Pt+1) = Pt + γ(Pt − ut), V2,t(Pt+1) = σ2

1 + b2vt, (2.9)

7As we know that the fundamental value driven by this random walk process can be negative.
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whereγ, b2 ≥ 0 are constants, andut andvt are sample mean and variance, respectively, which

may follow some learning processes. The parameterγ measures the extrapolation rate and high

(low) values ofγ correspond to strong (weak) extrapolation from the trend followers. The coef-

ficientb2 measures the influence of the sample variance on the conditional variance estimated by

the trend followers who believe in a more volatile price movement. Various learning schemes8

can be used to estimate the sample meanut and variancevt. In this paper we assume that

ut = δut−1 + (1 − δ)Pt, (2.10)

vt = δvt−1 + δ(1 − δ)(Pt − ut−1)
2, (2.11)

whereδ ∈ [0, 1] is a constant. This is a limitinggeometric decay processwhen the memory lag

length tends to infinity.9 Basically, a geometric decay probability process(1−δ){1, δ, δ2, · · · } is

associated to the historical prices{Pt, Pt−1, Pt−2, · · · }. The parameterδ measures the geometric

decay rate. Forδ = 0, the sample meanut = Pt, which is the latest observed price, whileδ =

0.1, 0.5, 0.95 and0.999 gives a half life of 0.43 day, 1 day, 2.5 weeks and 2.7 years, respectively.

The selection of this process is two fold. First, traders tend to put a higher weight to the most

recent prices and lesser weight to the more remote prices when they estimate the sample mean

and variance. Secondly, we believe that this geometric decay process may contribute to certain

autocorrelation patterns, even the long memory feature observed in real financial markets. In

addition, it has the mathematical advantage of analytical tractability.

2.4. The Complete Stochastic Model. To simplify our analysis, we assume that the dividend

processDt follows a normal distributionDt ∼ N (D̄, σ2
D), the expected long-run fundamental

valueP̄ = D̄/(R − 1), and the unconditional variances of price and dividend overthe trading

8For related studies on heterogeneous learning in asset pricing models with heterogeneous agents who’s conditional
mean and variance follow various learning processes, we refer to Chiarella and He (2003a, 2004).
9See Chiarellaet. al.(2006) for the proof.
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period are related byσ2
D = qσ2

1.10 Based on assumptions (2.8)-(2.9),

E1,t(Rt+1) = Pt + α(P ∗

t+1 − Pt) + D̄ − R Pt = α(P ∗

t+1 − Pt) − (R − 1)(Pt − P̄ ),

V1,t(Rt+1) = (1 + q)σ2

1

and hence the optimal demand for the fundamentalists is given by

z1,t =
1

a1(1 + q)σ2
1

[α(P ∗

t+1 − Pt) − (R − 1)(Pt − P̄ )]. (2.12)

In particular, whenP ∗

t = P̄ ,

z1,t =
(α + R − 1)(P̄ − Pt)

a1(1 + q)σ2
1

. (2.13)

Similarly, from (2.9), (usingD̄ = (R − 1)P̄ )

E2,t(Rt+1) = Pt + γ(Pt − ut) + D̄ − R Pt = γ(Pt − ut) − (R − 1)(Pt − P̄ ),

V2,t(Rt+1) = σ2

1(1 + q + b vt),

whereb = b2/σ
2
1. Hence the optimal demand of the trend followers is given by

z2,t =
γ(Pt − ut) − (R − 1)(Pt − P̄ )

a2σ2
1(1 + q + b vt)

. (2.14)

Subsisting (2.12) and (2.14) into (2.6), the price dynamicsunder a market maker is determined

by the following 4-dimensional stochastic difference system (SDS hereafter)



































































Pt+1 = Pt +
µ

2

[

1 + m

a1(1 + q)σ2
1

[α(P ∗

t+1 − Pt) − (R − 1)(Pt − P̄ )]

+ (1 − m)
γ(Pt − ut) − (R − 1)(Pt − P̄ )

a2σ2
1(1 + q + b vt)

]

+ δ̃t,

ut = δut−1 + (1 − δ)Pt,

vt = δvt−1 + δ(1 − δ)(Pt − ut−1)
2,

P ∗

t+1 = P ∗

t [1 + σǫǫ̃t].

(2.15)

10 In this paper, we chooseσ2

1
= σ2

P̄
/K andq = r2. This can be justified as follows. LetσP̄ be the annual volatility

of Pt andD̄t = rPt be the annual dividend. Then the annual variance of the dividend σ̄2

D = r2σ2

P̄
. Therefore

σ2

D = σ̄2

D/K = r2σ2

P̄
/K = r2σ2

1
. For all numerical simulations in this paper, we chooseP̄ = $100, r = 5% p.a.

σ = 20% p.a.,K = 250. Correspondingly,R = 1 + 0.05/250 = 1.0002, σ2

1
= (100 × 0.2)2/250 = 8/5 and

σ2

D = 1/250.
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It has been widely accepted that stability and bifurcation theory is a powerful tool in the

study of asset-pricing dynamics (see, for example, Day and Huang (1990), Brock and Hommes

(1997, 1998) and Chiarella and He (2002, 2003b)). However, the question how the stability

and various types of bifurcation of the underlying deterministic system affect the nature of the

stochastic system, including stationarity, distributionand statistic properties of returns, is not

very clear at the current stage. Although the techniques discussed in Arnold (1998) may be

useful in this regard, the mathematical analysis of nonlinear stochastic dynamical system is still

difficult in general. In this paper, we consider first the corresponding deterministic skeleton

of the stochastic model by assuming that the fundamental price is given by its long-run value

P ∗

t = P̄ and there is no demand shocks, i.e.σδ = σǫ = 0. We then conduct a stochastic analysis

of the stochastic model through Monte Carlo simulation.

3. DYNAMICS OF THE DETERMINISTIC MODEL

When the long run fundamental price is a constant and there is no noisy demand, the 4-

dimensional stochastic system (2.15) reduces to the following 3-dimensional deterministic dif-

ference system (DDS hereafter)































Pt+1 = Pt + µ
1 + m

2

[

(1 − α − R)(Pt − P̄ )

a1(1 + q)σ2
1

]

+
1 − m

2

[

γ(Pt − ut) − (R − 1)(Pt − P̄ )

a2σ2
1(1 + q + b vt)

]

,

ut = δut−1 + (1 − δ)Pt,

vt = δvt−1 + δ(1 − δ)(Pt − ut−1)
2.

(3.1)

The following result on the existence and uniqueness of steady state of the deterministic system

is obtained.

Proposition 3.1. For DDS (3.1),(Pt, ut, vt) = (P̄ , P̄ , 0) is the unique steady state.

Proof. See Appendix A.1. �

We call this unique steady state the fundamental steady state. In the following discussion, we

focus on the stability and bifurcation of the fundamental steady state of the deterministic model.

We first examine two special casesm = 1 andm = −1, before we deal with the general case

m ∈ (−1, 1).
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3.1. The case m = 1. In this case, the following result on the global stability and bifurcation

is obtained.

Proposition 3.2. For DDS (3.1), if all the traders are fundamentalists, i.e.m = 1, then the

fundamental pricēP is globally asymptotically stable if and only if

0 < µ < µ0,1 ≡
2a1(1 + q)σ2

1

(R + α − 1)
. (3.2)

In addition,µ = µ0,1 leads to a flip bifurcation withλ = −1, where

λ = 1 − µ
R + α − 1

a1(1 + q)σ2
1

. (3.3)

Proof. See Appendix A.2. �

The stability region of the fundamental pricēP is plotted in(α, µ) plane in Fig.A.1 in Ap-

pendix A.2, whereµ0,1(1) = [2a1(1+ q)σ2
1]/R for α = 1 andµ0,1(0) = [2a1(1+ q)σ2

1]/(R−1)

for α = 0. The stability condition (3.2) is equivalent toµ(R+α−1) < 2a1(1+ q)σ2
1, implying

that the fundamental price is locally stable as long as the reactions from both the market maker

and the fundamentalists are balanced (i.e. a high (low)µ is balanced by a low (high)α so that

the productµ(R + α− 1) is below the constant2a1(1 + q)σ2
1). Given the stabilizing role (to the

fundamental price) of the fundamentalists, over-reactions from either the fundamentalists or the

market maker will push the market price to flipping around thefundamental price. Numerical

simulations indicate that the over-reaction from either the market maker or the fundamentalists

can push the price to explode (through the flip bifurcation).

3.2. The case m = −1. Similarly, we obtain the following stability and bifurcation result when

all traders are trend followers.

Proposition 3.3. For DDS (3.1), if all the traders are trend followers (that ism = −1), then

(1) for δ = 0, the fundamental steady state is globally asymptotically stable if and only if

0 < µ < Q/(R − 1), whereQ = 2a2(1 + q)σ2
1. In addition, a flip bifurcation occurs

along the boundaryµ = Q/(R − 1);

(2) for δ ∈ (0, 1), the fundamental steady state is stable for

0 < µ <







µ̄1 0 ≤ γ ≤ γ̄0

µ̄2, γ̄0 ≤ γ,
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where

µ̄1 =
Q

(R − 1) − γ2δ/(1 + δ)
, µ̄2 =

(1 − δ)Q

2δ[γ − (R − 1)]
, γ̄0 = (R − 1)

(1 + δ)2

4δ
.

In addition, a flip bifurcation occurs along the boundaryµ = µ̄1 for 0 < γ ≤ γ̄0 and a

Hopf bifurcation occurs along the boundaryµ = µ̄2 for γ ≥ γ̄0.

Proof. See Appendix A.3. �

The local stability regions and bifurcation boundaries areindicated in Fig. A.2 (a) forδ = 0

and (b) forδ ∈ (0, 1) in Appendix A.3, wherēγ2 = (1 + δ)(R − 1)/(2δ) is obtained by let-

ting µ̄2 = Q/(R − 1). Given thatR = 1 + r/K is very close to 1, the value ofµ along

the flip boundary is very large and̄γo is close to 0. This implies that, forδ = 0, the funda-

mental price is stable for a wide range of values ofµ. For δ ∈ (0, 1), the stability region is

mainly bounded by the Hopf bifurcation boundary. Along the Hopf boundary,µ decreases as

γ increases, implying that the stability of the steady state is maintained when the speed of the

market maker and the extrapolation of the trend followers are balanced. When the fundamental

price becomes unstable, the Hopf bifurcation implies that the market price fluctuates (quasi) pe-

riodically around the fundamental price. Intuitively, extrapolation of the trend followers results

a sluggish reaction of the market price to the fundamental price. The interplay of such sluggish

reaction from the trend followers and the stabilizing forcefrom the fundamentalists leads the

market price fluctuate around the fundamental price. Numerical simulations indicate that, near

the Hopf bifurcation boundary, the price either converges periodically to the fundamental value

or oscillates regularly or irregularly. In addition, the Hopf bifurcation boundary shifts to the left

whenδ increases. This implies that the steady state is stabilizing when more weights are given

to the most recent prices.

3.3. The general case m ∈ (−1, 1). We now consider the complete market fraction model

DDS with both fundamentalists and trend followers by assuming m ∈ (−1, 1). Let a = a2/a1

be the ratio of the absolute risk aversion coefficients. It turns out that the stability and bifurcation

of the fundamental steady state are different from the previous two special cases and they are

determined jointly by the geometric decay rate and extrapolation rate of the trend followers, the

speed of the price adjustment of the fundamentalists towards the fundamental steady state, and

the speed of adjustment of the market maker towards the market aggregate demand.



14 HE AND LI

Proposition 3.4. For DDS (3.1) withm ∈ (−1, 1),

(1) if δ = 0, the fundamental steady state is stable for0 < µ < µ∗, where

µ∗ =
2Q

(R − 1)(1 − m) + a(R + α − 1)(1 + m)
.

In addition, a flip bifurcation occurs along the boundaryµ = µ∗ with α ∈ [0, 1];

(2) if δ ∈ (0, 1), the fundamental steady state is stable for

0 < µ <







µ1 0 ≤ γ ≤ γ0

µ2, γ0 ≤ γ,

where

µ1 =
1 + δ

δ

Q

1 − m

1

γ2 − γ
, µ2 =

1 − δ

δ

Q

1 − m

1

γ − γ1

,

γ1 = (R − 1) + a(R + α − 1)
1 + m

1 − m
, γ0 =

(1 + δ)2

4δ
γ1, γ2 =

1 + δ

2δ
γ1.

In addition, a flip bifurcation occurs along the boundaryµ = µ1 for 0 < γ ≤ γ0 and a

Hopf bifurcation occurs along the boundaryµ = µ2 for γ ≥ γ0.

Proof. See Appendix A.3. �

Flip Boundaryµ = µ1

Hopf Boundaryµ = µ2

γ

µ

γ1 γ0 γ2

µ̄

µ̄0

FIGURE 3.1. Stability region and bifurcation boundaries form ∈ (−1, 1) and
δ ∈ (0, 1).

The model with the fundamentalists only can be treated as a degenerated case of the complete

model withδ = 0. Forδ ∈ (0, 1), the fundamental steady state becomes unstable through either
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flip or Hopf bifurcation, indicated in Fig.3.1, where

µ̄0 =
2

1 − δ
µ̄, µ̄ =

2Q

(R − 1)(1 − m) + a(R + α − 1)(1 + m)
.

Variations of the stability regions and their bifurcation boundaries characterize different impacts

of different types of trader on the market price behavior, summarized as follows.

The market fractionhas a great impact on the shape of the stability region and itsboundaries.

It can be verified thatγ1, γ0, γ2 andµ1, µ2 increase asm increases. This observation has two

implications: (i) the local stability region of the parameters(γ, µ) is enlarged as the fraction of

the fundamentalists increases and this indicates a stabilizing effect of the fundamentalists; (ii)

the flip (Hopf) bifurcation boundary becomes dominant as thefraction of the fundamentalists

(trend followers) increases, correspondingly, the marketprice displays different behavior near

the bifurcation boundaries. Numerical simulations of the nonlinear system (3.1) show that the

price becomes explosive near the flip bifurcation boundary,but converges to either periodic or

quasi-periodic cycles near the Hopf bifurcation boundary.

The speed of price adjustment of the fundamentalists towards the fundamental valuehas an

impact that is negatively correlated to the market fraction. This observation comes from the fact

that, asα increases,γ1 and henceγ0 andγ2 decrease. In other words, an increase (decrease) of

the fundamentalists fraction is equivalent to a decrease (increase) of the price adjustment speed

of the fundamentalists toward the fundamental value.

The memory decay rateof the trend followers has a similar impact on the price behavior as

the speed of the price adjustment of the fundamentalists does. This is because, asδ decreases,

both γ0 andγ2 increase. In particular, asδ → 0, thenγ0, γ2 → +∞ and the stability and

bifurcation is then characterized by the model with the fundamentalists only. On the other hand,

asδ → 1, bothγ0 andγ2 tend toγ1 whilst µ̄0 tends to infinity and the stability and bifurcation

are then characterized by the model with the trend followersonly. In addition,µ̄o increases as

δ decreases, implying the steady state is stabilizing as trend followers put more weights on the

more recent prices.

The risk aversion coefficientshave different impact on the price behavior, depending on the

relative risk aversion ratio. Note that̄µ, and hencēµ0, increases fora = a2/a1 < a∗ and

decreases fora > a∗, wherea∗ = (R − 1)/(R + α − 1) ∈ (1 − 1/R, 1]. Hence the local
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stability region is enlarged (reduced) when the trend followers are less (more) risk averse than

the fundamentalists in the sense ofa2 < a∗a1 (a2 > a∗a1).

Overall, in terms of the local stability and bifurcation of the fundamental steady state, a sim-

ilar effect happens for either a high (low) geometric decay rate, or a high (low) market fraction

of the trend followers, or a high (low) speed of the price adjustment of the fundamentalists to-

wards the fundamental value. This observation makes us concentrate our statistical analysis of

the stochastic model (2.15) onm (the market fraction) andα (the speed of the price adjustment

of the fundamentalists toward the fundamental value).

4. STATISTICAL ANALYSIS OF THE STOCHASTIC MODEL

In this section, by using numerical simulations, we examinevarious aspects of the price

dynamics of the stochastic heterogeneous asset pricing model (2.15) where both the noisy fun-

damental price and noisy demand processes are presented. The analysis is conducted by estab-

lishing a connection of the price dynamics between SDS (2.15) and its underlying DDS (3.1).

In so doing, we are able to obtain some theoretical insights into the generating mechanisms of

various statistical properties, including those econometric properties and stylized facts observed

in high frequency financial time series.

Our analysis is conducted as follows. As a benchmark, we firstbriefly review the stylized

facts based on the S&P 500. Secondly, we study the connectionbetween the limiting behavior of

the stochastic model SDS and the stable attractors of the deterministic shell DDS. This limiting

behavior is studied from two different aspects: dynamical behavior and limiting distribution.

To study the dynamical behavior, we use the concept of randomfixed point to examine the

convergence of the market price series in the long-run. The limiting behavior can also be studied

by examining the invariant distribution properties from the observed time series. It is found that

the asset prices of SDS (2.15) converge to the random fixed point when the DDS (3.1) has

either a stable steady state or a stable attractor. When the price of DDS explodes, the price

series of SDS does not converge to a random fixed point, but it does converge to an invariant

distribution. Thirdly, we use Monte Carlo simulations to conduct a statistical analysis and test

on the convergence of the market prices to the fundamental price. It is commonly believed that

the market price is mean-reverting to the fundamental pricein the long-run, but it can deviate

from the fundamental price in the short-run. By using numerical simulation, we analyze market
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conditions under which this is hold. Finally, by examining the autocorrelation (AC) structure

and invariant distribution of (relative) returns near different types of bifurcations, we study the

generating mechanism of different AC patterns. Most of our results are very intuitive and can

be explained by various behavioral aspects of the model, including the mean reverting of the

fundamentalists, the extrapolation of the trend followers, the speed of price adjustment of the

market maker, and the market dominance. The statistical analysis and tests are based on Monte

Carlo simulations.

4.1. Financial Time Series and Stylized Facts. As a benchmark, we include time series plots

on prices and returns for the S&P 500 from Aug. 10, 1993 to July24, 2002 and the correspond-

ing density distributions, autocorrelation coefficients (ACs) of the returns, the absolute returns

and the squared returns, and summary statistics of the returns in Appendix B. They share some

common stylized facts in high-frequency financial time series, including excess volatility (rela-

tive to the dividends and underlying cash flows), volatilityclustering (high/low fluctuations are

followed by high/low fluctuations), skewness (either negative or positive) and excess kurtosis

(compared to the normally distributed returns), long rangedependence (insignificant ACs of

returns, but significant and decaying ACs for absolute and squared returns), etc. For a com-

prehensive discussion of stylized facts characterizing financial time series, we refer to Pagan

(1996) and Lux (2004).

Recent structural models on asset pricing and heterogeneousbeliefs have shown a relatively

well understood mechanism of generating volatility clustering, skewness and excess kurtosis.

However, these are less clear on the mechanism of generatinglong-range dependence.11 In

addition, there is a lack of statistical analysis and tests on these mechanisms. Our statistical

analysis is based on Monte Carlo simulations, aiming to establish a connection between vari-

ous AC patterns of the SDS and the bifurcation of the underlying DDS. Such a connection is

necessary to understand the mechanism of generating stylized facts, to replicate econometric

properties of financial time series, and to calibrate the model to financial data.

In the following discussion, we choose the annual volatility of the fundamental price to be

20% (henceσǫ = (20/
√

K)% with K = 250) and the volatility of the noisy demandσδ = 1,

which is about 1% of the average fundamental price levelP̄ = $100. For all of the Monte Carlo

11See Lux (2004) for a recent survey on possible mechanisms generating long range dependence, including coex-
istence of multiple attractors and multiplicative noise process.
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simulation, we run 1,000 simulations over 6,000 time periods and discard the first 1,000 time

periods to wash out possible initial noise effects. Each simulation builds on two independent

sets of random numbers, one is for the fundamental price and the other is for the noisy demand.

The draws are i.i.d. across the 1,000 simulations, but the same sets of draws are used for

different scenarios with different sets of parameters.

4.2. Random Fixed Point and Limiting Behavior. One of the primary objectives of this pa-

per is to analyze the limiting behavior of SDS (2.15). For DDS(3.1), the limiting behavior is

characterized by either stable fixed points or various stable attractors. For a stochastic dynamic

system, the limiting behavior is often characterized by stationarity and invariant probability dis-

tributions. We examine invariant distribution propertiesof SDS when the prices of DDS either

converge to a stable attractor (steady state or closed cycle) or explode.

On the other hand, as pointed out in Böhm and Chiarella (2005), the invariance distribu-

tion does not provide information about the stability of a stationary solution generated by the

stochastic difference system. The theory of random dynamical system (e.g. Arnold (1998))

provides the appropriate concepts and tools to analyze sample paths and investigate their limit-

ing behavior. The central concept is that of arandom fixed point12 and its asymptotic stability,

which are generalizations of the deterministic fixed point and its stability. Intuitively, a random

fixed point corresponds to a stationary solution of a stochastic difference system like (2.15) and

the asymptotic stability implies that sample paths converge to the random fixed point wise for

all initial conditions of the system. We are interested in the existence and stability of a random

fixed point of SDS (2.15) when the deterministic DDS (3.1) displays a stable attractor. Since

SDS (2.15) is nonlinear, a general theory on the existence and stability of a random fixed point

is not yet available and we conduct our analysis by numericalsimulations.

For illustration, we choose the parameters as follows

γ = 2.1, δ = 0.85, µ = 0.2, m = 0, w1,0 = 0.5 and α = 1, 0.5, 0.1, 0. (4.1)

Recall thatm = 0 implies that there are equal numbers of fundamentalists andchartists in the

market. For the DDS (3.1) with the set of parameters (4.1), applying Proposition 3.4 implies that

12We refer to Arnold (1998) for mathematical definitions of random dynamical systems and of stable random
fixed points and B̈ohm and Chiarella (2005) for economical applications to asset pricing with heterogeneous mean
variance preferences.
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the fundamental value is locally asymptotically stable forα = 1 and unstable forα = 0.5, 0.1, 0.

Our numerical simulations results for the DDS (3.1) with different values ofα are illustrated in

Fig. 4.1. Fig. 4.1 (a) shows the time series of prices with different initial values forα = 0.1, 0.5

and1, Fig. 4.1 (b) shows the corresponding limiting phase plots in terms of(Pt, ut), and Fig.

4.1 (c) shows the limiting probability distributions of theprices forα = 0.1 and0.5 over time

period fromt = 1, 001 to t = 10, 000. For α = 0, the prices explode. One can see that,

for α = 1, the market prices with different initial values converge to the fundamental price.

However, forα = 0.5 and 0.1, with different initial values, prices do not converge to each other,

but converge to the same quasi-periodic cycle (this is demonstrated by the closed orbit in the

phase plots). In other words, the prices with different initial values converge to each other in

limiting distribution, as indicated by the price probability limiting distributions in Fig. 4.1 (c).

0 100 200 300 400 500 600 700 800

100

105

α=0.1

0 100 200 300 400 500 600 700 800

100.0

102.5
α=0.5

0 100 200 300 400 500 600 700 800

100.0

102.5

105.0

107.5

α=1

96 98 100 102 104
96

98

100

102

104

alpha=0.1

alpha=0.5

 

96 97 98 99 100 101 102 103 104

0.1

0.2

Density

α=0.1

96 97 98 99 100 101 102 103 104

0.25

0.50

0.75 α=0.5

(a) (b) (c)

FIGURE 4.1. Price time series with different initial values forα = 0.1, 0.5 and
1 (a) and phase plots of(Pt, ut) (b) and limiting probability distributions of the
prices forα = 0.1 and0.5.

For the parameter set (4.1), Fig.4.2 shows the price dynamics of the corresponding SDS

(2.15) with four different values ofα = 1, 0.5, 0.1, 0 and (arbitrarily) different initial conditions

but with a fixed set of noisy fundamental value and demand processes. It is found that, for

α = 1, 0.5 and0.1, respectively, there exists a random fixed point and prices with different

conditions converge to the fixed random point in the long run.In fact, the convergence only

takes about 50, 100 and 400 time periods forα = 1, 0.5 and 0.1, respectively. However, there

is no such stable random fixed point forα = 0 and prices with different initial conditions

lead to different random sample paths. In fact, the sample paths are shifted by different initial
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conditions. This result is very interesting. Forα = 1, the prices of the DDS with different

initial values converge to the stable steady state, while the prices of the SDS with different

initial values converge to a random fixed point. Forα = 0.5 and 0.1, the prices of the DDS with

different initial values do not converge to each other, while the prices of the SDS with different

initial values converge to a random fixed point.
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FIGURE 4.2. Price convergence withα=1 (a); 0.5 (b); 0.1 (c); and 0 (d) for
different initial conditions.

The long-run behavior can also be characterized by the limiting probability distribution, this

is given in Fig. 4.3 for different values ofα. In Fig. 4.3 (a), the limiting probability distribu-

tions of the market prices and the underlying fundamental price over time periodt = 1, 001 to

t = 10, 000 for α = 1, 0.9, 0.5, 0.1, 1 are plotted. The distributions look very similar to the one

for the fundamental price forα = 1, 0.9, 0.5, 0.1, but different forα = 0 (in which the prices of

the DDS explode). In Fig. 4.3 (b), we observe a similar feature for the limiting return distribu-

tions. However, unlike the price distributions, the returndistributions forα = 1, 0.9, 0.5, 1 are

very different from that for the fundamental price, they allshare some non-normality features,

including skewness and high kurtosis, as indicated by the results on return statistics and nor-

mality tests in Table 4.1. Therefore, we obtain stable invariant distribution (characterized by the
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α = 1 α = 0.9 α = 0.5 α = 0.1 α = 0 r∗t
Mean -7.64E-06 -9.75E-06 -1.89E-05 -3.38E-05 0.001124 1.60E-07

Median -8.90E-05 -7.07E-05 -0.000112 -0.000103 -3.01E-06 0.000114
Maximum 0.073622 0.072503 0.070621 0.071766 5.090196 0.045078
Minimum -0.063119 -0.064302 -0.072816 -0.090166 -4.269424 -0.045625
Std. Dev. 0.013236 0.013129 0.012717 0.012432 0.101814 0.012689
Skewness 0.119060 0.117119 0.095103 0.038494 17.46148 -0.014001
Kurtosis 5.061570 5.098182 5.291521 5.777193 1526.675 2.973831

Jarque-Bera 1794.489 1857.181 2203.019 3216.136 9.68E+08 0.612037
Probability 0.000000 0.000000 0.000000 0.000000 0.000000 0.736373

Sum -0.076388 -0.097484 -0.189223 -0.338318 11.23968 0.001602
Sum Sq. Dev. 1.751808 1.723556 1.617170 1.545346 103.6512 1.609849

TABLE 4.1. Summary statistics of returns forα = 1, 0.9, 0.5, 0.1, 0 and that
for the fundamental price.

stable random fixed point) for the SDS when the DDS displays stable attractors. Forα = 0, the

price of the DDS explodes, while the prices of the SDS with different initial values stabilize the

price process to different random paths. However, they all converge to the same probability dis-

tribution, as indicated in Fig.4.3 (b). This analysis illustrates different characteristics between a

stable random fixed point and a stable invariance distribution.
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FIGURE 4.3. Limiting probability distributions of prices (a) and returns (b) for
α = 0, 0.1, 0.5 and1.
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In fact, the above result holds for other selections of parameters. Theoretically, how the

stability of the deterministic system and the corresponding stochastic system are related is a

difficult problem in general.13

4.3. Convergence of Market Price to the Fundamental Value. We now turn to the relation

between the market price and the fundamental price. It is commonly believed that the market

price is mean-reverting to the fundamental price in the long-run, but it can deviate from the

fundamental price in the short-run. The following discussion indicates that this is true under

certain market conditions.

As we know from the local stability analysis of DDS (3.1) an increase inα has a similar effect

as an increase inm. The previous discussion illustrates that, for fixedm = 0, asα increases, the

speed of convergence of the market price to the random fixed point increases. For SDS (2.15),

it is interesting to know how the stable random fixed point is related to the fundamental value

process.

To illustrate, for the parameter set (4.1), the averaged time series of the difference of market

and fundamental pricesPt − P ∗

t based on Monte Carlo simulations are reported in Fig. 4.4.

It shows that, asα increases, the deviation of the market price from the fundamental price

decreases. That is, as the fundamentalists put more weight on their estimated fundamental

price, the deviation of market price from the fundamental price are reduced.

A statistical analysis is conducted by using Monte Carlo simulations for the given set of

parameters (4.1) with four different values ofα. The resulting Wald statistics to detect the

differences between market prices and fundamental prices are reported in Table 4.2. The null

hypothesis is specified as, respectively,

• Case 1:H0 : Pt = P ∗

t , t = 1000, 2000, ..., 5000;

• Case 2,H0 : Pt = P ∗

t , t = 3000, 3500, 4000, ..., 5000;

• Case 3,H0 : Pt = P ∗

t , t = 4000, 4100, 4200, ..., 5000;

• Case 4,H0 : Pt = P ∗

t , t = 4000, 4050, 4100, ..., 5000;

• Case 5,H0 : Pt = P ∗

t , t = 4901, 4902, 4903..., 5000, which refers to the last one hundred

periods;

13It is well known from the stochastic differential equation literature (e.g. see the examples in Mao (1997), pages
135-141) that, for continuous differential equations, adding noise can have double-edged effect on the stability—
it can either stabilize or destabilize the steady state of the differential equations. For our SDS (2.15), numerical
simulations show that adding a small (large) noise can stabilizing (destabilize) the price dynamics when parameters
are near the flip bifurcation boundary of the DDS (3.1).
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FIGURE 4.4. Time series of price differencePt − P ∗

t with α=0 (top left); 0.1
(top right); 0.5 (second left); and 1 (second right).

• Case 6,H0 : Pt = P ∗

t , t = 4951, 4952, ..., 5000, which refers to the last fifty periods.

Notice that the critical values corresponding to the above test statistics come from theχ2

distribution with degree of freedom 5, 5, 11, 21, 100, and 50,respectively, at the 5% significant

level. We see that forα = 0, all of the null hypothesis are strongly rejected at the 5% significant

level. Forα = 0.5 and1, all of the null hypothesis cannot be rejected at the 5% significant

level. We also see that whenα increases, the resulting Wald statistics decreases (except Case

5 with α = 1). This confirms that whenα increasing, i.e. when the fundamentalists put more

weight on the fundamental price, the differences between the market prices and fundamental

prices become smaller.

As we know that an increase inα has similar effect to an increase of the market fraction

of the fundamentalists. The above statistic analysis thus implies that, as the fundamentalists

dominate the market (asm increases), the market prices follow the fundamental prices closely.

Trend extrapolation of the trend followers can drive the market price away from the fundamental

price. This result is very intuitive.
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α = 0 α = 0.1 α = 0.5 α = 1 Critical value

Case 1 100.585 13.289 5.225 3.698 11.071
Case2 99.817 13.964 6.782 4.358 11.071
Case 3 121.761 24.971 16.041 10.840 19.675
Case 4 148.690 38.038 23.836 19.190 32.671
Case 5 293.963 105.226 99.618 103.299 124.342
Case 6 177.573 50.970 45.043 43.052 67.505

TABLE 4.2. Wald test statistics for the difference between the market pricePt

and the fundamental priceP ∗

t for nf = nc = 0.4.

4.4. Bifurcations and Autocorrelation Structure. Understanding the autocorrelation (AC)

structure of returns plays an important role in the market efficiency and predictability. It is

often a difficult task to understand the generating mechanism of various AC patterns, in partic-

ular those realistic patterns observed in financial time series. It is believed that the underlying

deterministic dynamics of the stochastic system play an important role in the AC structure of

the stochastic system. But how they are related is not clear. In the following discussion, we

try to establish such a connection by analyzing changes of autocorrelation (AC) structures and

limiting probability distributions of the stochastic returns when the parameters change near the

bifurcation boundaries of the underlying deterministic model. The analysis on the AC struc-

ture is conducted through Monte Carlo simulations and the analysis on the limiting distribution

is conducted through the probability distribution of returns over time periodt = 1, 001 to

t = 10, 000 for the same underlying noise processes. These analyses lead us to some insights

into how particular AC patterns of the stochastic model are characterized by different types of

bifurcation of the underlying deterministic system. In doing so, it helps us to understand the

mechanism of generating realistic AC patterns.

From our discussion in the previous section, we know that thelocal stability region of the

steady state is bounded by both flip and Hopf bifurcation boundaries in general. To see how the

AC structure changes near the different types of the bifurcation boundary, we select two sets of

parameters, denoted by (F1) and (H1), respectively,

(F1) α = 1, γ = 0.8, µ = 5, δ = 0.85, w1,0 = 0.5 andm = −0.8,−0.5,−0.3, 0;

(H1) α = 1, γ = 2.1, µ = 0.43, δ = 0.85, w1,0 = 0.5 andm = −0.95,−0.5, 0, 0.5.
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FIGURE 4.5. Monte Carlo simulation on the average ACs of return form =
−0.8,−0.5,−0.3, 0 for the parameter set(F1).

For (F1) with different values ofm, the steady state of DDS (3.1) is locally stable.14 However,

asm increases, we move closer to the flip boundary.15 For (H1), there exists a Hopf bifurcation

valuem̄ ∈ (0, 0.005), the steady state is locally stable form = 0.5 ≥ m̄ and unstable form =

−0.95,−0.5, 0 < m̄ through a Hopf bifurcation. Asm decreases, we are moving close to the

Hopf bifurcation boundary initially, and then crossing over the boundary, and then moving away

from the boundary. Therefore, an increase inm is stabilizing the steady state. It is interesting to

see that the market fraction has different stabilizing effects near different bifurcation boundaries.

For SDS (2.15), Figs. 4.5 and 4.6 report the average ACs of relative return for four different

values ofm with parameter set (F1) and (H1), respectively. Tables B.2 and B.3 in Appendix

B report the average ACs of returns over the first 100 lags, the number in the parentheses are

standard errors, the number in the second row for each lag arethe total number of ACs that

14The solutions become exploded when parameters are near the flip bifurcation boundary and hence we only
choose parameters from inside the stable region.
15This means that the difference between the givenµ and the corresponding flip bifurcation valueµ1(m) becomes
smaller asm increases. It is in this sense that an increase inm is destabilizing the steady state.
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are significantly (at 5% level) different from zero among 1,000 simulations. It is found that

adding the noise demand does not change the nature of ACs of returns.16 Given that there is

insignificant AC structure from the noisy returns of the fundamental values, the persistent AC

patterns displayed in Figs. 4.5-4.6 indicate some connections between AC patterns of SDS

(2.15) and the dynamics of the underlying DDS (3.1).
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FIGURE 4.6. Monte Carlo simulation on the average ACs of return form =
−0.95,−0.5, 0, 0.5 for the parameter set(H1).

For the parameter set (F1), the fundamental value of the underlying DDS (3.1) is locally stable

and the AC structure of returns of SDS (2.15) changes as the parameters are moving close to

the flip bifurcation boundary. For the deterministic model,we know that an increase ofm has

a similar effect to an increase ofα, the speed of price adjustment of the fundamentalists, orµ,

the speed of price adjustment of the market maker. Corresponding to the case ofm = −0.8

in Fig. 4.5, anunder and over-reaction pattern characterized by oscillatory decaying ACs

with AC(i) > 0 for small lags followed by negative ACs for large lags is observed when the

16Noisy processes in our model do not change the qualitative nature of the AC of returns, however, they do change
the AC patterns of the absolute and squared returns. This issue is addressed in He and Li (2005b).
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parameters are far away from the flip bifurcation boundary. Intuitively, this results from the

constantly price under-adjustment from either the fundamentalists or the market maker. As

the parameters are moving toward the flip bifurcation boundary, such as in the case ofm =

−0.5,−0.3 in Fig. 4.5, anover-reaction pattern characterized by increasing ACs withAC(i) <

0 for small lagsi appears. As the parameters move closer to the flip boundary, such as whenm =

0 in Fig. 4.5, this over-reaction pattern becomes astrong over-reaction pattern characterized

by an oscillating and decaying ACs which are negative for odd lags and positive for even lags.

These results are very intuitive. When the market fractions of the fundamentalists are small, it

is effectively equal to a slow price adjustment from either the fundamentalists or market maker,

leading to under-reaction. Asm increases, such adjustment becomes strong, leading to an over-

reaction.17
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FIGURE 4.7. Limiting probability distributions of market returnsfor the para-
meter set (a)(F1) with m = −0.8,−0.5,−0.3, 0, and (b)(H1) with m =
−0.95,−0.5, 0, 0.5.

The limiting distributions of returns and the corresponding statistics near the flip bifurcation

boundary for the parameter set(F1) with different values ofm are given in Fig. 4.7 (a) and

Table 4.3, respectively. It is observed that the returns arenot normally distributed with positive

skewness and high kurtosis for all values ofm. This non-normality underpins the strong AC

structure displayed in Fig. 4.5. In addition, asm increases, the standard deviation increases

because of the over-reaction of the fundamentalists near the flip bifurcation boundary.

17Based on this observation, one can see that both the fundamentalists and market maker need to react to the market
price ina balanced wayin order to generate insignificant AC patterns observed in financial markets. Essentially,
this is the mechanism we are using to characterizing the longrange dependence in the following subsection.
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m = −0.8 m = −0.5 m = −0.3 m = 0

Mean 3.95E-05 0.000126 0.000244 5.08E-05
Median -0.000116 0.000253 0.000336 -1.25E-05

Maximum 0.082283 0.111046 0.125501 0.039912
Minimum -0.078098 -0.105505 -0.136236 -0.035434
Std. Dev. 0.016142 0.020343 0.025387 0.010419
Skewness 0.072327 0.135512 0.078667 0.039038
Kurtosis 4.547681 4.057518 3.620744 2.997571

Jarque-Bera 1006.767 496.5827 170.8656 2.542365
Probability 0.000000 0.000000 0.000000 0.280500

Sum 0.394987 1.261548 2.438208 0.507550
Sum Sq. Dev. 2.605493 4.137975 6.444583 1.085374

TABLE 4.3. Summary statistics of returns for the parameter set(F1) with
m = −0.8,−0.5,−0.3, 0.

Near the Hopf bifurcation boundary, the AC structure behaves differently when parameters

cross the Hopf boundary from the unstable region to the stable region, see Fig. 4.6. For small

m, for examplem = −0.95,−0.5, the steady state of the deterministic model is unstable andit

bifurcates to either periodic or quasi-periodic cycles. For the stochastic model, astrong under-

reaction AC pattern characterized by significantly decaying positiveAC(i) for small lagsi and

insignificantly negativeAC(i) for large lagsi, as illustrated in Fig. 4.6 form = −0.95.18 This

is partially due to the dominance of the trend followers who follow the lagged learning process.

As m increases, for example tom = −0.5 and0, the trend followers becomes less dominated.

As the result, the strong under-reaction pattern is replaced by an over-reaction pattern. Asm

increases further, for example tom = 0.5, the steady state of the deterministic model becomes

stable and the AC structure of the stochastic return in Fig. 4.6 reduces to an insignificant under-

reaction pattern.

The limiting distributions of returns and the corresponding statistics near the Hopf bifurcation

boundary for the parameter set(H1) for different values ofm are given in Fig. 4.7 (b) and Table

4.4, respectively. Different from the previous case near the flip bifurcation boundary, the returns

appear to be closer to normal distribution (as indicated by the probabilities of the Jarque-Bera

tests) with less significant skewness and kurtosis. This underpins the insignificant AC structure

displayed in Fig. 4.6.

18The AC structure discussed here are actually combined outcomes of the under-reacting trend followers and over-
reacting fundamentalists. This leads price to be under-reacted for short lags, over-reacted for medium lags, and
mean-reverted for long lags.
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m = −0.95 m = −0.5 m = 0 m = 0.5

Mean 3.60E-05 4.70E-05 5.08E-05 5.46E-05
Median 6.80E-05 -5.95E-05 -1.25E-05 8.00E-05

Maximum 0.040650 0.041044 0.039912 0.039438
Minimum -0.042000 -0.035635 -0.035434 -0.034406
Std. Dev. 0.010408 0.010310 0.010419 0.010669
Skewness 0.031815 0.030451 0.039038 0.042038
Kurtosis 3.137758 2.993963 2.997571 2.991432

Jarque-Bera 9.594179 1.560606 2.542365 2.975951
Probability 0.008254 0.458267 0.280500 0.225829

Sum 0.360021 0.469831 0.507550 0.545647
Sum Sq. Dev. 1.083105 1.062926 1.085374 1.138265

TABLE 4.4. Summary statistics of returns for the parameter set(H1) with
m = −0.95,−0.5, 0, 0.5.

The above discussion is based onα = 1. Similar results are observed forα < 1. Fig. B.2 in

Appendix B plots the results for the following set of parameters:

(FH) : α = 0.5, γ = 0.8, µ = 5, δ = 0.85, m = −0.9,−0.5, 0, 0.9.

In this case, small values ofm are close to the Hopf boundary and large values ofm are close

to the flip boundary. As we can see from the AC patterns in Fig. B.2 in Appendix B that, asm

increases, the AC patterns change from strong under-reaction to under- and over-reaction, and

to over-reaction, and then to strong over-reaction.

In all cases, the ACs decay and become insignificant after the first few lags (the first 5 lags for

under/over-reaction and the first 10 lags for strong reaction). Briefly, activity of the fundamen-

talists (either high fraction or high speed of price adjustment) are responsible for over-reaction

AC patterns and extrapolation from the trend followers are responsible for the under-reaction

AC patterns. In addition, a strong under-reaction AC patterns of SDS is in general associated

with Hopf bifurcation of the DDS, a strong over-reaction AC pattern is associated with flip bi-

furcation, and under and over-reaction AC patterns are associated with both types of bifurcation

(depending on their dominance). This statistical analysison both the AC structure and limiting

distribution gives us insights into how the AC structure of the SDS are affected by different

types of bifurcation of the underlying DDS.

4.5. Some other issues. One of the related issues to our early discussion is the long-range

dependence founded in daily financial time series includingthe S&P 500. It corresponds to

an insignificant AC patterns for the returns, but significantAC patterns for the absolute returns
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and squared returns. Guided by the above analysis, we selectfollowing set of parameters:

α = 0.1, γ = 0.3, µ = 2,m = 0, δ = 0.85, b = 1. For this set of parameter, the steady state

fundamental pricēP of the DDS is locally asymptotically stable. The price and return behaviors

are reported in Fig. 4.8.
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FIGURE 4.8. Time series on prices and returns, density distribution and auto-
correlation coefficients (ACs) of the returns, the squared returns and the absolute
returns.

In this case, we observe from Figure 4.8 a relatively high kurtosis, volatility clusterings,

insignificant ACs for returns, but significant ACs for the absolute and squared returns. This

result shows that the model is able to produce relatively realistic volatility clustering and the

long-range dependence. A more detailed analysis of the generating mechanism on the long-

range dependence and statistical estimates and tests basedon Monte Carlo simulation can be

found in He and Li (2005b).

Another related issue is the profitability and survivability of the fundamentalists and chartists.

A systematic analysis of how different, fixed fractions affect survivability and profitability under

the current framework is examined in He and Li (2005a). Such an approach is perhaps less

general than the strategy switching models (e.g. Brock and Hommes (1998)) in which the

market fractions are endogenous. We leave this to the futurestudy.
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5. CONCLUSION

It is interesting and important to see how the deterministicdynamics and noise interact with

each other. A theoretical understanding of the connectionsbetween certain time series proper-

ties of the stochastic system and its underlying deterministic dynamics is important but difficult,

and a statistical analysis based on various econometric tools seems necessary. Such an analysis

helps us to understand potential sources of generating realistic time series properties.

The model proposed in this paper introduces a market fractions model with heterogeneous

traders in a simple asset-pricing framework. It contributes to the literature by incorporating a re-

alistic trading period, which eliminates the untenable risk-free rate assumption. By focusing on

different aspects of financial market behavior including market dominance and under and over-

reaction, we investigate the relationship between deterministic forces and stochastic elements

of the stochastic model. A statistical analysis based on Monte Carlo simulations shows that

the limiting behavior and convergence of the market prices can be characterized by the stabil-

ity and bifurcation of the underlying deterministic system. In particular, we show that various

under and over-reaction autocorrelation patterns of returns can be characterized by the bifur-

cation nature of the deterministic system. The model is ableto generate some stylized facts,

including skewness, high kurtosis, volatility clusteringand long-range dependence, observed in

high-frequency financial time series.

It is worth emphasizing that all these interesting qualitative and quantitative features arise

from our simple market fraction model with fixed market fraction. It would be interesting to

extend our analysis from the current model to a changing fraction model developed recently

in Dieci et al. (2006), in which some part of the market fractions are governed by the herding

mechanism (for instance, see Lux and Marchesi (1999)) and the other part follows some evolu-

tionary adaptive processes (see Brock and Hommes (1997,1998) for instance). Taking together

the herding and switching mechanisms and the findings in thispaper, we hope we can better

understand and characterize a large part of the stylized facts of financial data. We hope this will

lead to better models for calibrations.
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APPENDIX A. PROOFS OFPROPOSITIONS

A.1. Proof of Proposition 3.1. ForP ∗

t = P̄ , the demand function for the fundamentalists becomes

z1,t =
(1 − α − R)(Pt − P̄ )

a1(1 + r2)σ2
1

.

Let (Pt, ut, vt) = (P0, u0, v0) be the steady state of the system. Then(P0, u0, v0) satisfies

P0 = P0 +
µ

2

[

(1 + m)
(1 − α − R)(P0 − P̄ )

a1(1 + r2)σ2
1

+ (1 − m)
γ(P0 − u0) − (R − 1)(P0 − P̄ )

a2σ2
1
(1 + r2 + b v0)

]

, (A.1)

u0 = δu0 + (1 − δ)P0, (A.2)

v0 = δv0 + δ(1 − δ)(P0 − u0)
2. (A.3)

One can verify that(P0, u0, v0) = (P̄ , P̄ , 0) satisfies (A.1)-(A.3); that is the fundamental steady state is
one of the steady state of the system (3.1). It follows from (A.2)-(A.3) and δ ∈ [0, 1) thatP0 = u0, v0 =
0. This together with (A.1) implies thatP0 = P̄ . In fact, if P0 6= P̄ , then (A.1) implies that

1 + m

a1

(1 − α − R) +
1 − m

a2

(1 − R) = 0. (A.4)

However, sinceα ∈ [0, 1], R = 1+r/K > 1 andm ∈ [−1, 1], equation (A.4) cannot be hold. Therefore
the fundamental steady state is the unique steady state of the system.

A.2. Proof of Proposition 3.2. ForP ∗

t = P̄ andm = 1, equation (3.1) becomes

Pt+1 = Pt − µ
(R + α − 1)(Pt − P̄ )

a1(1 + r2)σ2
1

, (A.5)

which can be rewritten as
Pt+1 − P̄ = λ[Pt − P̄ ], (A.6)

where

λ ≡ 1 − µ
R + α − 1

a1(1 + r2)σ2
1

.

Obviously, from (A.6), the fundamental pricēP is globally asymptotically attractive if and only if|λ| <
1, which in turn is equivalent to0 < µ < µo.

α

µ

1

µ0,1(1)

µ0,1(0)

Flip Boundary

FIGURE A.1. Stability region and bifurcation boundary form = 1.



HETEROGENEITY, CONVERGENCY, AND AUTOCORRELATIONS 33

A.3. Proof of Propositions 3.3 and 3.4. For P ∗

t = P̄ , system (3.1) is reduced to the following 3-
dimensional difference deterministic system











Pt+1 = F1(Pt, ut, vt),

ut+1 = F2(Pt, ut, vt),

vt+1 = F3(Pt, ut, vt),

(A.7)

where

F1(P, u, v) = P +
µ

2

[

(1 + m)
(1 − α − R)(P − P̄ )

a1(1 + r2)σ2
1

+ (1 − m)
γ(P − u) − (R − 1)(P − P̄ )

a2σ2
1
(1 + r2 + b v)

]

,

F2(P, u, v) = δu + (1 − δ)F1(P, u, v),

F3(P, u, v) = δv + δ(1 − δ)(F1 − u)2.

Denote
a =

a2

a1

, Q = 2a2(1 + r2)σ2
1.

At the fundamental steady state(P̄ , P̄ , 0),

∂F1

∂P
= A ≡ 1 +

µ

Q
[(1 + m)a(1 − α − R) + (1 − m)(1 + γ − R)],

∂F1

∂u
= B ≡ −µγ(1 − m)

Q
,

∂F1

∂v
= 0;

∂F2

∂P
= (1 − δ)A,

∂F2

∂u
= C ≡ δ + (1 − δ)B,

∂F2

∂v
= 0;

∂F3

∂P
=

∂F3

∂u
=

∂F3

∂v
= 0.

Then the Jacobian matrix of the system at the fundamental steady stateJ is given by

J =





A B 0
(1 − δ)A C 0

0 0 0



 (A.8)

and hence the corresponding characteristic equation becomes

λΓ(λ) = 0,

where
Γ(λ) = λ2 − [A + δ + (1 − δ)B]λ + δA.

It is well known that the fundamental steady state is stable if all three eigenvaluesλi satisfy |λi| < 1
(i = 1, 2, 3), whereλ3 = 0 andλ1,2 solve the equationΓ(λ) = 0.

Forδ = 0, Γ(λ) = λ[λ− (A+B)]. The first result of Proposition 3.3 is then follows from−1 < λ =
A + B < 1 andλ = −1 whenA + B = 1.

For δ ∈ (0, 1), the fundamental steady state is stable if

(i). Γ(1) > 0;
(ii). Γ(−1) > 0;

(iii). δA < 1.

It can be verified that

(i). For α ∈ [0, 1], Γ(1) > 0 holds;
(ii). Γ(−1) > 0 is equivalent to

either γ ≥ γ2 or 0 < γ < γ2 and 0 < µ < µ1,
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where

γ2 =
1 + δ

2δ
[(R − 1) + a(R + α − 1)

1 + m

1 − m
],

µ1 =
1 + δ

δ

Q

1 − m

1

γ2 − γ
.

(iii). The conditionδA < 1 is equivalent to

either γ ≤ γ1 or γ > γ1 and 0 < µ < µ2,

where

γ1 = (R − 1) + a(R + α − 1)
1 + m

1 − m
,

µ2 =
1 − δ

δ

Q

1 − m

1

γ − γ1

.

Noting that, forδ ∈ (0, 1), γ1 < γ0 < γ2, where

γ0 =
(1 + δ)2

4δ

[

(R − 1) + a(R + α − 1)
1 + m

1 − m

]

solves the equationµ1 = µ2. Also,µ1 is an increasing function ofγ for γ < γ2 while µ2 is a decreasing
function of γ for γ > γ1. Hence the two conditions for the stability are reduced to0 < µ < µ1 for
0 ≤ γ ≤ γ0 and0 ≤ µ ≤ µ2 for γ > γ0. In addition, the two eigenvalues ofΓ(λ) = 0 satisfyλ1 = −1
andλ2 ∈ (−1, 1) whenµ = µ1 andλ1,2 are complex numbers satisfying|λ1,2| < 1 whenµ = µ2.
Therefore, a flip bifurcation occurs along the boundaryµ = µ1 for 0 < γ ≤ γ0 and a Hopf bifurcation
occurs along the boundaryµ = µ2 for γ ≥ γ0.

Flip Boundaryµ =
Q̄

R−1

γ

µ

Q̄

R−1

Flip Boundaryµ = µ̄1

Hopf Boundaryµ = µ̄2

γ

µ

R − 1 γ̄0 γ̄2

Q̄

R−1

2
(1−δ)(R−1)

(a) δ = 0 (b) δ ∈ (0, 1)

FIGURE A.2. Stability region and bifurcation boundaries for the trend follow-
ers and market maker model withδ = 0 (a) andδ ∈ (0, 1) (b).
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APPENDIX B. MONTE CARLO SIMULATIONS AND STATISTICAL RESULTS

Econometric Properties and Statistics of the S&P 500. In this appendix, we include time series plots
on prices and returns for the S&P 500 from Aug. 10, 1993 to July 24, 2002 in Fig.B.1. The corresponding
density distributions, autocorrelation coefficients (ACs) of returns, absolute returns and squared returns
are also illustrated in Fig. B.1. Table B.1 presents summary statistics of the returns.
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FIGURE B.1. Time series on prices and returns, density distribution and auto-
correlation coefficients (ACs) of the returns, the squared returns and the absolute
returns for the S&P 500 from Aug. 10, 1993 to July 24, 2002.

TABLE B.1. Summary statistics of returns for the S&P 500.

Index Mean Median Max. Min. Std. Dev. Skew. Kurt. Jarque-Bera
S&P500 0.000194 0.0000433 0.057361 -0.070024 0.0083 -0.504638 8.215453 2746.706
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TABLE B.2. Autocorrelations ofrt for the flip-set parameter(F1).

Lag m = −0.8 m = −0.5 m = −0.3 m = 0

1 0.2933 (0.0169) -0.0256 (0.0149) -0.3076 (0.0136) -0.8602 (0.0084)
993 455 1000 1000

2 0.1664 (0.0162) -0.0760 (0.0152) -0.0278 (0.0169) 0.6939 (0.0161)
988 935 720 1000

3 0.0636 (0.0161) -0.0782 (0.0157) -0.0328 (0.0168) -0.5899 (0.0205)
883 915 456 1000

4 -0.0112 (0.0164) -0.0621 (0.0158) -0.0102 (0.0168) 0.5123 (0.0233)
297 826 115 998

5 -0.0630 (0.0168) -0.0420 (0.0158) -0.0058 (0.0167) -0.4528 (0.0250)
868 625 79 986

6 -0.0958 (0.0168) -0.0262 (0.0158) -0.0034 (0.0167) 0.4033 (0.0262)
949 379 70 978

7 -0.1116 (0.0169) -0.0134 (0.0158) -0.0014 (0.0167) -0.3631 (0.0269)
968 163 72 969

8 -0.1148 (0.0169) -0.0052 (0.0158) -0.0006 (0.0166) 0.3282 (0.0274)
976 57 54 955

9 -0.1102 (0.0169) -0.0015 (0.0159) -0.0010 (0.0167) -0.2981 (0.0278)
966 58 53 934

10 -0.0989 (0.0169) 0.0008 (0.0159) -0.0009 (0.0167) 0.2712 (0.0280)
953 63 57 916

20 0.0248 (0.0179) -0.0006 (0.0160) -0.0001 (0.0167) 0.1188 (0.0278)
338 51 57 690

30 -0.0036 (0.0181) 0.0002 (0.0160) 0.0002 (0.0167) 0.0565 (0.0268)
96 51 54 463

40 -0.0020 (0.0180) 0.0005 (0.0160) 0.0007 (0.0167) 0.0291 (0.0262)
88 39 47 299

50 0.0015 (0.0180) 0.0006 (0.0160) 0.0009 (0.0167) 0.0150 (0.0259)
77 66 56 230

60 -0.0017 (0.0181) -0.0014 (0.0161) -0.0013 (0.0167) 0.0059 (0.0259)
99 56 54 218

70 0.0012 (0.0181) 0.0003 (0.0161) 0.0001 (0.0167) 0.0046 (0.0259)
84 54 50 197

80 0.0005 (0.0180) 0.0013 (0.0161) 0.0014 (0.0167) 0.0032 (0.0258)
74 76 64 181

90 -0.0006 (0.0181) -0.0006 (0.0161) -0.0007 (0.0167) 0.0016 (0.0259)
84 64 54 184

100 -0.0003 (0.0181) -0.0005 (0.0162) -0.0001 (0.0168) 0.0023 (0.0258)
69 48 52 192



HETEROGENEITY, CONVERGENCY, AND AUTOCORRELATIONS 37

TABLE B.3. Autocorrelations ofrt for the Hopf-set parameter(H1).

Lag m = −0.95 m = −0.5 m = 0 m = 0.5

1 0.0746 (0.0345) 0.1037 (0.0196) 0.0688 (0.0176) 0.0205 (0.0168)
898 964 582 730

2 0.0825 (0.0326) 0.0802 (0.0189) 0.0429 (0.0174) 0.0064 (0.0169)
811 868 469 687

3 0.0720 (0.0315) 0.0593 (0.0187) 0.0241 (0.0173) -0.0020 (0.0170)
788 672 434 618

4 0.0631 (0.0309) 0.0426 (0.0183) 0.0116 (0.0173) -0.0059 (0.0171)
756 493 422 529

5 0.0535 (0.0301) 0.0294 (0.0182) 0.0023 (0.0174) -0.0079 (0.0171)
721 380 436 418

6 0.0456 (0.0292) 0.0185 (0.0182) -0.0050 (0.0173) -0.0099 (0.0171)
677 301 398 339

7 0.0388 (0.0288) 0.0107 (0.0180) -0.0080 (0.0173) -0.0085 (0.0170)
587 272 366 244

8 0.0333 (0.0287) 0.0049 (0.0179) -0.0095 (0.0171) -0.0068 (0.0170)
498 257 325 161

9 0.0309 (0.0278) -0.0009 (0.0178) -0.0111 (0.0173) -0.0066 (0.0170)
433 290 313 154

10 0.0250 (0.0268) -0.0050 (0.0177) -0.0116 (0.0172) -0.0055 (0.0170)
358 281 245 106

20 0.0021 (0.0230) -0.0152 (0.0175) -0.0048 (0.0171) -0.0012 (0.0170)
88 228 62 53

30 -0.0035 (0.0215) -0.0058 (0.0174) 0.0002 (0.0171) 0.0003 (0.0170)
78 76 53 58

40 -0.0066 (0.0201) -0.0013 (0.0175) -0.0003 (0.0172) -0.0004 (0.0170)
84 54 50 47

50 -0.0053 (0.0191) 0.0002 (0.0177) 0.0001 (0.0172) 0.0002 (0.0170)
80 56 63 62

60 -0.0059 (0.0193) -0.0005 (0.0175) -0.0012 (0.0172) -0.0013 (0.0171)
85 53 60 54

70 -0.0045 (0.0190) 0.0008 (0.0175) 0.0006 (0.0172) 0.0006 (0.0171)
72 61 59 56

80 -0.0034 (0.0186) 0.0008 (0.0175) 0.0009 (0.0172) 0.0010 (0.0170)
73 61 61 58

90 -0.0046 (0.0185) -0.0013 (0.0176) -0.0008 (0.0172) -0.0009 (0.0171)
73 60 65 63

100 -0.0037 (0.0183) -0.0001 (0.0178) -0.0002 (0.0173) -0.0003 (0.0171)
56 55 50 43
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FIGURE B.2. Monte Carlo simulation on the average ACs of return for
m = −0.9 (top left), -0.5 (top right), 0 (bottom left), 0.9 (bottom right) for
the parameter set(FH).
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