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ABSTRACT. This paper contributes to the development of the recesrilitire on the explana-
tion power and calibration issue of heterogeneous assghgnnodels by presenting a simple
stochastic market fraction asset pricing model of two tygfedsaders (fundamentalists and trend
followers) under a market maker scenario. It seeks to exgigpects of financial market behav-
ior (such as market dominance, convergence of the markeg prithe fundamental price, and
under- and over-reaction) and to characterize variousssta properties (including the con-
vergence of the limiting distribution and autocorrelati&tructure) of the stochastic model by
using the dynamics of the underlying deterministic systeaters’ heterogeneous behavior and
market fractions. A statistical analysis based on MontddCsimulations shows that the long-
run behavior, convergence of the market prices to the fueddah price, limiting distributions,
and various under and over-reaction autocorrelation ipettef returns can be characterized by
the stability and bifurcations of the underlying deterrsiiti system. Our analysis underpins the
mechanisms on various market behaviors (such as undereaetions), market dominance and

stylized facts in high frequency financial markets.
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1. INTRODUCTION

Traditional economic and finance theory is based on the gssams of investor homogene-
ity and the efficient market hypothesis. However, there isoavmng dissatisfaction with models
of asset price dynamics, based on the representative ageadigm, as expressed for exam-
ple by Kirman (1992), and the extreme informational assionptof rational expectations. As
a result, the literature has seen a rapidly increasing nuwibeeterogeneous agents models,
see recent survey papers by Hommes (2006) and LeBaron (20063e models characterize
the dynamics of financial asset prices; resulting from theraction of heterogeneous agents
having different attitudes to risk and having different egations about the future evolution
of prices! For example, Brock and Hommes (1997, 1998) proposed a siAgaptive Belief
Systento model economic and financial markets. Agents’ decisioa®ased upon predictions
of future values of endogenous variables whose actual sateedetermined by the equilibrium
equations. A key aspect of these models is that they exl@bdbdack of expectations. Agents
adapt their beliefs over time by choosing from differentdacéors or expectations functions,
based upon their past performance as measured by the cealifés. The resulting dynamical
system is nonlinear and, as Brock and Hommes (1998) showbleapfigenerating the entire
zooof complex behavior from local stability to high order cyxlend even chaos as various key
parameters of the model change. It has been shown (e.g. He1f2062)) that such simple
nonlinear adaptive models are capable of explaining ingpbtmpirical observations, includ-
ing fat tails, clustering in volatility and long memory ofaldinancial series. The analysis of the
stylized simple evolutionary adaptive system, and its misakanalysis provides insight into
the connection between individual and market behavior.c@ipally, it provides insight into
whether asset prices in real markets are driven only by newar® at least in part, driven by
market psychology.

The heterogeneous agents literature attempts to addregatevesting issues among many
others. It attempts to explain various types of market beinasnd to replicate the well docu-
mented empirical findings of actual financial markets, tlyézstd facts. The recent literature

has demonstrated the ability to explain various types oketarehavior. However, in relation

1See, e.g., Arthuet al. (1997), Brock and Hommes (1997, 2002), Brock and LeBaro®§)L9Bullard and
Duffy (1999), Chen and Yeh (1997, 2002), Chiarella (1992)jagella et al. (2002), Chiarella and He (2001,
2002, 2008), Dacorogneet al. (1995), Day and Huang (1990), De Long et al (1990), FarmerJasti (2002),
Frankel and Froot (1987), Gaunersdorfer (2000), Homme&1(22002), lori (2002), LeBaron (2000, 2001, 2002),
LeBaronet al.(1999), Lux (1995, 1997, 1998) and Lux and Marchesi (1999))
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to the stylized facts, there is a gap between the heterogsragents models and observed em-
pirical findings. It is well known that most of the stylizedcta can be observed only for high
frequency data (e.g. daily) and not for low frequency datg. (gearly). However, two unre-
alistic assumptions underpin this literatdrd@he first is a risk-free rate of approximately 10
per-cent per trading pericdGiven that this rate is crucial for model calibration in geating
stylized fact§, it is obviously unrealistic. Second, the unrealistic natof the assumed trading
period is problematic for the quantitative calibration tiual time series. As pointed out by
LeBaron (2002),This (unrealistic trading period) is fine for early quatite comparisons with
stylized facts, but it is a problem for quantitative califwa to actual time series’

Another more important issue for various heterogeneouet pssing models is the interplay
of noisy and deterministic dynamics. Given that deterniimisiodels are simplified versions
of realistic stochastic models and stability and bifurmatare the most powerful tools (among
other things) to investigate the dynamics of nonlinearesysit is interesting to know how de-
terministic properties influence the statistical progestsuch as the existence and convergence
of stationary process, and the autocorrelation (AC) strectd the corresponding stochastic
system. In particular, we can ask if there is a connectiowéen different types of attractors
and bifurcations of the underlying deterministic skeleton various invariant measures, and
AC patterns of the stochastic system, respectively. Thsstha potential to provide insights
into the mechanisms of generating various invariant measuC patterns and stylized facts
in financial markets. These issues are investigated in @&xbot a simple heterogeneous asset
pricing model in this paper. At present, the mathematicmhéas not yet been able to achieve
these tasks in general. Consequently, statistical anadyglsMonte Carlo simulations is the

approach adopted in this paper.

%See, e.g., Arthuet al.(1997), Brock and Hommes (1997), Chen and Yeh (2002), Ohdageal (2002), Chiarella

and He (2002, 2003, lori (2002), LeBaron (2002), LeBaraat al.(1999), Levyet al.(1994)).

SApart fromr; = 1% in Gaunersdorfer (2000) and LeBaron (2001) apd= 0.04% in Hommes (2002).

“In this literature, as risk-free rate of trading period @eses, demand on the risky asset increases. Consequently,
the price of the risky asset become rather larger numbeutiressometimes in break-down in theoretic analysis
and overflows in numerical simulations. In addition, sommtgresting dynamics disappear as the risk-free rate of
trading period decreases to realistic level (e.g. (5/250&¥day given a risk-free rate of 5% p.a. and 250 trading
days per year).
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This paper builds upon the existent literature by incorpogaa realistic trading peridd
which eliminates the unrealistic risk-free rate assunmptwhilst also introducing market frac-
tions of heterogeneous traders into a simple asset-priciodel. In this paper this model is
referred to as the Market FractioM ) Model. The model assumes three types of participants
in the asset market. This includes two groups of boundedignal traders—fundamentalists
(also called informed traders) and trend followers (aldleddess informed traders or chartists),
and a market-maker. The aim of this paper is to show that iMfRenodel the long-run behavior
of asset prices and the autocorrelation structure of thehasiic system can be characterized
by the dynamics of the underlying deterministic systemddra’ behavior, and market frac-
tions. In addition, this paper also contributes to the dtere how to use statistical analysis
based on Monte Carlo simulations to study the interplay o$eaind deterministic dynamics
in the context of heterogeneous asset pricing models. Hiistgtal analysis shows that the
long-run behavior and convergence of the market pricesyaridus under- and over-reaction
AC patterns of returns can be characterized by the stahitity bifurcations of the underlying
deterministic system. Our analysis gives us some insightghe mechanism of various market
behavior (such as under/over-reactions), market domeyamd stylized facts in high frequency
financial markets.

This paper is organized as follows. Section 2 outlines a gidriction model of heteroge-
neous agents with the market clearing price set by a markietmiatroduces the expectations
function and learning mechanisms of the fundamentalisidr@md followers, and derives a full
market fraction model on asset price dynamics. Price dycsuofi the underlying determinis-
tic model is examined in Section 3. Statistical analysiseldeon Monte Carlo simulations, of
the stochastic model is given in Section 4. By using the caneep random fixed point, we
examine the long-run behavior and convergence of the marieg to the fundamental price
and to an invariant measure. By choosing different sets arpaters near different types of
bifurcation boundaries of the underlying determinististeyn, we explore various under and
over-reaction AC patterns. Section 5 concludes and allfprand additional statistical results

are included in the Appendices.

%In fact, the trading period of the model can be scaled to avsl lef trading frequency ranging from annually,
monthly, weekly, to daily. However, we focus on a daily traglperiod (i.e.KX = 250) in this paper.
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2. HETEROGENEOUSBELIEFS, MARKET FRACTIONS AND MARKET-MAKER

Both empirical and theoretical studies show that marketifsas among different types of
traders have an important role to play in financial marketspigcal evidence from Taylor and
Allen (1992) suggests that at least 90% of the traders plaiwe sveights on technical analysis
at one or more time horizons. In particular, traders relyeranr technical analysis, as opposed
to the fundamental analysis, at shorter time horizons. Addahgth of time horizons increases,
more traders rely on the fundamental rather than techniedyais. In addition, there is a certain
proportion of traders who do not change their strategies adime horizons. Theoretically,
the study by Brock and Hommes (1997) shows that, when difteyeups of traders, such as
fundamentalists and chartists, having different expamstatabout future prices and dividends
compete between trading strategies and choose theirggtrateording to an evolutionarft-
ness measuyrghe corresponding deterministic system exhibits ratiooates to randomness.
The adaptive switching mechanism proposed by Brock and Ha@97) is an important
element of the adaptive belief model. It is based on bditmass functiorand a discrete choice
probability. In this paper, we take a simplified version af Brock and Hommes’ framework.
The MF model assumes that the market fractions among heteeogs agents are fixed para-
meters. Apart from mathematical tractability, this sirfipétion is motivated as follows. First,
because of the amplifying effect of the exponential funttised in the discrete choice prob-
ability, the market fractions become very sensitive to gpgbanges and the fitness functions.
Therefore, itis not very clear to see how different groupafiers do actually influence the mar-
ket price. Secondly, when agents switch intensively, iobees difficult to characterize market
dominance when dealing with heterogeneous trading stesteghirdly, it is important to un-
derstand how the behaviors of different types of agentsiaked to certain dynamics (such as
the autocorrelation structure we discuss later). Such alysis becomes clear when we isolate
the market fractions from switching. In doing so, we can exanexplicitly the influence of the
market fractions on the price behavior.

The set up follows the standard discounted value assengritiodel with heterogeneous
agents, which is closely related to the framework of Day andrd) (1990), Brock and Hommes
(1997, 1998) and Chiarella and He (2002, 2003 he market clearing price is arrived at via a

market maker scenario rather than the Walrasian scenagdo®ds on a simple case in which
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there are three classes of participants in the asset maniegroups of traders, fundamentalists

and trend followers, and a market maker, as described irotlmving discussion.

2.1. Market Fractions and Market Clearing Price under a Market Maker. Consider an
asset pricing model with one risky asset and one risk freetaliss assumed that the risk free
asset is perfectly elastically supplied at a gross returR ef 1 + /K, wherer stands for a
constant risk-free rate per annum alkdstands for the trading frequency measured in a year.
Typically, K = 1,12,52 and250 for of trading period of a year, a month, a week and a day,
respectively. To focus on the stylized facts observed fraitygrice movement in financial
markets, we seledt’ = 250 in our following discussion.

Let P, be the (ex dividend) price per share of the risky asset at tiraed { D, } be the
stochastic dividend process of the risky asset. Then théthweba typical traderz att + 1 is
given by

Whit1 = RWhyt + [Pis1 + Dip1 — RP 24, (2.1)

whereW,,, and z,, are the wealth and the number of shares of the risky assethgsed by
trader# att, respectively. Let;, ; andV, , be thebeliefsof type i traders about the conditional
expectation and variance of quantities at 1 based on their information set at timeDenote

by R, the excess capital gain on the risky asset-atl, that is
Ryy1 = Poy1+ Dy — RP, (2.2)
Then it follows from (2.1) and (2.2) that
Eni(Wis1) = BW; + Epy(Re1) 2, Vit(Wiir) = 25 Vie(Risa). (2.3)

Assume that tradei-has a constant absolute risk aversion (CARA) utility functioti the risk
aversion coefficient;, (e.g. U, (W) = —e~®W). By expected utility maximization, traders
optimal demand on the risky assgt, is given by

_ Eng(Rig)
Zh,t

S LA i . 2.4
ath,t(RtH) ( )

Given the heterogeneity and the nature of asymmetric ird@ion among traders, we con-
sider two most popular trading strategies correspondingvitotypes of boundedly rational

traders—fundamentalists and trend followers, and thdiefsewill be defined in the following
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discussion. Assume the market fraction of the fundamestsadind trend followers is; andn.,
with risk aversion coefficient; anda,, respectively. Lein = n; — ny € [—1,1]. Obviously,

m = 1 and—1 correspond to the cases when all the traders are fundanséental trend fol-
lowers, respectively. Assume a zero supply of outside sharken, using (2.4), the aggregate
excess demand per trader () is given by

14+m ELt[RtJrl] 1—m E27t [Rt+1:|

) 2.5
2 CL1V17t[Rt+1] 2 a2‘/2,t[Rt+1] ( )

Zet =MN121t T NoZot =

To complete the model, we assume that the market is clearednbgrket maker. The role
of the market maker is to take a long (when < 0) or short (wherx,; > 0) position so as to
clear the market. At the end of periodafter the market maker has carried out all transactions,
he or she adjusts the price for the next period in the direaticthe observed excess demand.
Let 1. be the speed of price adjustment of the market maker (thisusanbe interpreted as the
market aggregate risk tolerance). To capture unexpecteketr@ews or noise created lnpise
traders we introduce a noisy demand tefmwhich is an i.i.d. normally distributed random

variablé with §, ~ N(0,02). Based on these assumptions, the market price is determjned b
Piy1 = P+ pzey + oy

From (2.5), this becomes

B[Ry 1] o[ Ryy1] <
——— 4+ (1 —m)—————| + 6. 2.6
alvl,t[RH-l] ( )(IlVQ,t[Rt-H] ! ( )

Pt+1=Pt+g (1+m)

It should be pointed out that the market maker behavior is thodel is highly stylized. For
instance, the inventory of the market maker built up as alresthe accumulation of various
long and short positions is not considered. This could afiecor her behavior and the market
maker price setting role in (2.6) could be a function of theemtory. Allowingy to be a function
of inventory would be one way to model such behavior. We ghaildo seek to explore the

micro-foundations of the coefficiept Such considerations are left to future research.

8In this paper, we assume a constant volatility noisy demandtae volatility is related to an average fundamental
price level. This noisy demand may also depend on the maried.pTheoretically, how the price dynamics are
influenced by adding different noisy demand is still a diffiGaroblem. Here, we focus on the constant volatility
noisy demand case and use Monte Carlo simulations andisttanalysis to gain some insights into this problem.
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2.2. Fundamentalists. Denote byF, = {P,, P,_1,--- ; Dy, D;_1, - - - } the common informa-
tion set formed at timé. We assume that, apart from the common information set,uheda-

mentalists havesuperiorinformation on the fundamental valug;’, of the risky asset, which is

assumed to follow a stationary random walk proéess
Ptj—l :Pt*[1+aegt]7 gtNN<Ou]->7 0-6207 P(;(:P>07 (27)

whereg, is independent of the noisy demand proc&sg his specification ensures that neither
fat tails nor volatility clustering are brought about by thimdamental price process. Hence,
emergence of any autocorrelation pattern of the returnefigky asset in our late discussion
would be driven by the trading process itself.

For the fundamentalists, because they realize the exst@nwon-fundamental traders, such
as trend followers to be introduced in the following dis¢ossthey believe that the stock price
may be driven away from the fundamental value. More pregised assume that the conditional

mean and variance of the fundamental traders are, resplgctiv
E1(Pi1) = P+ (Pl — By, Vig(Pra) = o, (2.8)

wherec? is a constant, and € [0, 1] is the weight on the fundamental price which measures
the speed of price adjustment of the fundamentalists totvedundamental value. That is,
the expected price of the fundamentalists is a weightedageeof the fundamental price and
the latest market price, while the variance of the price isr@stant. In general, the fundamen-
tal traders believe that markets are efficient and pricesarge to the fundamental value. A
high (low) weight ofa leads to a quick (slow) adjustment of their expected prieeatds the

fundamental price.

2.3. Trend followers. Unlike the fundamentalists, trend followers are technicadlers who
believe the future price change can be predicted from vanatterns or trends generated from
the history of prices. The trend followers are assumed trapgtate the latest observed price
change over prices’ long-run sample mean and to adjust vaei@mnce estimate accordingly.

More precisely, their conditional mean and variance ararassl to satisfy

Es1(Piy1) = P+ (P — wy), Voi(Piy1) = U% + by, (2.9)

’As we know that the fundamental value driven by this randork weocess can be negative.
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wherey, b, > 0 are constants, and andv, are sample mean and variance, respectively, which
may follow some learning processes. The parameteeasures the extrapolation rate and high
(low) values ofy correspond to strong (weak) extrapolation from the tretidviers. The coef-
ficientb, measures the influence of the sample variance on the camalitiariance estimated by
the trend followers who believe in a more volatile price moeat. Various learning schenfes

can be used to estimate the sample measnd variance,. In this paper we assume that

Uy = Oup—1 + (1 - 5)Pt> (2.10)

Vy = (51},5,1 + (5(1 — (5)(Pt — Ut,1)2, (211)

whereo € [0, 1] is a constant. This is a limitingeometric decay procesgen the memory lag
length tends to infinity.Basically, a geometric decay probability procéks §){1, 4,62, - - - } is
associated to the historical priceB;, P,_1, P,_», - - - }. The parametef measures the geometric
decay rate. Foé = 0, the sample mean, = F,, which is the latest observed price, while=
0.1,0.5,0.95 and0.999 gives a half life of 0.43 day, 1 day, 2.5 weeks and 2.7 yeaspadtively.
The selection of this process is two fold. First, tradersltenput a higher weight to the most
recent prices and lesser weight to the more remote prices tiey estimate the sample mean
and variance. Secondly, we believe that this geometricydeiaess may contribute to certain
autocorrelation patterns, even the long memory featurergbd in real financial markets. In

addition, it has the mathematical advantage of analytieatability.

2.4. The Complete Stochastic Model. To simplify our analysis, we assume that the dividend
processD; follows a normal distributiorD; ~ N'(D, %), the expected long-run fundamental

valueP = D/(R — 1), and the unconditional variances of price and dividend tveitrading

8For related studies on heterogeneous learning in assetgpnmdels with heterogeneous agents who's conditional
mean and variance follow various learning processes, vee tefChiarella and He (20632004).
9See Chiarell®t. al. (2006) for the proof.
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period are related by? = go?.'° Based on assumptions (2.8)-(2.9),

El,t(Rt+1):Pt—’—OZ(Ptil_Pt)_'_D_RPt:OZ<Pt11_Pt)_(R_1)(Pt_P>;

Vig(Ripr) = (1 + q)oi

and hence the optimal demand for the fundamentalists is diye

1 * _ o _ . —
a1 gz @i = B) = (B= 1B = P)) (2.12)

214 =

In particular, whenP = P,

(a+R-1)(P—P)

= 2.1
1 ai(1+ q)o? (2.13)
Similarly, from (2.9), (usingD = (R — 1)P)
Eyy(Ryy1) = Po+~(P,—w)+ D — RP, = (P, —u) — (R—1)(P, — P),
Vou(Rig1) = o7 (14 g + buwy),
whereb = by /o?. Hence the optimal demand of the trend followers is given by
g = AP w) —(R= (A= P) 2.14)

ax07(14+q+bvy)

Subsisting (2.12) and (2.14) into (2.6), the price dynaroinder a market maker is determined

by the following 4-dimensional stochastic difference syst{SDS hereatfter)

( pl 14+m ; 5
Pt+1:Pt+§ W[Q(Pwl_ﬂ)—(R_U(H—P)]
V(P —u) = (R=1)(P, — P)

ax07 (14 q+bvy)

+(1—m) + 0y,

2.1
u = ouy1 + (1 —0)R, (2.15)

Vs = 6Ut—1 + 6(1 — 5)(-Pt — Ut_1)27

L Pt*+1 = Pt*[l +Ue€t]'

1011 this paper, we choose = 0% /K andg = r2. This can be justified as follows. Le} be the annual volatility
of P, andD; = rP, be the annual dividend. Then the annual variance of the elidd?, = r20%. Therefore
o} = 05/K =r?0% /K = r?of. For all numerical simulations in this paper, we chodse- $100,r = 5% p.a.

o = 20% p.a.,K = 250. CorrespondinglyR = 1 + 0.05/250 = 1.0002,0? = (100 x 0.2)%/250 = 8/5 and

o2, = 1/250.
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It has been widely accepted that stability and bifurcatioeoty is a powerful tool in the
study of asset-pricing dynamics (see, for example, Day amahly (1990), Brock and Hommes
(1997, 1998) and Chiarella and He (2002, 20003 However, the question how the stability
and various types of bifurcation of the underlying deteiistia system affect the nature of the
stochastic system, including stationarity, distributaond statistic properties of returns, is not
very clear at the current stage. Although the techniquesudsed in Arnold (1998) may be
useful in this regard, the mathematical analysis of noalirstochastic dynamical system is still
difficult in general. In this paper, we consider first the egponding deterministic skeleton

of the stochastic model by assuming that the fundamente¢ [isi given by its long-run value
Py = P and there is no demand shocks, ifg = 0. = 0. We then conduct a stochastic analysis

of the stochastic model through Monte Carlo simulation.

3. DYNAMICS OF THE DETERMINISTIC MODEL

When the long run fundamental price is a constant and there isorsy demand, the 4-
dimensional stochastic system (2.15) reduces to the folgp®-dimensional deterministic dif-

ference systendDS hereatfter)

( 1+m (1—oz—R)(Pt—P)1 1—ml7(Pt—ut)—(R—1)(Pt—P)

)

Poy= P+
e =TT ar(l+ q)o? 2 a0 (1 +q+buv)

U = 5ut_1 =+ (1 — (S)Pt,

Vs = (5'01571 + (5(1 — 5)(Pt — ut,1)2.

\

(3.1)
The following result on the existence and uniqueness oflgtetate of the deterministic system

is obtained.
Proposition 3.1. For DDS (3.1),(P;, us, v;) = (P, P,0) is the unique steady state.

Proof. See Appendix A.1. O

We call this unique steady state the fundamental steady. $tathe following discussion, we
focus on the stability and bifurcation of the fundamentaasly state of the deterministic model.
We first examine two special cases= 1 andm = —1, before we deal with the general case

me (—1,1).
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3.1. Thecasem = 1. In this case, the following result on the global stabilityddnfurcation

is obtained.

Proposition 3.2. For DDS (3.1), if all the traders are fundamentalists, iz@. = 1, then the

fundamental priceP is globally asymptotically stable if and only if

2a,(1+ q)o}

= . 3.2
O<,u<,uo,1 (R+a—1) ( )
In addition, i« = 191 leads to a flip bifurcation withh = —1, where
R+a—-1
A=1—p——. 3.3
'ual(l + q)o? (3:3)
Proof. See Appendix A.2. O

The stability region of the fundamental pri¢gis plotted in(c, 1) plane in Fig.A.1 in Ap-
pendix A.2, whereuq (1) = [2a;(1+q)o?]/R for a = 1 andpuo1(0) = [2a1(1+q)o?]/(R—1)
for a = 0. The stability condition (3.2) is equivalenttd R + o — 1) < 2a;(1+q)o?, implying
that the fundamental price is locally stable as long as thetiens from both the market maker
and the fundamentalists are balanced (i.e. a high (Jow)balanced by a low (high) so that
the producfu(R + o — 1) is below the constar®a, (1 + ¢)o?). Given the stabilizing role (to the
fundamental price) of the fundamentalists, over-reastfoom either the fundamentalists or the
market maker will push the market price to flipping aroundftiredamental price. Numerical
simulations indicate that the over-reaction from eithernarket maker or the fundamentalists

can push the price to explode (through the flip bifurcation).

3.2. Thecasem = —1. Similarly, we obtain the following stability and bifurcati result when

all traders are trend followers.

Proposition 3.3. For DDS (3.1), if all the traders are trend followers (thatiis = —1), then

(1) for 6 = 0, the fundamental steady state is globally asymptoticadiple if and only if
0<pu<Q/(R—1),whereQ = 2ay(1 + q)o?. In addition, a flip bifurcation occurs
along the boundary. = Q/(R — 1);

(2) for o € (0,1), the fundamental steady state is stable for

{Ml 0<v<%
O<pu<

f2, Yo <7,
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where

fig = @ fi2 = 1=0)¢ Yo = (R—1)

(1+0)?
"T(R=1)—426/(140) 20y — (R—1)] ‘

46

In addition, a flip bifurcation occurs along the boundary= ji; for 0 < v < 4, and a

Hopf bifurcation occurs along the boundaty= fi, for v > 7.

Proof. See Appendix A.3. O

The local stability regions and bifurcation boundariesiadécated in Fig. A.2 (a) fod = 0
and (b) foré € (0,1) in Appendix A.3, wherey, = (14 J)(R — 1)/(29) is obtained by let-
ting i = Q/(R — 1). Given thatR = 1 + r/K is very close to 1, the value of along
the flip boundary is very large any, is close to 0. This implies that, far = 0, the funda-
mental price is stable for a wide range of valuesiofForé € (0,1), the stability region is
mainly bounded by the Hopf bifurcation boundary. Along thepHboundary,. decreases as
~ increases, implying that the stability of the steady stat@aintained when the speed of the
market maker and the extrapolation of the trend followeesbmlanced. When the fundamental
price becomes unstable, the Hopf bifurcation implies thaiharket price fluctuates (quasi) pe-
riodically around the fundamental price. Intuitively, etolation of the trend followers results
a sluggish reaction of the market price to the fundamenteépiThe interplay of such sluggish
reaction from the trend followers and the stabilizing foficam the fundamentalists leads the
market price fluctuate around the fundamental price. Nuraksimulations indicate that, near
the Hopf bifurcation boundary, the price either convergasaglically to the fundamental value
or oscillates regularly or irregularly. In addition, the pfdifurcation boundary shifts to the left
whend increases. This implies that the steady state is stalglizinen more weights are given

to the most recent prices.

3.3. The general case m € (—1,1). We now consider the complete market fraction model
DDS with both fundamentalists and trend followers by assgmi € (—1,1). Leta = as/a4

be the ratio of the absolute risk aversion coefficients.ritdwut that the stability and bifurcation
of the fundamental steady state are different from the pteviwo special cases and they are
determined jointly by the geometric decay rate and extatfoi rate of the trend followers, the
speed of the price adjustment of the fundamentalists tosvidnel fundamental steady state, and

the speed of adjustment of the market maker towards the tragkeegate demand.
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Proposition 3.4. For DDS (3.1) withm € (—1,1),

(2) if 6 = 0, the fundamental steady state is stable(fer 1 < p*, where

2Q)
(R—1)(1-=m)+a(R+a—-1)(1+m)

=

In addition, a flip bifurcation occurs along the boundary= ;* with « € [0, 1];

(2) if 6 € (0,1), the fundamental steady state is stable for

fh1 0<v<%
O<pu<

2, Yo < s
where
1+06 Q1 1-0 Q 1
1 = 5 1_m72_77 M2 = 5 1—m’7—’717

1+m (1+0)? 1+6

n=E-D+aR+a-1—- % B Ty h

In addition, a flip bifurcation occurs along the boundary= x4, for 0 < v <~y and a

Hopf bifurcation occurs along the boundaty= 15 for v > ~,.

Proof. See Appendix A.3. O
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FIGURE 3.1. Stability region and bifurcation boundaries fore (—1,1) and
d€(0,1).

The model with the fundamentalists only can be treated agerdgated case of the complete

model withé = 0. Ford € (0, 1), the fundamental steady state becomes unstable throungh eit
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flip or Hopf bifurcation, indicated in Fig.3.1, where

2 20
(R—1)(1-m)+a(R+a—-1)(1+m)

Variations of the stability regions and their bifurcatiamumdaries characterize different impacts
of different types of trader on the market price behaviommharized as follows.

The market fractioinas a great impact on the shape of the stability region amditedaries.

It can be verified that, v, 72 and ., up increase asn increases. This observation has two
implications: (i) the local stability region of the pararet(v, 1) is enlarged as the fraction of
the fundamentalists increases and this indicates a lialgileffect of the fundamentalists; (ii)
the flip (Hopf) bifurcation boundary becomes dominant asfthetion of the fundamentalists
(trend followers) increases, correspondingly, the mapkiee displays different behavior near
the bifurcation boundaries. Numerical simulations of tbhelmear system (3.1) show that the
price becomes explosive near the flip bifurcation boundauyconverges to either periodic or
quasi-periodic cycles near the Hopf bifurcation boundary.

The speed of price adjustment of the fundamentalists tasviédrel fundamental valugas an
impact that is negatively correlated to the market fractibms observation comes from the fact
that, asy increasesy; and hencey, and~; decrease. In other words, an increase (decrease) of
the fundamentalists fraction is equivalent to a decreamedase) of the price adjustment speed
of the fundamentalists toward the fundamental value.

The memory decay rataf the trend followers has a similar impact on the price béaas
the speed of the price adjustment of the fundamentalists. dO@s is because, adecreases,
both v, and~; increase. In particular, as — 0, then~,,72 — +4oc and the stability and
bifurcation is then characterized by the model with the ameéntalists only. On the other hand,
asé — 1, bothv, and~, tend toy; whilst iy tends to infinity and the stability and bifurcation
are then characterized by the model with the trend followety. In addition,z, increases as
0 decreases, implying the steady state is stabilizing as fidlowers put more weights on the
more recent prices.

The risk aversion coefficientsave different impact on the price behavior, depending en th
relative risk aversion ratio. Note that and hencei, increases fon = as/a; < o* and

decreases fo# > a*, wherea* = (R —1)/(R+a —1) € (1 — 1/R,1]. Hence the local
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stability region is enlarged (reduced) when the trend Yodls are less (more) risk averse than
the fundamentalists in the sensengf< a*a; (az > a*ay).

Overall, in terms of the local stability and bifurcation betfundamental steady state, a sim-
ilar effect happens for either a high (low) geometric decg,ror a high (low) market fraction
of the trend followers, or a high (low) speed of the price atinent of the fundamentalists to-
wards the fundamental value. This observation makes usotrate our statistical analysis of
the stochastic model (2.15) onm (the market fraction) and (the speed of the price adjustment

of the fundamentalists toward the fundamental value).

4. STATISTICAL ANALYSIS OF THE STOCHASTIC MODEL

In this section, by using numerical simulations, we examiagous aspects of the price
dynamics of the stochastic heterogeneous asset pricinglrf@d5) where both the noisy fun-
damental price and noisy demand processes are presentdnalysis is conducted by estab-
lishing a connection of the price dynamics between SDS j2ah8 its underlying DDS (3.1).
In so doing, we are able to obtain some theoretical insigtitsthe generating mechanisms of
various statistical properties, including those econoimptoperties and stylized facts observed
in high frequency financial time series.

Our analysis is conducted as follows. As a benchmark, weldistly review the stylized
facts based on the S&P 500. Secondly, we study the conndxgitareen the limiting behavior of
the stochastic model SDS and the stable attractors of tleendigtistic shell DDS. This limiting
behavior is studied from two different aspects: dynamiadidvior and limiting distribution.
To study the dynamical behavior, we use the concept of ranfidaed point to examine the
convergence of the market price series in the long-run. iftnéhg behavior can also be studied
by examining the invariant distribution properties frore tfbserved time series. It is found that
the asset prices of SDS (2.15) converge to the random fixatt pdien the DDS (3.1) has
either a stable steady state or a stable attractor. When itte gifr DDS explodes, the price
series of SDS does not converge to a random fixed point, bwieils donverge to an invariant
distribution. Thirdly, we use Monte Carlo simulations to dont a statistical analysis and test
on the convergence of the market prices to the fundamenta.dt is commonly believed that
the market price is mean-reverting to the fundamental pridbe long-run, but it can deviate

from the fundamental price in the short-run. By using nunasanulation, we analyze market
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conditions under which this is hold. Finally, by examinirng tautocorrelation (AC) structure
and invariant distribution of (relative) returns near eiint types of bifurcations, we study the
generating mechanism of different AC patterns. Most of @gults are very intuitive and can
be explained by various behavioral aspects of the moddljdimgy the mean reverting of the
fundamentalists, the extrapolation of the trend followdne speed of price adjustment of the
market maker, and the market dominance. The statistic@fsiaand tests are based on Monte

Carlo simulations.

4.1. Financial Time Seriesand Stylized Facts. As a benchmark, we include time series plots
on prices and returns for the S&P 500 from Aug. 10, 1993 to 24/\2002 and the correspond-
ing density distributions, autocorrelation coefficierA<E) of the returns, the absolute returns
and the squared returns, and summary statistics of thenestuAppendix B. They share some
common stylized facts in high-frequency financial timeagrincluding excess volatility (rela-
tive to the dividends and underlying cash flows), volatititystering (high/low fluctuations are
followed by high/low fluctuations), skewness (either negabr positive) and excess kurtosis
(compared to the normally distributed returns), long radgpendence (insignificant ACs of
returns, but significant and decaying ACs for absolute an@regureturns), etc. For a com-
prehensive discussion of stylized facts characterizingnitral time series, we refer to Pagan
(1996) and Lux (2004).

Recent structural models on asset pricing and heterogehediets have shown a relatively
well understood mechanism of generating volatility clusig skewness and excess kurtosis.
However, these are less clear on the mechanism of genetatiggange dependencg.In
addition, there is a lack of statistical analysis and testshe@se mechanisms. Our statistical
analysis is based on Monte Carlo simulations, aiming to &skab connection between vari-
ous AC patterns of the SDS and the bifurcation of the undsglypDS. Such a connection is
necessary to understand the mechanism of generatingestyizts, to replicate econometric
properties of financial time series, and to calibrate theehtwlfinancial data.

In the following discussion, we choose the annual volgtitit the fundamental price to be
20% (hencer, = (20/v/K)% with K = 250) and the volatility of the noisy demang = 1,

which is about 1% of the average fundamental price I&/el $100. For all of the Monte Carlo

Usee Lux (2004) for a recent survey on possible mechanisnmergiiimg long range dependence, including coex-
istence of multiple attractors and multiplicative noiseq@ss.
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simulation, we run 1,000 simulations over 6,000 time pegiadd discard the first 1,000 time
periods to wash out possible initial noise effects. Eachukation builds on two independent
sets of random numbers, one is for the fundamental pricetanather is for the noisy demand.
The draws are i.i.d. across the 1,000 simulations, but theessets of draws are used for

different scenarios with different sets of parameters.

4.2. Random Fixed Point and Limiting Behavior. One of the primary objectives of this pa-
per is to analyze the limiting behavior of SDS (2.15). For D@), the limiting behavior is
characterized by either stable fixed points or various statitactors. For a stochastic dynamic
system, the limiting behavior is often characterized bti@tarity and invariant probability dis-
tributions. We examine invariant distribution propert#<sSDS when the prices of DDS either
converge to a stable attractor (steady state or closed)aycéxplode.

On the other hand, as pointed out iwHn and Chiarella (2005), the invariance distribu-
tion does not provide information about the stability of atisinary solution generated by the
stochastic difference system. The theory of random dyransigstem (e.g. Arnold (1998))
provides the appropriate concepts and tools to analyzelsgraths and investigate their limit-
ing behavior. The central concept is that afdom fixed poirtt and its asymptotic stability,
which are generalizations of the deterministic fixed poird ds stability. Intuitively, a random
fixed point corresponds to a stationary solution of a staahdsgference system like (2.15) and
the asymptotic stability implies that sample paths cornzéogthe random fixed point wise for
all initial conditions of the system. We are interested ia éxistence and stability of a random
fixed point of SDS (2.15) when the deterministic DDS (3.1)pthgs a stable attractor. Since
SDS (2.15) is nonlinear, a general theory on the existendesility of a random fixed point
is not yet available and we conduct our analysis by numesicalilations.

For illustration, we choose the parameters as follows
y=21, §=085 p=02 m=0, w,r=05 and a=1,050.10  (4.1)

Recall thatm = 0 implies that there are equal numbers of fundamentalistchadists in the
market. For the DDS (3.1) with the set of parameters (4. lyapg Proposition 3.4 implies that
e refer to Arnold (1998) for mathematical definitions of dam dynamical systems and of stable random

fixed points and Bhm and Chiarella (2005) for economical applications to igsseing with heterogeneous mean
variance preferences.
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the fundamental value is locally asymptotically stabledfo 1 and unstable fore = 0.5,0.1, 0.
Our numerical simulations results for the DDS (3.1) witHeatiént values of are illustrated in
Fig. 4.1. Fig. 4.1 (a) shows the time series of prices witfedgnt initial values forv = 0.1,0.5
and1, Fig. 4.1 (b) shows the corresponding limiting phase ploteerms of( P, u;), and Fig.
4.1 (c) shows the limiting probability distributions of tpeices fora = 0.1 and0.5 over time
period fromt = 1,001 tot = 10,000. Fora = 0, the prices explode. One can see that,
for o = 1, the market prices with different initial values convergethe fundamental price.
However, fora = 0.5 and 0.1, with different initial values, prices do not corgesto each other,
but converge to the same quasi-periodic cycle (this is dstnated by the closed orbit in the
phase plots). In other words, the prices with differentahivalues converge to each other in
limiting distribution, as indicated by the price probatyiliimiting distributions in Fig. 4.1 (c).
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FIGURE4.1. Price time series with different initial values ftor= 0.1, 0.5 and
1 (a) and phase plots ¢, u;) (b) and limiting probability distributions of the
prices fora = 0.1 and0.5.

For the parameter set (4.1), Fig.4.2 shows the price dyrsapfithe corresponding SDS
(2.15) with four different values af = 1,0.5,0.1, 0 and (arbitrarily) different initial conditions
but with a fixed set of noisy fundamental value and demandgs®es. It is found that, for
a = 1,0.5 and0.1, respectively, there exists a random fixed point and pricés efferent
conditions converge to the fixed random point in the long rimfact, the convergence only
takes about 50, 100 and 400 time periodsdo+ 1,0.5 and 0.1, respectively. However, there
is no such stable random fixed point far = 0 and prices with different initial conditions

lead to different random sample paths. In fact, the samglespare shifted by different initial
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conditions. This result is very interesting. Fer= 1, the prices of the DDS with different
initial values converge to the stable steady state, whigepitices of the SDS with different
initial values converge to a random fixed point. kot 0.5 and 0.1, the prices of the DDS with
different initial values do not converge to each other, wiile prices of the SDS with different

initial values converge to a random fixed point.
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FIGURE 4.2. Price convergence wiiti=1 (a); 0.5 (b); 0.1 (c); and 0 (d) for
different initial conditions.

The long-run behavior can also be characterized by theitighgrobability distribution, this
is given in Fig. 4.3 for different values af. In Fig. 4.3 (a), the limiting probability distribu-
tions of the market prices and the underlying fundameniaepver time period = 1,001 to
t = 10,000 for « = 1,0.9,0.5,0.1, 1 are plotted. The distributions look very similar to the one
for the fundamental price far = 1, 0.9, 0.5, 0.1, but different fora: = 0 (in which the prices of
the DDS explode). In Fig. 4.3 (b), we observe a similar feafar the limiting return distribu-
tions. However, unlike the price distributions, the retdrstributions fora = 1,0.9,0.5,1 are
very different from that for the fundamental price, theysdlare some non-normality features,
including skewness and high kurtosis, as indicated by thelt®on return statistics and nor-

mality tests in Table 4.1. Therefore, we obtain stable iavardistribution (characterized by the
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a=1 a=09 a=05 a=01 a=0 ry

Mean -7.64E-06 -9.75E-06 -1.89E-05 -3.38E-05 0.001124 1.60E-07

Median -8.90E-05 -7.07E-05 -0.000112 -0.000103 -3.01E-06 0.@D011
Maximum 0.073622 0.072503 0.070621 0.071766 5.090196 0.045078

Minimum -0.063119 -0.064302 -0.072816 -0.090166 -4.269424 -0.®1562
Std. Dev. 0.013236 0.013129 0.012717 0.012432 0.101814 0.012689
Skewness 0.119060 0.117119 0.095103 0.038494 17.46148 -0.014001
Kurtosis 5.061570 5.098182 5.291521 5.777193 1526.675 2.973831

Jarque-Bera 1794.489 1857.181 2203.019 3216.136 9.68E+08 066120
Probability  0.000000 0.000000 0.000000 0.000000 0.000000 0.736373
Sum -0.076388 -0.097484 -0.189223 -0.338318 11.23968 0.001602
Sum Sqg. Dev. 1.751808 1.723556 1.617170 1.545346 103.6512 1%0984

TABLE 4.1. Summary statistics of returns far= 1,0.9,0.5,0.1,0 and that

for the fundamental price.

21

stable random fixed point) for the SDS when the DDS displagisistattractors. Fax = 0, the

price of the DDS explodes, while the prices of the SDS witFedént initial values stabilize the
price process to different random paths. However, theyosiverge to the same probability dis-
tribution, as indicated in Fig.4.3 (b). This analysis ithages different characteristics between a

stable random fixed point and a stable invariance distobuti
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FIGURE4.3. Limiting probability distributions of prices (a) aneturns (b) for
a=0,0.1,0.5 andl.
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In fact, the above result holds for other selections of patans. Theoretically, how the
stability of the deterministic system and the correspogditochastic system are related is a

difficult problem in generat®

4.3. Convergence of Market Price to the Fundamental Value. We now turn to the relation

between the market price and the fundamental price. It isnconty believed that the market
price is mean-reverting to the fundamental price in the long but it can deviate from the
fundamental price in the short-run. The following discassindicates that this is true under
certain market conditions.

As we know from the local stability analysis of DDS (3.1) aarigase iy has a similar effect
as an increase im. The previous discussion illustrates that, for fixed= 0, asa increases, the
speed of convergence of the market price to the random fixed ipereases. For SDS (2.15),
it is interesting to know how the stable random fixed poineiaited to the fundamental value
process.

To illustrate, for the parameter set (4.1), the averaged Saries of the difference of market
and fundamental priceB, — P; based on Monte Carlo simulations are reported in Fig. 4.4.
It shows that, asv increases, the deviation of the market price from the furetdaal price
decreases. That is, as the fundamentalists put more wemgtiiex estimated fundamental

price, the deviation of market price from the fundamentalgare reduced.

A statistical analysis is conducted by using Monte Carlo $mns for the given set of
parameters (4.1) with four different values @f The resulting Wald statistics to detect the
differences between market prices and fundamental prigegeported in Table 4.2. The null

hypothesis is specified as, respectively,

e Case 1:Hy: P, = P}, t = 1000, 2000, ..., 5000;

Case 2H, : P, = Py, t = 3000, 3500, 4000, ..., 5000;

Case 3Hy : P, = Py, t = 4000, 4100, 4200, ..., 5000;

Case 4H, : P, = P},t = 4000, 4050, 4100, ..., 5000;

Case 5,Hy : P, = P;,t = 4901, 4902, 4903..., 5000, which refers to the last one hundred

periods;

13t is well known from the stochastic differential equatigetature (e.g. see the examples in Mao (1997), pages
135-141) that, for continuous differential equations,iagdoise can have double-edged effect on the stability—
it can either stabilize or destabilize the steady state efdifferential equations. For our SDS (2.15), humerical
simulations show that adding a small (large) noise canlgtady (destabilize) the price dynamics when parameters
are near the flip bifurcation boundary of the DDS (3.1).
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FIGURE 4.4. Time series of price differend® — P; with a=0 (top left); 0.1
(top right); 0.5 (second left); and 1 (second right).

e Case 6Hy: P, = P, t =4951,4952, ..., 5000, which refers to the last fifty periods.

Notice that the critical values corresponding to the abesgt $tatistics come from the?
distribution with degree of freedom 5, 5, 11, 21, 100, andr&8pectively, at the 5% significant
level. We see that far = 0, all of the null hypothesis are strongly rejected at the S5§aificant
level. Fora = 0.5 and1, all of the null hypothesis cannot be rejected at the 5% Bagmt
level. We also see that whenincreases, the resulting Wald statistics decreases (e<asge
5 with a = 1). This confirms that when increasing, i.e. when the fundamentalists put more
weight on the fundamental price, the differences betweenriarket prices and fundamental
prices become smaller.

As we know that an increase i has similar effect to an increase of the market fraction
of the fundamentalists. The above statistic analysis tmiés that, as the fundamentalists
dominate the market (as increases), the market prices follow the fundamental pritesely.
Trend extrapolation of the trend followers can drive thekeaprice away from the fundamental

price. This result is very intuitive.
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a=0 a=01 a=0.5 «o=1 Critical value

Casel 100.585 13.289 5.225 3.698 11.071
Case2 99.817 13.964 6.782 4.358 11.071
Case3 121.761 24971 16.041 10.840 19.675
Case4 148.690 38.038 23.836 19.190 32.671
Case5 293.963 105.226 99.618 103.299 124.342
Case6 177.573 50.970 45.043 43.052 67.505

TABLE 4.2. Wald test statistics for the difference between thekatgrrice P,
and the fundamental pric&" for ny = n. = 0.4.

4.4. Bifurcations and Autocorrelation Structure. Understanding the autocorrelation (AC)
structure of returns plays an important role in the mark&tiehcy and predictability. It is
often a difficult task to understand the generating mechaoisvarious AC patterns, in partic-
ular those realistic patterns observed in financial timeesellt is believed that the underlying
deterministic dynamics of the stochastic system play aronapt role in the AC structure of
the stochastic system. But how they are related is not cleathd following discussion, we
try to establish such a connection by analyzing changestotarrelation (AC) structures and
limiting probability distributions of the stochastic retis when the parameters change near the
bifurcation boundaries of the underlying deterministicdalo The analysis on the AC struc-
ture is conducted through Monte Carlo simulations and thé/aiseon the limiting distribution
is conducted through the probability distribution of resirover time period = 1,001 to
t = 10,000 for the same underlying noise processes. These analyseadda some insights
into how particular AC patterns of the stochastic model &@racterized by different types of
bifurcation of the underlying deterministic system. Inmipiso, it helps us to understand the
mechanism of generating realistic AC patterns.

From our discussion in the previous section, we know thatdbal stability region of the
steady state is bounded by both flip and Hopf bifurcation blaues in general. To see how the
AC structure changes near the different types of the bifioodoundary, we select two sets of

parameters, denoted by (F1) and (H1), respectively,

(F1) =1,y =08, =5,6 = 0.85, w10 = 0.5 andm = —0.8, —0.5, —0.3, 0;
(H1) a =1,y =2.1, 1 =0.43,6 = 0.85, w0 = 0.5 andm = —0.95, —0.5,0, 0.5.
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FIGURE 4.5. Monte Carlo simulation on the average ACs of returnifiore=
—0.8, —0.5,—0.3, 0 for the parameter s¢¥'1).

For (F1) with different values of:, the steady state of DDS (3.1) is locally stabléiowever,
asm increases, we move closer to the flip boundaryor (H1), there exists a Hopf bifurcation
valuem € (0,0.005), the steady state is locally stable far= 0.5 > m and unstable fom =
—0.95,—-0.5,0 < m through a Hopf bifurcation. As: decreases, we are moving close to the
Hopf bifurcation boundary initially, and then crossing otlee boundary, and then moving away
from the boundary. Therefore, an increaseiiis stabilizing the steady state. It is interesting to
see that the market fraction has different stabilizingatf@ear different bifurcation boundaries.

For SDS (2.15), Figs. 4.5 and 4.6 report the average ACs divelieturn for four different
values ofm with parameter set (F1) and (H1), respectively. Tables BB in Appendix
B report the average ACs of returns over the first 100 lags, tineber in the parentheses are

standard errors, the number in the second row for each latharmstal number of ACs that

14The solutions become exploded when parameters are neaipHsffircation boundary and hence we only
choose parameters from inside the stable region.

15This means that the difference between the givemd the corresponding flip bifurcation value(m) becomes
smaller asn increases. Itis in this sense that an increase is destabilizing the steady state.
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are significantly (at 5% level) different from zero amongQQGimulations. It is found that
adding the noise demand does not change the nature of ACsuofis&t Given that there is
insignificant AC structure from the noisy returns of the farmental values, the persistent AC
patterns displayed in Figs. 4.5-4.6 indicate some conmestbetween AC patterns of SDS

(2.15) and the dynamics of the underlying DDS (3.1).
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FIGURE 4.6. Monte Carlo simulation on the average ACs of returnifiore=
—0.95, —0.5,0, 0.5 for the parameter séf{1).

For the parameter set (F1), the fundamental value of therlymuig DDS (3.1) is locally stable
and the AC structure of returns of SDS (2.15) changes as tlzmngders are moving close to
the flip bifurcation boundary. For the deterministic modet, know that an increase ot has
a similar effect to an increase of the speed of price adjustment of the fundamentalistg, or
the speed of price adjustment of the market maker. Correspgpnad the case oin = —0.8
in Fig. 4.5, anunder and over-reaction pattern characterized by oscillatory decaying ACs

with AC(z) > 0 for small lags followed by negative ACs for large lags is oledrwhen the

16Noisy processes in our model do not change the qualitatiwgaaf the AC of returns, however, they do change
the AC patterns of the absolute and squared returns. This isaddressed in He and Li (2055
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parameters are far away from the flip bifurcation boundanguitively, this results from the
constantly price under-adjustment from either the fundaaiests or the market maker. As
the parameters are moving toward the flip bifurcation bomydauch as in the case of =
—0.5,—0.3in Fig. 4.5, arover-reaction pattern characterized by increasing ACs witfi(i) <
0 for small lags appears. As the parameters move closer to the flip boundetyas whem: =
0 in Fig. 4.5, this over-reaction pattern becomesrang over-reaction pattern characterized
by an oscillating and decaying ACs which are negative for edg land positive for even lags.
These results are very intuitive. When the market fractidric@fundamentalists are small, it
is effectively equal to a slow price adjustment from eithex fundamentalists or market maker,

leading to under-reaction. As increases, such adjustment becomes strong, leading teean ov

H 17
reaction:.
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FIGURE 4.7. Limiting probability distributions of market returfisr the para-
meter set (a)YF'1) with m = —0.8,—-0.5,—0.3,0, and (b) (H1) with m =
—0.95,—-0.5,0,0.5.

The limiting distributions of returns and the correspomgdstatistics near the flip bifurcation
boundary for the parameter sdt1) with different values ofn are given in Fig. 4.7 (a) and
Table 4.3, respectively. It is observed that the returnqat@ormally distributed with positive
skewness and high kurtosis for all valuesmof This non-normality underpins the strong AC
structure displayed in Fig. 4.5. In addition, msincreases, the standard deviation increases
because of the over-reaction of the fundamentalists nedfiphbifurcation boundary.
1Based on this observation, one can see that both the fundalisenand market maker need to react to the market

price ina balanced waijn order to generate insignificant AC patterns observed enfiral markets. Essentially,
this is the mechanism we are using to characterizing thedange dependence in the following subsection.
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m=—-08 m=-05 m=-03 m=0

Mean 3.95E-05 0.000126 0.000244 5.08E-05
Median -0.000116 0.000253 0.000336 -1.25E-05
Maximum 0.082283 0.111046 0.125501 0.039912
Minimum -0.078098 -0.105505 -0.136236 -0.035434
Std. Dev. 0.016142 0.020343 0.025387 0.010419
Skewness 0.072327 0.135512 0.078667 0.039038
Kurtosis 4547681 4.057518 3.620744 2.997571
Jarque-Bera 1006.767 496.5827 170.8656 2.542365
Probability ~ 0.000000 0.000000 0.000000 0.280500
Sum 0.394987 1.261548 2.438208 0.507550
Sum Sq. Dev. 2.605493 4.137975 6.444583 1.085374

TABLE 4.3. Summary statistics of returns for the parameter( 8@ with
m = —0.8,—-0.5,—-0.3,0.

Near the Hopf bifurcation boundary, the AC structure bebaliferently when parameters
cross the Hopf boundary from the unstable region to the stadglion, see Fig. 4.6. For small
m, for examplen = —0.95, —0.5, the steady state of the deterministic model is unstablatand
bifurcates to either periodic or quasi-periodic cycles. the stochastic model,sirong under-
reaction AC pattern characterized by significantly decaying positi¢’(i) for small lags: and
insignificantly negativedC (i) for large lags, as illustrated in Fig. 4.6 fom = —0.95.18 This
Is partially due to the dominance of the trend followers whltoiv the lagged learning process.
As m increases, for example to = —0.5 and0, the trend followers becomes less dominated.
As the result, the strong under-reaction pattern is replégean over-reaction pattern. As
increases further, for exampleto = 0.5, the steady state of the deterministic model becomes
stable and the AC structure of the stochastic return in Egreduces to an insignificant under-
reaction pattern.

The limiting distributions of returns and the correspomgstatistics near the Hopf bifurcation
boundary for the parameter €1 1) for different values ofn are given in Fig. 4.7 (b) and Table
4.4, respectively. Different from the previous case neafflip bifurcation boundary, the returns
appear to be closer to normal distribution (as indicatedheyprobabilities of the Jarque-Bera
tests) with less significant skewness and kurtosis. Thigrpids the insignificant AC structure

displayed in Fig. 4.6.

8The AC structure discussed here are actually combined m#is@f the under-reacting trend followers and over-
reacting fundamentalists. This leads price to be undeatedafor short lags, over-reacted for medium lags, and
mean-reverted for long lags.
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m=-095 m=-05 m=0 m=0.5
Mean 3.60E-05 4.70E-05 5.08E-05 5.46E-05
Median 6.80E-05 -5.95E-05 -1.25E-05 8.00E-05
Maximum 0.040650 0.041044 0.039912 0.039438
Minimum -0.042000 -0.035635 -0.035434 -0.034406
Std. Dev. 0.010408 0.010310 0.010419 0.010669
Skewness 0.031815 0.030451 0.039038 0.042038
Kurtosis 3.137758 2.993963 2.997571 2.991432
Jarque-Bera 9.594179 1.560606 2.542365 2.975951
Probability 0.008254  0.458267 0.280500 0.225829
Sum 0.360021  0.469831 0.507550 0.545647
Sum Sqg. Dev. 1.083105 1.062926 1.085374 1.138265

TABLE 4.4. Summary statistics of returns for the parameter( &&t) with
m = —0.95,-0.5,0,0.5.

The above discussion is based®r= 1. Similar results are observed far< 1. Fig. B.2 in

Appendix B plots the results for the following set of paraenst
(FH) : a=0.5v=0.8,u=>50=0.85, m = —0.9,-0.5,0,0.9.

In this case, small values ai are close to the Hopf boundary and large values:are close
to the flip boundary. As we can see from the AC patterns in Fig.iBAppendix B that, as
increases, the AC patterns change from strong under-ogatctiunder- and over-reaction, and
to over-reaction, and then to strong over-reaction.

In all cases, the ACs decay and become insignificant afterrtddw lags (the first 5 lags for
under/over-reaction and the first 10 lags for strong reaktiBriefly, activity of the fundamen-
talists (either high fraction or high speed of price adju=tith are responsible for over-reaction
AC patterns and extrapolation from the trend followers asponsible for the under-reaction
AC patterns. In addition, a strong under-reaction AC pagtef SDS is in general associated
with Hopf bifurcation of the DDS, a strong over-reaction Aattern is associated with flip bi-
furcation, and under and over-reaction AC patterns arecagsa with both types of bifurcation
(depending on their dominance). This statistical analysiboth the AC structure and limiting

distribution gives us insights into how the AC structure loé ISDS are affected by different

types of bifurcation of the underlying DDS.

4.5. Some other issues. One of the related issues to our early discussion is the tange
dependence founded in daily financial time series includiregS&P 500. It corresponds to

an insignificant AC patterns for the returns, but signific&@tpatterns for the absolute returns
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and squared returns. Guided by the above analysis, we delewting set of parameters:
a=01y=03u=2m=0,6 =0850b= 1. For this set of parameter, the steady state
fundamental pricé® of the DDS is locally asymptotically stable. The price anttine behaviors

are reported in Fig. 4.8.
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FIGURE 4.8. Time series on prices and returns, density distribuaiod auto-
correlation coefficients (ACs) of the returns, the squaréans and the absolute
returns.

In this case, we observe from Figure 4.8 a relatively hightdsis, volatility clusterings,
insignificant ACs for returns, but significant ACs for the albgeland squared returns. This
result shows that the model is able to produce relativellisteavolatility clustering and the
long-range dependence. A more detailed analysis of thergigmg mechanism on the long-
range dependence and statistical estimates and tests dradddnte Carlo simulation can be
found in He and Li (200B).

Another related issue is the profitability and survivapibf the fundamentalists and chartists.
A systematic analysis of how different, fixed fractions effgurvivability and profitability under
the current framework is examined in He and Li (2805Such an approach is perhaps less
general than the strategy switching models (e.g. Brock anchrbes (1998)) in which the

market fractions are endogenous. We leave this to the fgturyy.
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5. CONCLUSION

It is interesting and important to see how the determinidgicamics and noise interact with
each other. A theoretical understanding of the connectetseen certain time series proper-
ties of the stochastic system and its underlying detertingrdynamics is important but difficult,
and a statistical analysis based on various econometiig $eems necessary. Such an analysis
helps us to understand potential sources of generatingtiedime series properties.

The model proposed in this paper introduces a market frastoodel with heterogeneous
traders in a simple asset-pricing framework. It contributethe literature by incorporating a re-
alistic trading period, which eliminates the untenabl&-free rate assumption. By focusing on
different aspects of financial market behavior includingkeidominance and under and over-
reaction, we investigate the relationship between detestic forces and stochastic elements
of the stochastic model. A statistical analysis based ontM@arlo simulations shows that
the limiting behavior and convergence of the market pri@sloe characterized by the stabil-
ity and bifurcation of the underlying deterministic systelm particular, we show that various
under and over-reaction autocorrelation patterns of mstean be characterized by the bifur-
cation nature of the deterministic system. The model is &blgenerate some stylized facts,
including skewness, high kurtosis, volatility clustereumgd long-range dependence, observed in
high-frequency financial time series.

It is worth emphasizing that all these interesting qualieaind quantitative features arise
from our simple market fraction model with fixed market fiant It would be interesting to
extend our analysis from the current model to a changingifnaenodel developed recently
in Dieci et al. (2006), in which some part of the market fractions are goseroy the herding
mechanism (for instance, see Lux and Marchesi (1999)) andttier part follows some evolu-
tionary adaptive processes (see Brock and Hommes (1997, &898stance). Taking together
the herding and switching mechanisms and the findings inpidyer, we hope we can better
understand and characterize a large part of the stylizes dddinancial data. We hope this will

lead to better models for calibrations.
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APPENDIXA. PROOFS OFPROPOSITIONS

A.1. Proof of Proposition 3.1. For P; = P, the demand function for the fundamentalists becomes

(1—a—R)(P,—P)
ar(1+r2)o?

Let (P, ug, vi) = (Po,uo,vo) be the steady state of the system. ThEn u, vo) satisfies

21t =

(1—a—R)(Py—P)
ai(1+1r2)o?
v(Po —ug) — (R —1)(Py — P)

Py= P+ 5|1 +m)

1-— A.l

+(1=m) a202(1+ 12 4 buyg) ’ A1)

ug = dug + (1 — 5)P0, (AZ)
Vo :5’00—{—5(1 —5)(P0—U0)2. (A.3)

One can verify that Py, ug, vo) = (P, P, 0) satisfies (A.1)-(A.3); that is the fundamental steady state is
one of the steady state of the system (3.1). It follows from (A.2)-(A.8)&a [0, 1) that Py = ug, vo =
0. This together with (A.1) implies thd®, = P. In fact, if Py # P, then (A.1) implies that

L e R+ 21— R) =0, (A.4)
a2

ax
However, sincex € [0,1], R = 1+r/K > 1andm € [—1, 1], equation (A.4) cannot be hold. Therefore
the fundamental steady state is the unique steady state of the system.

A.2. Proof of Proposition 3.2. For P} = P andm = 1, equation (3.1) becomes

(R+a—1)(P, — P)

A.5
ar(1+r2)o? ’ (A.5)

Py =PFP—p

which can be rewritten as - B
Piy1 — P=\FP — P, (A.6)

where
R4+a—-1

'ual(l +7r2)o?’
Obviously, from (A.6), the fundamental prideis globally asymptotically attractive if and only|ik| <
1, which in turn is equivalent t0 < p < p,.

A=1-—

110.1(0)

Flip Boundary

po.a(1) x )

1

FIGURE A.1. Stability region and bifurcation boundary for = 1.
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A.3. Proof of Propositions 3.3 and 3.4. For P = P, system (3.1) is reduced to the following 3-
dimensional difference deterministic system
Pyy1 = Fi(Prug, vy),
upr1 = Fo( Py, ug, vy), (A.7)
vir1 = F3( Py, ug, vp),

where
v (1—a—R)(P—-P)
Fy(P. =P+ =|(1
1( ,U,U) + 9 ( +m) a1(1—|—7“2)0%
V(P —u) = (R—-1)(P - P)
1—
+(1=m) a20?(1+ 12+ bv) ’
F>(P,u,v) = éu+ (1 —0)F1(P,u,v),
F3(P,u,v) = v+ (1 —6)(Fy —u)?.
Denote a
a=-2, Q = 2as(1 + 1)o7
ap
At the fundamental steady state, P, 0),
OF, 1%
=A=1+—=[(1 l1—a-— 1— 1 —
o + Ll ma(t—a - R)+ (1= w1+ - R,
0F; puy(l —m) 0F,
ou Q ’ ov 0
0F; or, B orFy
5P =(1-0)A, 5 =C=6+(1-9)B, 5 = 0;

OF; _OF; _OFy
oP  du v

Then the Jacobian matrix of the system at the fundamental steady/ staggven by

A B 0
J=| 1-0)4 C 0 (A.8)
0 0 0
and hence the corresponding characteristic equation becomes
A'(M) =0,

where
F(A) =X —[A+35+ (1—6)B]\+6A.
It is well known that the fundamental steady state is stable if all three eilyss/g satisfy |\;| < 1
(¢ =1,2,3), wherehs = 0 and\; ; solve the equatiofi(\) = 0.
Ford = 0,I'(A) = A]A — (A+ B)]. The first result of Proposition 3.3 is then follows freal < A =
A+ B <land\=—-1whenA+ B =1.
Ford € (0, 1), the fundamental steady state is stable if

(). T(1) > O;
(i). T(~1) > 0;
(iii). 64 < 1.

It can be verified that

(i). Fora € [0,1],I'(1) > 0 holds;
(i). T'(—1) > 0is equivalent to

either v >y or 0<y < and  0< p < pq,
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where
1406 14+m
Yo 55 [(R—1)+a(R+ « )1_m],
1+ Q1

=5 1—myy—7

(iii). The conditiond A < 1 is equivalent to
either v <=y or v > 7 and  0< p < o,

where
14+m
1-5 Q1
s T—my -
Noting that, ford € (0,1), 71 < 70 < 72, where
(1+6)? 1+m
= -1 1=
Y 5 (R—1)+a(R+ « )1—m

solves the equation; = po. Also, p; is an increasing function of for v < -~ while u9 is a decreasing
function of v for v > ~;. Hence the two conditions for the stability are reduce® ta p < p, for
0 <~ <y and0 < u < s fory > 7. In addition, the two eigenvalues Bf\) = 0 satisfy\; = —1
andXy € (—1,1) whenp = p; and A 2 are complex numbers satisfying; »| < 1 whenp = puo.
Therefore, a flip bifurcation occurs along the boundary 111 for 0 < v < 7 and a Hopf bifurcation
occurs along the boundary= ps for v > ~.

1t oo

Flip Boundaryu = % ( )2( s b |
1—8)(R—1

P Flip Boundaryu = fi1
R—1 R—1

Hopf Boundaryu = fia

R—1 %0 72

@ d=0 (b) &€ (0,1)

FIGURE A.2. Stability region and bifurcation boundaries for thentd follow-
ers and market maker model with= 0 (a) ands € (0, 1) (b).
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APPENDIXB. MONTE CARLO SIMULATIONS AND STATISTICAL RESULTS

Econometric Properties and Statistics of the S&P. 3@@his appendix, we include time series plots
on prices and returns for the S&P 500 from Aug. 10, 1993 to July 24 #0Big.B.1. The corresponding
density distributions, autocorrelation coefficients (ACs) of returngplatesreturns and squared returns
are also illustrated in Fig. B.1. Table B.1 presents sum %tr&/ statistics of thesreturn
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FIGUREB.1. Time series on prices and returns, density distrilbugiod auto-
correlation coefficients (ACs) of the returns, the squaradns and the absolute
returns for the S&P 500 from Aug. 10, 1993 to July 24, 2002.

TABLE B.1. Summary statistics of returns for the S&P 500.

Index Mean Median Max. Min. Std. Dev. Skew. Kurt. Jarque-Berg
S&P500 | 0.000194| 0.0000433| 0.057361| -0.070024| 0.0083 | -0.504638| 8.215453| 2746.706
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TABLE B.2. Autocorrelations of; for the flip-set parameter'1).

Lag m = —0.8 m=—0.5 m = —0.3 m=20
1 0.2933(0.0169) -0.0256 (0.0149) -0.3076 (0.0136) -0.8602 (0)0084
993 455 1000 1000
2 0.1664 (0.0162) -0.0760 (0.0152) -0.0278 (0.0169) 0.6939 (0.0161)
988 935 720 1000
3 0.0636(0.0161) -0.0782 (0.0157) -0.0328 (0.0168) -0.5899 (0)0205
883 915 456 1000
4 -0.0112(0.0164) -0.0621 (0.0158) -0.0102 (0.0168) 0.5123 (0)0233
297 826 115 998
5 -0.0630(0.0168) -0.0420 (0.0158) -0.0058 (0.0167) -0.4528 (0)025
868 625 79 986
6 -0.0958 (0.0168) -0.0262 (0.0158) -0.0034 (0.0167) 0.4033 (0)0262
949 379 70 978
7 -0.1116 (0.0169) -0.0134(0.0158) -0.0014 (0.0167) -0.3631 (0)026
968 163 72 969
8 -0.1148(0.0169) -0.0052 (0.0158) -0.0006 (0.0166) 0.3282 (0)0274
976 57 54 955
9 -0.1102 (0.0169) -0.0015 (0.0159) -0.0010 (0.0167) -0.2981 (8)027
966 58 53 934
10 -0.0989 (0.0169) 0.0008 (0.0159) -0.0009 (0.0167) 0.2712 (0)0280
953 63 57 916
20 0.0248 (0.0179) -0.0006 (0.0160) -0.0001 (0.0167) 0.1188 (0)0278
338 51 57 690
30 -0.0036(0.0181) 0.0002 (0.0160) 0.0002 (0.0167) 0.0565 (0.0268)
96 51 54 463
40 -0.0020 (0.0180) 0.0005 (0.0160) 0.0007 (0.0167) 0.0291 (0.0262)
88 39 47 299
50 0.0015(0.0180) 0.0006 (0.0160) 0.0009 (0.0167) 0.0150 (0.0259)
77 66 56 230
60 -0.0017 (0.0181) -0.0014 (0.0161) -0.0013(0.0167) 0.0059 (9)025
99 56 54 218
70 0.0012(0.0181) 0.0003(0.0161) 0.0001 (0.0167) 0.0046 (0.0259)
84 54 50 197
80 0.0005(0.0180) 0.0013(0.0161) 0.0014 (0.0167) 0.0032 (0.0258)
74 76 64 181
90 -0.0006 (0.0181) -0.0006 (0.0161) -0.0007 (0.0167) 0.0016 (9)025
84 64 54 184
100 -0.0003 (0.0181) -0.0005 (0.0162) -0.0001 (0.0168) 0.00235%8)02
69 48 52 192
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TABLE B.3. Autocorrelations of, for the Hopf-set parametéfi 1).

Lag m = —0.95 m=—0.5 m =20 m = 0.5
1 0.0746 (0.0345) 0.1037 (0.0196) 0.0688 (0.0176) 0.0205 (0.0168)
898 964 582 730
2 0.0825(0.0326) 0.0802 (0.0189) 0.0429 (0.0174) 0.0064 (0.0169)
811 868 469 687
3 0.0720(0.0315) 0.0593(0.0187) 0.0241(0.0173) -0.0020 (0.0170)
788 672 434 618
4 0.0631(0.0309) 0.0426(0.0183) 0.0116(0.0173) -0.0059 (0.0171)
756 493 422 529
5 0.0535(0.0301) 0.0294 (0.0182) 0.0023(0.0174) -0.0079 (0.0171)
721 380 436 418
6 0.0456 (0.0292) 0.0185(0.0182) -0.0050 (0.0173) -0.0099 (0.0171)
677 301 398 339
7 0.0388(0.0288) 0.0107 (0.0180) -0.0080 (0.0173) -0.0085 (0.0170)
587 272 366 244
8 0.0333(0.0287) 0.0049 (0.0179) -0.0095 (0.0171) -0.0068 (0.0170)
498 257 325 161
9 0.0309 (0.0278) -0.0009 (0.0178) -0.0111 (0.0173) -0.0066 (0)0170
433 290 313 154
10 0.0250 (0.0268) -0.0050 (0.0177) -0.0116(0.0172) -0.0055 (0)017
358 281 245 106
20 0.0021 (0.0230) -0.0152 (0.0175) -0.0048 (0.0171) -0.0012 (0)017
88 228 62 53
30 -0.0035(0.0215) -0.0058 (0.0174) 0.0002 (0.0171) 0.0003 (0)0170
78 76 53 58
40 -0.0066 (0.0201) -0.0013(0.0175) -0.0003 (0.0172) -0.000470)01
84 54 50 a7
50 -0.0053(0.0191) 0.0002(0.0177) 0.0001(0.0172) 0.0002 (0.0170)
80 56 63 62
60 -0.0059 (0.0193) -0.0005 (0.0175) -0.0012(0.0172) -0.00137@)01
85 53 60 54
70 -0.0045 (0.0190) 0.0008 (0.0175) 0.0006 (0.0172) 0.0006 (0.0171)
72 61 59 56
80 -0.0034 (0.0186) 0.0008 (0.0175) 0.0009 (0.0172) 0.0010 (0.0170)
73 61 61 58
90 -0.0046 (0.0185) -0.0013(0.0176) -0.0008 (0.0172) -0.00097@)01
73 60 65 63
100 -0.0037 (0.0183) -0.0001 (0.0178) -0.0002 (0.0173) -0.00037Q)0
56 55 50 43
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