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1 Literature Review and Motivation

1.1 Stylized Factors and Long Memory

• Homogeneous Expectations and Representative Agents

• Efficient Market Hypothesis

• Excess volatility—relative to the dividends and underlying cash flows

• Volatility clustering—high/low fluctuations are followed by high/low
fluctuations

• Skewness and higher excess kurtosis

• Long memory—the long-range dependence—hyperbolic decline of
its autocorrelation function (Ding Engle and Granger (1993))
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Figure 1: Time series on daily prices and returns, absolute returns,
squared returns, return density and their autocorrelation coefficients
(ACs) S&P500 from 19/11/1983 to 19/11/2003.
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1.2 Econometric Models

• GARCH—Engle (1982)

– produces fat tails

– captures the short-run dynamics of volatility autocorrelations

– implied decay of the volatility autocorrelation isexponential rather
than hyperbolic

– no economic explanation

• Power-Law Decay Index and ARFIMA—Baillie (1996)

• Volatility clustering and (FI)GARCH —Engle (1982) and Bollersley
(1986)
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1.3 Heterogeneity and Bounded Rationality

• Asset pricing and investor psychology:Hirshleifer(2001)

• Theoretically oriented—Financial market as nonlinear adaptive evo-
lutionary system:

– Adaptive Rational Beliefs of Heterogeneous Agents and Learn-
ing: Day and Huang (1990), Chiarella(1992), Brock and Hommes
(1997, 98), Hommes (2001), Chiarella and He (2001, 2002)

– Herd Behaviour and the Master Equation: Lux (1995)

– Chiarella and He (2002)—Risk and Learning Effects.

• Computationally oriented:

– Santa Fe stock market: Farmer and Lo (1999), LeBaron (2000)

– Learning: Bullard and Duffy (1999)

– Genetic Algorithms: Chen and Yeh (1997, 2002).
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1.4 Mechanism in Generating Long Memory

• Herding Model—Alfarano and Lux (2003)

– To incorporate herding and contagion phenomena

– Fundamentalists and noise traders

– Price changes are generated by either exogenous inflow of new
information about fundamentals or endogenous changes in de-
mand and supply via the herding mechanism

– The model is able to produce realistic long memory feature

– The underlying mechanism:

∗ recurrent switches and bi-modal distribution of noise traders
in the optimistic and pessimistic groups of individuals;

∗ the underlying deterministic model displays back and forth
movement through a Hopf bifurcation scenario

– However the power-law disappears as popu. size increases
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• Switching Model—Gaunersdorfer and Hommes (2000)

– Extended Brock and Hommes’s Adaptive Belief System

– Nonlinear deterministic model

– Switching between predictors and co-existing attractors

– Adding noise to the deterministic system may trigger switches
between low- and high-volatility phases

– Allowing infinite many agents, comparing to herding model

– Comparison with empirical records is mainly based upon visual
inspection, or upon a few realizations of the model

– Lacking statistic justification
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1.5 Intuitive Motivations

• Goals of this literature:

– to model bounded rationality and explain market behaviourand
price volatility

– to replicate the econometric properties and stylized facts of fi-
nancial time series, in particular, of high frequency data

– to understand the generating mechanisms

– to estimate the model

• Question: How far are we from the goals, in particular for high-
frequency modelling?

• Answer:

– Promising mathematically

– Unsatisfying statistically
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• Current issues:

– Unrealistic trading period

– Interplay of noisy and deterministic dynamics

• What do we expect?

– Market price should follow the fundamental price when the market
is dominated by the fundamental traders.

– Price deviation from the fundamental may be expected when the
market is dominated by non-fundamental traders, such as trend fol-
lowers.

– Excess volatility is expected when the interaction among different
trading strategies is high.

– Non-fundamental trading strategies may generate better return over
certain short time horizons, but may not be the case in a long-run.

Tony He UTS September 7, 2007 1-12



• Market Fraction (MF) Model

– A simple stochastic model with fundamentalists and trend followers

– Realistic trading period

– The model achieves what we expected

– Convergence of market price to fundamental value, long/short-run
profitability, survivability of chartists and various unde r/over-reaction
autocorrelation patterns can be explained by the stability and bifur-
cations of the underlying deterministic system.

– Provides an economic mechanism on the long memory—Heterogeneity,
Trend Chasing and Lagged Learning

• Approaches:

– Stability and bifurcation analysis for the deterministic model

– Monte Carlo simulations and statistical analysis for the stochastic
model
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2 Market Fraction Model via A Market Maker

2.1 Portfolio optimisation problem

• Notations:

Pt : Price (ex dividend) per share of the risky asset at timet;

Dt : Dividend at time t;

K : Trading frequency; K = 250 (daily);

r : Annual risk free rate ; R = 1 + r/K

say for r = 5%p.a., R = 1.0002

Wi,t : Wealth of agenti at time t;

Wi,0 : Initial wealth of agent i.
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• Portfolio optimization problem

– Assets: one risky asset and one risk-free asset;

– Wealth

Wt+1 = RWt + [Pt+1 + Dt+1 − RPt]zt.

– Optimal demandzi,t:

max
πi,t

Ei,t[U(Wi,t+1)].

whereUi(W ) = −e−aiW , Rt+1 = Pt+1 + Dt+1 − R Pt,

zi,t =
Ei,t(Rt+1)

aiVi,t(Rt+1)
.
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2.2 Heterogeneous Beliefs

• Fundamentalists:

– Expectation

E1,t(Pt+1) = (1 − α)Pt + αP ∗

t+1,

V1,t(Pt+1) = σ2
1,

– α ∈ [0, 1] measures the speed of price adjustment toward the
fundamental price, or confidence level of the fundamentalists on
the fundamental price.

– The fundamental priceP ∗

t :

P ∗

t+1 = P ∗

t [1 + σǫǫ̃t], ǫ̃t ∼ N (0, 1).
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• Trend followers:

– Expectation:

E2,t(Pt+1) = Pt + γ(Pt − ut),

V2,t(Pt+1) = σ2
1 + b2vt,

whereγ measures the extrapolation rate.

– Sample mean and variance

ut = δut−1 + (1 − δ)Pt,

vt = δvt−1 + δ(1 − δ)(Pt − ut−1)
2.

are assumed to follow geometric decay probability process:

Price history :{Pt, Pt−1, Pt−2, · · · }

Probability :(1 − δ){1, δ, δ2, · · · },
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– δ: memory parameter measures the geometric decay rate.

∗ For δ = 0, the sample meanut = Pt is the latest observed price;
∗ For δ = 0.1 gives a half life of 0.43 day;
∗ For δ = 0.5 gives a half life of 1 day;
∗ For δ = 0.95 gives a half life of 2.5 weeks;
∗ For δ = 0.999 gives a half life of about 2.7 years.
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2.3 Market Equilibrium via a Market Maker

• Market fractions: fundamentalists n1 and trend followers n2

• Denotem = n1 − n2.

• The excess demand

ze,t ≡
1 + m

2

E1,t[Rt+1]

a1V1,t[Rt+1]
+

1 − m

2

E2,t[Rt+1]

a2V2,t[Rt+1]
.

• The market maker takes a long (whenze,t < 0) or short (when
ze,t > 0) position so as to clear the market and adjusts the price :

Pt+1 = Pt + µze,t + δ̃t,

where µ measures speed of price adjustment,̃δt ∼ N(0, σ2
ǫ ) cap-

tures a randomly unexpected demand noise process.
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• The complete stochastic model:























































Pt+1 = Pt +
µ

2

[

1 + m

a1(1 + q)σ2
1

[α(P ∗

t+1 − Pt) − (R − 1)(Pt − P̄ )]

+ (1 − m)
γ(Pt − ut) − (R − 1)(Pt − P̄ )

a2σ2
1(1 + q + b vt)

]

+ δ̃t,

ut = δut−1 + (1 − δ)Pt,

vt = δvt−1 + δ(1 − δ)(Pt − ut−1)
2,

P ∗

t+1 = P ∗

t [1 + σǫǫ̃t].
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2.4 Wealth Dynamics

• Auxiliary functions:

V1,t = 1/W1,t, V2,t = 1/W2,t.

Then


















V1,t+1 =
V1,t

R + Rt+1z1,tV1,t

,

V2,t+1 =
V2,t

R + Rt+1z1,tV1,t

.
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• Absolute wealth proportion:

w1,t =
W1,t

W1,t + W2,t

, w2,t =
W2,t

W2,t + W2,t

.

• Market wealth proportion:


















w̄1,t =
(1 + m)W1,t

(1 + m)W1,t + (1 − m)W2,t

,

w̄2,t =
(1 − m)W2,t

(1 + m)W1,t + (1 − m)W2,t

.
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3 Deterministic System—Stability and Bifurca-

tion Analysis

• (Pt, ut, vt) = (P̄ , P̄ , 0) is the unique steady state of the system.

• for δ = 0, the fundamental steady state is stable for0 < µ < µ∗. ,
where

µ∗ =
2Q

(R − 1)(1 − m) + a(R − α)(1 + m)
.

In addition, a flip bifurcation occurs along the boundary µ = µ∗

with α ∈ [0, 1];

• for δ ∈ (0, 1), the fundamental steady state is stable for

0 < µ <
µ1 0 ≤ γ ≤ γ0

µ2, γ0 ≤ γ,
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where

µ1 =
1 + δ

δ

Q

1 − m

1

γ2 − γ
,

µ2 =
1 − δ

δ

Q

1 − m

1

γ − γ1

,

γ1 = (R − 1) + a(R − α)
1 + m

1 − m
,

γ0 =
(1 + δ)2

4δ
γ1, γ2 =

1 + δ

2δ
γ1.

In addition,

– a flip bifurcation occurs alongµ = µ1 for 0 < γ ≤ γ0 and

– a Hopf bifurcation occurs alongµ = µ2 for γ ≥ γ0.
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Figure 2: Stability region and bifurcation boundaries for m ∈ (−1, 1)

and δ ∈ (0, 1).
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• Implications:

– The market fraction m has a great impact on the stability:

∗ The stability region is enlarged as the fraction of the funda-
mentalists increases

∗ The flip bifurcation boundary becomes dominant as the frac-
tion of the fundamentalists increases

∗ The Hopf bifurcation boundary becomes dominant as the frac-
tion of the trend followers increases

– The speed of price adjustment of the fundamentalists towards the

fundamental value has a similar impact to the market fraction

– The memory decay rate of the trend followers has a similar impact
on the price behavior to the market fraction.
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4 Statistical Analysis of the Stochastic Model

We choose annual volatility of the fundamental price to be 20% p.a.,
K = 250, and the volatility of the noisy demandσδ = 1, which is
about 1% of the average fundamental price levelP̄ = $100.

4.1 Random Fixed Point and Limiting Behaviour

• A random fixed point: a stationary solution of a stochastic differ-
ence system

• The asymptotic stability: sample paths converge to the random fixed
point point wise for all initial conditions of the system
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• We are interested in the existence and stability of a random fixed
point of SDS when the deterministic attractor, e.g. fixed point, of
DDS is asymptotical stable.

• Parameters:

γ = 2.1, δ = 0.85, µ = 0.43, m = 0, w1,0 = 0.5,

σǫ = 20%p.a., σδ = 1, α = 1, 0.5, 0.1, 0.

• Surprising results:

– Stabilizing effect of the noisy process—for α = 0, the price explodes
for DDS and converges to a stationary distribution for SDS

– The stable attractors of the DDS correspond to the stable random
fixed points.
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• Limiting distributions:

– The market price distributions look very similar to the one for the
fundamental price for α = 1, 0.9, 0.5, 0.1, but different for α = 0;

– The return distributions for α = 1, 0.9, 0.5, 0 are very different
from that for the fundamental return
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Figure 3: Price convergence withα=1 (a); 0.5 (b); 0.1 (c); and 0 (d) for
different initial conditions.
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4.2 Convergence of Market Price to the Fundamental Value

• The null hypothesis to detect the differences between market prices
and fundamental prices is specified as, respectively,

– Case 1:H0 : Pt = P ∗

t , t = 1000, 2000, ..., 5000;

– Case 2,H0 : Pt = P ∗

t , t = 3000, 3500, 4000, ..., 5000;

– Case 3,H0 : Pt = P ∗

t , t = 4000, 4100, 4200, ..., 5000;

– Case 4,H0 : Pt = P ∗

t , t = 4000, 4050, 4100, ..., 5000;

– Case 5,H0 : Pt = P ∗

t , t = 4901, 4902, 4903..., 5000, which refers to the last 100 periods;

– Case 6,H0 : Pt = P ∗

t , t = 4951, 4952, ..., 5000, which refers to the last 50 periods.

• The resulting Wald statistics:

α = 0 α = 0.1 α = 0.5 α = 1 Critical value

Case 1 100.585 13.289 5.225 3.698 11.071

Case2 99.817 13.964 6.782 4.358 11.071

Case 3 121.761 24.971 16.041 10.840 19.675

Case 4 148.690 38.038 23.836 19.190 32.671

Case 5 293.963 105.226 99.618 103.299 124.342

Case 6 177.573 50.970 45.043 43.052 67.505
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• Results:

– For α = 0.5 and 1, all of the null hypothesis cannot be rejected at
the 5% significant level.

– When α increases, the resulting Wald statistics decreases (except
Case 5 withα = 1), i.e. when the fundamentalists put more weight
on the fundamental price, the differences between the market prices
and fundamental prices become smaller.
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4.3 Wealth Accumulation, Profitability and Survivability

• The impact of α:

γ = 2.1, δ = 0.85, µ = 0.43, m = 0, w1,0 = 0.5,

α = 1, 0.5, 0.1, 0

– trend followers survive in the long-run for α = 1, 0.5 and 0.1,
although they accumulate less wealth shares over the time pe-
riod;

– the trend followers do better than the fundamentalists when α =

0;

– the profitability of the fundamentalists improves asα increases.
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Figure 4: Time series of the absolute wealth accumulation ofthe funda-
mentalistsw1,t with α = 1, 0.5, 0.1 and 0.
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• The impact of m: The absolute wealth share accumulations of the
fundamentalists for three different values ofm = −0.95, 0 and
0.5 with α = 0.5, γ = 2, µ = 0.5, δ = 0.85, w1,0 = 0.5
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• The absolute wealth share accumulations of the fundamentalists for
three different values ofm = −1, −0.5, 0, 0.5, 1 and α = 0, γ =

1, µ = 0.4, δ = 0.85, w1,0 = 0.5.
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• Implications:

– The trend followers survive in a long-run, can do even better in a
short-run due to the learning.

– The profitability of the fundamentalists improves as either they be-
come more confident on their estimated fundamental value or they
dominate the market.

– The trend followers are doing better by accumulating a higher wealth
share when the fundamentalists become naive traders. In addition,
their profitability improves as their market population sha re increases.
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4.4 Bifurcations and Autocorrelation Patterns

• Understanding the autocorrelation (AC) structure of returns plays
an important role in the market efficiency and predictabilit y.

• We believe that the underlying deterministic dynamics nearthe bi-
furcation boundaries play an important role in the AC struct ure of
the stochastic system.

• Monte Carlo simulations: Two sets of parameters near flip andHopf
bifurcation boundaries: N = 1, 000

(F1) α = 1, γ = 0.8, µ = 5, δ = 0.85, w1,0 = 0.5 and m =

−0.8, −0.5, −0.3, 0;

(H1) α = 1, γ = 2.1, µ = 0.43, δ = 0.85, w1,0 = 0.5 and m =

−0.95, −0.5, 0, 0.5.
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Figure 5: Monte Carlo simulation on the average ACs of returnfor m =

−0.8, −0.5, −0.3, 0 for parameter set(F1).
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Figure 6: Monte Carlo simulation on the average ACs of returnfor m =

−0.95, −0.5, 0, 0.5 for parameter set(H1).
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• Implications:

– Activity of the fundamentalists (either high fraction or high speed
of price adjustment) are responsible for over-reaction AC pat-
terns and extrapolation from the trend followers are responsible
for the under-reaction AC patterns.

– A strong under-reaction AC patterns of SDS is in general associ-
ated with Hopf bifurcation of the DDS.

– A strong over-reaction AC pattern is associated with flip bifur-
cation,

– Short-run under and long-run over-reaction AC patterns are as-
sociated with both types of bifurcation (depending on theirdom-
inance).

Tony He UTS September 7, 2007 4-44



5 Mechanism Analysis on Long Memory

• Aims:

– To characterise the interplay between system size, deterministic
forces and stochastic elements

– To find potential mechanism in generating realistic time series
properties, in particular, the long memory

• Parameters:

α γ a1 a2 µ m δ b σǫ σδ P ∗

0

0.1 0.3 0.8 0.8 2 0 0.85 1 0.01265 1 100

• Four cases:

Cases Case-00 Case-01 Case-10 Case-11

(σδ , σǫ) (0, 0) (0, 0.01265) (1, 0) (1, 0.01265)
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• Time Series:

– Market Price

0 200 400 600 800 1000

99.975

100.000

100.025

100.050

Case−00

0 900 1800 2700 3600 4500 5400

50

100

150

200

250

300
Case−01

0 900 1800 2700 3600 4500 5400

95

100

105

110
Case−10

0 900 1800 2700 3600 4500 5400

100

200

300

Case−11

Figure 7: Time series of prices for four cases.
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– Return
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Figure 8: Time series and density distributions of the returns of Cases-
01, 10 and 11.
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• Autocorrelations:

0 50 100

0.0

0.5

1.0

C
as

e−
01

0 50 100

0.0

0.5

1.0

0 50 100

0.0

0.5

1.0

0 50 100

0.00

0.05

C
as

e−
10

0 50 100

0.00

0.05

0 50 100

0.00

0.05

0 50 100

0.00

0.05

AC(rt)

C
as

e−
11

0 50 100

0.1

0.2

AC(|rt |)
0 50 100

0.1

0.2

AC(rt
2)

Figure 9: The ACs of returns (left column), the absolute returns (middle
column), and the squared returns (right column) of Cases-01, 10 and 11.
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• Fundamental Price:
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Figure 10: Time series of the fundamental price and return, the return
distribution density and the corresponding ACs of returns,the absolute
returns, and the squared returns.
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• Findings: The simple MF model appears to do the job very well
when both noisy processes present

• Explanation—Case-00

– The trend follows a geometric decay process and is updated upon
history market price

– The learning process smooths the price and leads to a laggedreaction
to the market price

– Mathematically, an extrapolation of the trend followers towards the
trend leads to Hopf bifurcation and the choose parameterγ is near
the Hopf bifurcation boundary

– Intuitively, the nature of the oscillating convergence tothe steady
state is due to the extrapolation and learning of the trend followers.

– It is this lagged learning and trend chasing that plays important role
for the dependent volatility
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• Explanation—Case-01

– the stochastic fundamental price fluctuates lead to recurrent shifts of
the fundamental values to different levels; too often to leave the trend
followers no enough time to learn the true fundamental value

– the lagged learning from the trend followers leads to highly depen-
dent volatility (measured by the absolute and squared returns) over
short-run

• Explanation—Case-10:

– The lagged learning does not prevent trend followers from learning
the constant fundamental values

– the return is close to normal and there is no significant AC patterns
for return, the absolute return and squared return
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• Explanation—Case-11

– the stochastic nature from the noisy excess demand and the weak
extrapolation from the trend followers prevent the market price from
forming any significant trend, leading to no significant AC pattern for
returns

– However, the volatility fluctuations due to the lagged learning from
the trend followers are carried on

– Because of the stochastic nature of the noisy excess demand, the
strong AC patterns of the absolute and squared returns shownin
Case-01 are washed out, but still highly significant

– It is worth emphasizing that neither one of the two noisy processes
alone is responsible for this realistic feature.
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• The impact of the noise processes on the market price and its rela-
tion to the fundamental price.

– The market price moves closely to the fundamental price;

– Temporary deviation of the market price from the fundamental price
can be significant from time to time.

– The market prices are more concentrated near the fundamental prices
most of the time.

– The moving averaged price is less volatile. Also, its difference from
the market price is less concentrated near zero.
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• Volatility clustering and the endogenous learning process

– A simple feedback effect—The trend followers tend to push the mar-
ket price away from the fundamental value by extrapolating the trend,
leading to high volatility. Because of the perceived increase of risk,
their demand/supply is then reduced. The partial withdrawal of the
trend followers then leads to less volatile dynamics, whichmakes the
trend followers revise the risk downward so that eventuallytheir de-
mand/supply increases again.
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Figure 11: The geometric volatility (vt, top) and the demands of the
trend followers (z2t, middle) and the fundamentalists (z1t, bottom).
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Figure 12: The phase plots of the geometric moving variance (vt) and
the demands of the trend followers (z2t, left) and of the fundamentalists
(z1t, right).Tony He UTS September 7, 2007 5-57



• Overall realistic volatility behaviour is due to

– the interaction of speculators,

– the simple feedback of the trend followers, and

– the interplay of noises and the underlying deterministic dynamics
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6 Empirical Evidence and Long Memory of Fi-

nancial Indices

6.1 Statistics and Autocorrelations

Table 1: Summary statistics ofrt.

data mean std. skewness kurtosis min max stud. range Jarque-Bera

DAX 30 0.0003 0.0143 -0.467 8.940 -0.137 0.076 14.91 7991

FTSE 100 0.0003 0.0105 -0.735 13.07 -0.130 0.076 19.60 22879

NIKKEI 225 0.0000 0.0137 -0.142 10.47 -0.161 0.124 20.78 12365

S&P 500 0.0004 0.0107 -1.997 45.96 -0.228 0.087 29.35 411423
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Figure 13: Autocorrelations of returns, the squared returns and the ab-
solute returns for the DAX 30 (a), the FTSE 100 (b), the NIKKEI 225 (c),
and the S&P 500 (d). The lines from the bottom to the top are theauto-
correlations for returns, the squared returns, and the absolute returns,
respectively.
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6.2 Volatility Clustering and GARCH Estimates

Table 2: GARCH (1, 1) Parameter Estimates

data a × 103 b α0 × 104 α1 β1

DAX 30 0.655(0.161) 0.0335(0.0162) 0.048(0.004) 0.1185(0.0049) 0.8604(0.0071)

FTSE 100 0.514(0.120) 0.0404(0.0149) 0.023(0.003) 0.0966(0.0066) 0.8824(0.0085)

NIKKEI 225 0.751(0.138) 0.0415(0.0150) 0.023(0.003) 0.1392(0.0036) 0.8608(0.0046)

S&P 500 0.600(0.119) 0.0267(0.0154) 0.013(0.002) 0.0797(0.0020) 0.9114(0.0036)

Note: The numbers in parentheses are standard errors. This also holds for Table 3.
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6.3 Long Memory and FIGARCH Model

Table 3: FIGARCH (1, d, 1) Parameter Estimates

data a × 103 b α0 × 104 d φ1 β

DAX 30 0.694(0.142) 0.0358(0.0144) 0.933(0.057) 0.0675(0.0129) 0.9608(0.0044) 0.9059(0.0088)

FTSE 100 0.528(0.118) 0.0459(0.0143) 0.673(0.093) 0.3270(0.0259) 0.0150(0.0556) 0.2559(0.0739)

NIKKEI 225 20.75(0.070) -0.0460(0.0010) 0.056(0.024) 0.4047(0.0046) 0.1454(0.0029) 0.7542(0.0027)

S&P 500 0.629(0.116) 0.0290(0.0158) 0.665(0.094) 0.3353(0.0202) 0.2765(0.0367) 0.5032(0.0447)
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7 Econometric Estimation of the Long Memory

of the MF Model

7.1 Autocorrelations
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7.2 (FI)GARCH Estimates

Table 4: The GARCH (1, 1) Parameter Estimates for the MF Model

a × 103 b α0 × 104 α1 β

0.0740 0.0725 0.0078 0.0260 0.9738

(0.2300) (0.0139) (0.0035) (0.0032) (0.0033)

47 77.1 17.7 100 100

Note: The numbers in parentheses are the standard errors, and the numbers in the last row
are the percentages that the test statistics are significantat 5% level over 1000 independent
simulations. This also holds for Table 5.
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Table 5: The FIGARCH (1, d, 1) Parameter Estimates for the MF
Model

a b α0 × 104 d φ1 β

0.0137 0.0769 0.3620 0.3797 0.3439 0.7933

(0.0010) (0.0195) (0.6112) (0.0386) (0.0281) (0.0295)

41.2 72.6 35.6 87.6 83.1 98.5
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8 Conclusions

• Incorporating a realistic trading period into a simple MF mo del
with heterogeneous beliefs.

• Showing that the long-run behaviour and convergence of the mar-
ket prices, long (short)-run profitability of the fundamental (trend
following) trading strategy, survivability of chartists can be charac-
terized by the dynamics of the underlying deterministic system.

• Linking various under and over-reaction autocorrelation patterns
of returns to the bifurcation nature of the underlying deterministic
system.

• The simple MF model shows clearly the long memory properties
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• The long memory mechanism is different from either herding or
switching mechanisms, but it shares the same spirt in a much simple
way

• It is this simplicity that make it possible to identify potential source
and mechanism to generate certain characteristics and thisis one of
the contributions of this paper.
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9 Future Work

• Market mood and switching: both fixed and changing market frac-
tions.

• Market equilibrium distribution via Stochastic Bifurcati on Method

• Model estimations and calibrations

• Multi-assets market and intertemporal optimizations.

• A unified framework in continuous-time framework
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