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Abstract

Formally, the orthodox rational agent�s �Olympian�choices ([13], p.19) are
to be made in a static framework. However, a formalization of consistent
choice, underpinned by computability, suggests satis�cing in a boundedly ra-
tional framework is not only more general than the model of �Olympian�ratio-
nality; it is also consistently dynamic. This kind of naturally process-oriented
approach to the formalization of consistent choice can be interpreted and en-
capsulated within the framework of decision problems �in the formal sense of
metamathematics and mathematical logic �which, in turn, is the natural way
of formalizing the notion of Human Problem Solving in the Newell-Simon sense.
JEL Classi�cations: C63, C65, C69, D03
Key words: Bounded Rationality, Decision Problems, Satis�cing, Computabil-

ity
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1 Introduction1

No one person combined and encapsulated, in an intrinsically dynamic, decison-
theoretic framework, a computationally founded2 system of choice and decision,
both entirely rational in a broad sense, than Herbert Simon. In this paper I try,
by standing on the shoulders of Herbert Simon, in fairly precise and formal ways,
to suggest computable foundations for boundedly rational choice and satis�cing
decisions. In a nutshell, the aim is to reformulate, with textual support from
Herbert Simon�s characterizations and suggestions, bounded rationality and sat-
is�cing in a computable framework so that their intrinsic (complex) dynamics
is made explicit in as straightforward a way as possible. To achieve this aim, in
the tradition of Simon, I start from orthodox underpinnings of rational choice
theory and extract its inherent procedural content, which is usually submerged
in the inappropriate mathematics of standard real analysis.
Before proceeding with an outline of the contents and structure of this paper,

it may be useful and apposite to remark on recent resurgences of interests in
resurrecting Simon�s original de�nition of - in particular - bounded rationality,
especially in the important, interesting and in�uential writings of Gigerenzer,
Selten and Smith ([4] and [17]). They have all made it clear, in the above
cited writings and in their recent, and not-so-recent, articles and books, that
the way bounded rationality has been interpreted by what I have come to call
Modern Behavioural Economics3 is not faithful to the letter and spirit of Simon�s
original de�nitions. Where I part ways with these giants of game theory and
behavioural and experimental economics is in the consistent, almost relentless,

1My main motivation and justi�cation for making the case I am outlining in this paper is
the fact that Herbert Simon himself seemed to have endorsed my interpretation of his vision.
This is substantiated by appeal to his detailed letter to me, just before his untimely demise.
Computability and computational complexity were the de�ning bases for the behavioural
economics he pioneered. This is quite di¤erent from current fashions in behavioural economics,
even - or, perhaps, especially - those claiming adherence to the traditions broached by Herbert
Simon.

2�Computational�has always meant �computable�in the Turing sense, at least in my reading
of Simon�s magistrial writings. In particular, in the context of bounded rationality, satis�cing
and their underpinnings in the architecture of human thinking, it was the path broached by
Turing that guided Simon�s pathbreaking contributions. In a volume celebrating �The Legacy
of Turing�([15], p.81 & p.101), Simon�s essay, Machine as Mind, began and ended as follows:

"The title of my talk is broad enough to cover nearly anything that might
be relevant to a collection memorializing A.M. Turing. ... If we hurry, we can
catch up to Turing on the path he pointed out to us so many years ago."

3 I have been trying to make a clear distinction between Modern and Classical Behavioural
Economics for many years, mostly in my lectures to graduate students. I identify the latter
with the pioneering works of Herbert Simon, James March, Richard Nelson, Richard Day
and Sidney Winter. The beginning of the former kind of Behavioural Economics is generally
identi�ed with Thaler ([19]), for example by Camerer, Loewenstein and Rabin (cf., [1], p.xxii),
although my own view would be to begin with the pioneering inspirations in Ward Edwards
([2] & [3]). But this is not an article on the history of the origins of behavioural economics and,
therefore, I shall not go into further details on this matter, at this juncture. The companion
piece to this essay, to be given as the �rst of two Herbert Simon Lectures, in Taipei, on 17
March, will deal with the issue of Modern vs. Classical Behavioural Economics.
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way in which I cast the Simonian world of behavioural economics � not just
bounded rationality �within a framework of computability theory.
In his fascinating and, indeed, provocative and challenging chapter, titled

What is Bounded Rationality (cf. [4], op.cit., chapter 2, p.35), Reinhard Selten
�rst wonders what bounded rationality is,and then goes on to state that an
answer to the question �cannot be given�now:

"What is bounded rationality? A complete answer to this question
cannot be given at the present state of the art. However, empirical
�ndings put limits to the concept and indicate in which direction
further inquiry should go."

In a de�nitive sense - entirely consistent with the computational underpin-
nings Simon always sought - I try to give a �complete answer�to Selten�s �nessed
question. I go further and would like to claim that the �limits to the concept�
derived from current �empirical �ndings�cannot point the direction Simon would
have endorsed for �further inquiry�to go - simply because current frameworks
are devoid of the computable underpinnings that were the hallmark of Simon�s
behavioural economics.
It may well be apposite, in this particular context of a reference to Selten�s

challenging remark, to also comment - in a very general way - on �heuristics�4 .
In Herbert Simon�s overall vision and work, the place of heuristics is crucial. It
appears from almost the very beginning of his work on Human Problem Solving5

(cf. [6]) as procedures that are devised to search, in a structured way, in spaces
that are computationally complex. As always in Simon�s work, the notion of
�computationally complex�is underpinned by a model of computation. Almost
without exception, the model of computation underpinning all of Simon�s proce-
dural economics �whether of problem solving or of any other aspect of decision
making by reasonable man or in organisations �is the Turing Machine6 . Essen-
tially, of course, a heuristic is a procedure which is, more precisely, an algorithm.
The mathematical foundations of algorithms are provided by either recursion
theory or constructive mathematics. In this essay I con�ne myself to recursion
theoretic foundations for Simon�s vision on some aspects of his work. I am not
particularly interested in the secondary literature on heuristis - whether of the
fast and frugal vairety or any other variety - mainly because none of them are
based on the mathematical foundations of the theory of algorithms7 .

4A slightly more detailed discussion of the logic of heuristics, in the context of problem
solving, is appended to Part IV of [23].

5 In the context of the approach taken in this essay, the most interesting and relevant
discussion of heuristics by Simon is in [12].

6Naturally, within classical recursion theory, by the Church-Turing Thesis, such a model
is formally equivalent to any of the other models of computation, such as partial recursive
functions, Post Machines, �-functions, etc. Simon was, of course, well aware of these results.

7 It may well be apposite, at this point where I cite - and, implicitly, at least, challenge
- a view expressed by a reputed scholar in a book edited by himself, together with Gerd
Gigerenzer, a particular minor �history� of an earlier version of this essay. In response to a
submission of an earlier version of this essay to the Journal of Socio-Economics, the Editor
responded, on Christmas day, 2009, as follows:
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In the next section, some substantiation for �standing on Simon�s shoulders�
will be outlined. On the basis of Simon suggestion�s given in §2, I go on, in
§3, to outline the kind of formalism that provides computable foundations for a
complexity approach to decision theory and choice, both rationally conceived. In
§4, suggestions on the formal machinery that can be built, to make explicit the
kind of dynamic and computational complexities intrinsic to the computable
foundations of decision and choice, are given. A brief concluding section 5,
summarizes the results and ends with brief signposts towards the care that
must be taken in assertions about bounded rationality and satis�cing as special
cases of, or constrained versions of, the orthodox formalisms.
Several important background caveats on the mathematical underpinnings

of the computable methodology with which I approach the issues tackled in
this paper must be pointed out, at the very outset � lest the unwary or un-
honed (in algorithmic mathematics) reader concentrates on inessentials. The
main complexity concept I shall ultimately be interested in, for rationally con-
ceived decisions and choices, is computational complexity (although the kind of
dynamic complexity, associated with formal dynamical systems, that also will
be discussed, can be �reduced�to formal computational complexity).
Computational complexity theory is doubly related to mathematical eco-

nomics and economic theory: �rst, as a theory of the e¢ ciency of computations
it is best viewed as the economic theory of computations; secondly, in having at
its central core the paradigmatic combinatorial, intractable, NP � Complete,
Travelling Salesperson�s Problem (TSP). In the former case, it must �rst be re-
membered that the pure theory of computations abstracts away from all kinds
of resource constraints. Computational complexity theory, the �applied�theory
of computation, is its �nessing, taking explicit account of resource constraints,
typically time and space constraints. One of the modern pioneers of computa-
tional complexity theory, Richard Karp, perceptively noted, [5], p.464, Italics
added:

"Your paper is interesting but su¤ers from certain serious gaps which forces me
to reject this paper.

This paper is not in a condition which the JSE can consider for publication.
There are interesting ideas here. But no relationship is made to the now large
literature of the topic which you broach.

For example, one can refer to the fast and frugal heuristics literature originating
with Gerd Gigerenzer."

To which my response, on that same auspices day, was:

"In passing let me only mention, if you already did not know it, which I am sure
you did and do, that the �fast frugal literature originating with Gerd Gigerenzer�
has nothing to do with computability, nor - a fortiori - is it underpinned by any
theory of algorithms."

Obviously, this Editor is blissfully ignorant of any of the mathematical foundations of a
theory of algorithms - whether of some constructive variety (there are several of them), or
of the recursion theoretic variety. It is an eternal hill-climbing exercise against technically
ignorant, but pompous editors, even before beginning to battle the hydra-headed monster
called �peer-reviewing�.
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"[I] do think there are some very worthwhile and interesting analo-
gies between complexity issues in computer science and in economics.
For example, economics traditionally assumes that the agents within
an economy have universal computing power and instantaneous knowl-
edge of what�s going on throughout the rest of the economy. Com-
puter scientists deny that an algorithm can have in�nite comput-
ing power. They�e in fact studying the limitations that have arisen
because of computational complexity. So, there�s a clear link with
economics."

Unfortunately, where even this generous analogy is misleading is in assuming
that �economics traditionally assumes that the agents within an economy have
universal computing power.� In fact, not even this fantastic assumption is ex-
plicitly made �in economics�(unless it is of the Simonian variety of behavioural
economics). This is why it is important to be aware that in computational
complexity theory, the characterizing framework is one of problem solving, with
a model of computation explicitly underpinning it, as decision problems.
Now, a decision problem asks whether there exists an algorithm to decide

whether a mathematical assertion does or does not have a proof; or a formal
problem does or does not have a solution. Thus the characterization makes clear
the crucial role of an underpinning model of computation; secondly, the answer
is in the form of a yes/no response. Of course, there is the third alternative of
�undecidable�, too, but that is a vast issue outside the scope of this paper. It is
in this sense of decision problems that I shall interpret the word �decisions�in
this paper.
As for �problem solving�, I shall assume that this is to be interpreted in the

sense in which it is de�ned and used in the monumental classic by Newell and
Simon ([6]).
Decisions, in the computational and problem solving tradition of Herbert

Simon, have a more general and fundamentally di¤erent characterization in
computable economics.
Finally, the model of computation, in the above senses and contexts, is the

Turing model, subject to the Church-Turing Thesis. I shall adhere to this tradi-
tion, but - at least for my results and propositions - this is only for convenience;
I believe all my formal results can also be derived without assuming the Church-
Turing Thesis, hence within the formalism of constructive mathematics.

2 Standing on Simon�s Shoulders8

In this section I shall try to provide a �Simonian context�for the way I aim to
tackle the problem of a �computable approach�to �decisions and choice�. This

8My �rst attempts at trying to make the case for boundedly rational, adaptive behaviour
and satis�cing, in solving decision problems in a computable framework, were made in chapter
4 of Computable Economics ([20]). To the best of my knowledge, no other work makes this
point - whether in a computable framework, or not.
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is provided by means of two extensive �quotations�� one, from a long letter
Herbert Simon wrote me, in May, 2000; and the other, from one of his classic
pieces. They make explicit his visions of complexity, based on the Turing model
of computation and the nature of the way internal and external constraints
determine satis�cing in a boundedly rational context. I proceed in this uncon-
ventional way simply to make it clear, from the outset, that my own vision is
that a boundedly rational agent satis�cing by implementing (rational) decisions
is the general case; the Olympian model of rational choice - the orthodox model
- is the special case.
On May 25th, 2000, Herbert Simon wrote me as follows (referring to having

read my book on Computable Economics, [20]; emphases added):

I want to share some �rst impressions on my reading of �Com-
putable Economics.�. . . I was delighted and impressed by the mileage
you could make with Turing Computability in showing how nonsen-
sical the Arrow/Debreu formulation, and others like it, are as bases
for notions of human rationality. Perhaps this will persuade some of
the formalists, where empirical evidence has not persuaded them, of
what kinds of thinking humans can and can�t do �especially when
dealing with the normative aspects of rationality.

. . . . . .
As the book makes clear, my own journey through bounded

rationality has taken a somewhat di¤erent path. Let me put it this
way. There are many levels of complexity in problems, and cor-
responding boundaries between them. Turing computability is an
outer boundary, and as you show, any theory that requires more
power than that surely is irrelevant to any useful de�nition of human
rationality. A slightly stricter boundary is posed by computational
complexity, especially in its common �worst case�form. We cannot
expect people (and/or computers) to �nd exact solutions for large
problems in computationally complex domains. This still leaves us
far beyond what people and computers actually can do. The next
boundary, but one for which we have few results except some of
Rabin�s work, is computational complexity for the �average case�,
sometimes with an �almost everywhere� loophole. That begins to
bring us closer to the realities of real-world and real-time computa-
tion. Finally, we get to the empirical boundary, measured by lab-
oratory experiments on humans and by observation, of the level of
complexity that humans actually can handle, with and without their
computers, and - perhaps more important �what they actually do
to solve problems that lie beyond this strict boundary even though
they are within some of the broader limits.
....
The latter is an important point for economics, because we hu-

mans spend most of our lives making decisions that are far beyond
any of the levels of complexity we can handle exactly ; and this is
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where satis�cing, �oating aspiration levels, recognition and heuris-
tic search, and similar devices for arriving at good-enough decisions9

take over. A parsimonious economic theory, and an empirically ver-
i�able one, shows how human beings, using very simple procedures,
reach decisions that lie far beyond their capacity for �nding exact
solutions by the usual maximizing criteria

. . . ..
So I think we will continue to proceed on parallel, but some-

what distinct, paths for examining the implications of computational
limits for rationality �you the path of mathematical theories of com-
putation, I the path of learning how people in fact cope with their
computational limits. I will not be disappointed however if, in the
part of your lives that you devote to experimental economics, you
observe phenomena that seduce you into incorporating in your the-
ories some of these less general but very real departures from the
rationality of computational theory. This seems to me especially
important if we are to deal with the mutual outguessing phenomena
(shall we call them the Cournot e¤ects?) that are the core of game
theory.

I am sure that you will be able to interpret these very sketchy
remarks, and I hope you will �nd re�ected in them my pleasure in
your book. While I am �ghting on a somewhat di¤erent front, I
�nd it greatly comforting that these outer ramparts of Turing com-
putability are strongly manned, greatly cushioning the assault on
the inner lines of empirical computability.

Several important issues are clari�ed by Simon in these elegant observations.
First of all, the de�ning - and decisive - role played by the Turing model of com-
putation as the benchmark for his own fundamental work on computationally
underpinned work on rationality - i.e., bounded rationality - and satis�cing de-
cisions. Secondly, it is also unambiguously clear that the various boundaries
delineated and de�ned by computational complexity theory - based, of course,
on the Turing model of computation - are with reference to the problems that
boundedly rational agents try to solve �i.e., the level of complexity is that which
is de�ned by the nature of the problem to be solved, not determined solely by the
complexity of the computational architecture of the boundedly rational agent.
Thirdly, boundedly rational agents actually do solve �problems that lie beyond
the strict boundary�of formally feasible, computationally solvable, problems.
The hint may well be that boundedly rational agents do discover, by heuristic
means, methods to satisfactorily solve problems that computational complexity
theory places beyond the empirically feasible range10 . To the extent that com-

9The famous Voltaire precept comes to mind: �The perfect is the enemy of the good�!
10 I hope knowledgeable readers do not try to read into this sentence even the mildest of

hints that �heuristics� make it possible to go beyond the �Turing Limits�. Nothing of the
sort is intended here - or, indeed, can be meaningfully intended in any theoretically rigorous
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putational complexity theory is underpinned by a model of computation, formal
complexity boundaries are de�ned for the degrees of solvability of computable
problems; uncomputable problems are beyond the �outer boundary�. Fourthly,
and perhaps most importantly, boundedly rational agents actually solve deci-
sion problems, in a satis�cing framework, that lie beyond the orthodox domains
of solvability - perhaps the best way to state this is that Olympian means and
aims are not capable of solving the problems framed within the Olympian model
of rational choice. The key to interpret this important observation by Simon
is to note that the traditional, half-naked, framework of �optimization� is re-
placed by the fully-clothed one of decision problems. The half-naked nature of
the Olympian framework is due to the absence of a �mode of computation�to
underpin its formalization � and that, in turn, is almost entirely due to the
unfortunate reliance of the mathematics of real analysis of a very truncated
sort. This is the sort that is founded on set theory, with its uncomputable and
non-constructive handmaiden, the axiom of choice.
The above characterisations and comments are further strengthened by the

following, even more explicit, commentaries by Simon, on the distinction be-
tween the internal and external constraints going into the de�nition of a bound-
edly rational agent�s confrontation with a decision problem in a satis�cing frame-
work:

�Now if an organisms is confronted with the problem of behaving
approximately rationally, or adaptively, in a particular environment,
the kinds of simpli�cations that are suitable may depend not only
on the characteristics �sensory, neural, and other �of the organism,
but equally upon the structure of the environment. Hence, we might
hope to discover, by a careful examination of some of the fundamen-
tal structural characteristics of the environment, some further clues
as to the nature of the approximating mechanisms used in decision
making.

. . . . . . .
[T]he term environment is ambiguous. I am not interested

in describing some physically objective world in its totality, but only
those aspects of the totality that have relevance as the �life space�
of the organism considered. Hence, what I call the �environment�
will depend upon the �needs,��drives,�or �goals�of the organism and
upon its perceptual apparatus.�
[11],p. 21

The point, again, is not that the theoretical analyst is concerned with �ab-
solute�constraints - either of the internal structure of the decision making entity,
or of the external environment of which a problem is a part - and in which it is

computable context. No engineer in his or her right mind would try to build a machine that
violates the second law of thermodynamics. Economists constantly build models of rationality
that imply mechanisms of decision making that go beyond even the ideal. Simon spent more
than half a lifetime pointing out this absurdity - one that underpins, by the way, models of
decision making in modern behavioural economics.
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embedded. The relevant architecture of the decision making entity, in this case
that of a computationally conceived rational economic agent, solves a decision
problem embedded, and emerging from, an environment, also computationally
underpinned. The approximations are two-pronged: one, on the architecture
of the computationally conceived rational agent - i.e., the boundedly rational
agent; the other, on the computationally underpinned environment, now con-
ceived within the satis�cing framework of a decision problem. This does not
entail, in any way at all, that the approximations of a computationally con-
ceived agent is a special case of the orthodox rational agent in the Olympian
mode of choice. Nor does it imply at all that the approximation of the de-
cision problem in the satis�cing framework is a special case of the Olympian
model of indiscriminate optimization. The numerous attempts, claiming to be
within a behavioural economics setting, because, for example, the agents are
supposed to be boundedly rational fail in the former sense; i.e., assuming that
the agent in such allegedly behavioural settings are boundedly rational because
they are assumed to be constrained - for example by having only �limited�mem-
ory, modelled as �nite automata, rather than as Turing machines - versions of
the Olympian agent. As for an example of the failure from the point of view of
the second �vision��regarding the approximations on, and of, the environment,
the canonical example is, of course the folly of considering an integer linear pro-
gramming problem as a special case of the standard linear programming problem.
In fact, this will be the illustrative example I shall choose for my formal

description and discussion of these distinctions, so as to �nd a way to state
and de�ne the case for the vision that places the boundedly rational agent in
a satis�cing setting to solve a decision problem as the general one - and the
Olympian model as a special, and uninteresting, case.

3 Brief Remarks on Decision Problems

"By a decision procedure for a given formalized theory T we
understand a method which permits us to decide in each particular
case whether a given sentence formulated in the symbolism of T
can be proved by by means of the devices available in T (or, more
generally, can be recognized as valid in T). The decision problem for
T is the problem of determining whether a decision procedure for
T exists (and possibly for exhibiting such procedure). A theory T
is called decidable or undecidable according as the solution of the
decision problem is positive or negative."
[18], p.3; italics in the original.

A decision problem asks whether there exists an algorithm to decide whether
a mathematical assertion does or does not have a proof; or a formal problem
does or does not have a solution.
Thus the characterization must make clear the crucial role of an underpin-

ning model of computation; secondly, the answer is in the form of a yes/no
response.
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Of course, there is the third alternative of �undecidable�, too, but that
is a vast issue outside the scope of this lecture.

Remark 1 Decidable-Undecidable, Solvable-Unsolvable, Computable-Uncomputable,
etc., are concepts that are given content algorithmically.

The three most important classes of decision problems that almost
characterise the subject of computational complexity theory, underpinned by
a model of computation, are the P, NP and NP-Complete classes.

Concisely, but not quite precisely, they can be described as follows:

1. P de�nes the class of computable problems that are solvable in time
bounded by a polynomial function of the size of the input;

2. NP is the class of computable problems for which a solution can be
veri�ed in polynomial time;

3. A computable problem lies in the class called NP-Complete if every
problem that is in NP can be reduced to it in polynomial time.

Consider the following three-variable Boolean formula:

:x3 ^ (x1 _ :x2 _ x3) (1)

Just as in the case of equations with integer (or rational) values, given a
truth assignment t(xi) = 1 or 0 for each of the variables xi (i = 1; ::3), the above
Boolean formula can be evaluated to be true or false, globally. For example the
following assignments gives it the value true: t(x1) = 1; t(x2) = 1; t(x3) = 0.
Boolean formulas which can be made true by some truth assignments are said
to be satis�able.
Now consider the Boolean formula:

(x1_x2_x3)^(x1 _ f:x2g)^(x2_f:x3g)^(x3_f:x1g)^(f:x1_f:x2g_f:x3g)
(2)

Remark 2 Each subformula within parenthesis is called a clause; The variables
and their negations that constitute clauses are called literals; It is �easy�to �see�
that for the truth value of the above Boolean formula to be t(xi) = 1; all the
subformulas within each of the parenthesis will have to be true. It is equally
�easy�to see that no truth assignments whatsoever can satisfy the formula such
that its global value is true. This Boolean formula is unsatis�able.

Problem 3 SAT �The Satis�ability Problem

Given m clauses, Ci(i = 1; : : : :;m), containing the literals (of) xj(j =
1; : : : :; n), determine if the formula C1 ^ C2 ^ : : : : : : : ^ Cm is satis�able.
Determine means ��nd an (e¢ cient) algorithm�. To date it is not known

whether there is an e¢ cient algorithm to solve the satis�ability problem �i.e.,
to determine the truth value of a Boolean formula. In other words, it is not
known whether SAT 2 P: But:
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Theorem 4 SAT 2 NP

Now to go from here to an optimization framework is a purely mechanical
a¤air. Denoting the union operator as ordinary addition and the negation op-
erator related to arithmetic operators as: :x = (1 � x) and noting that it is
necessary, for each clause C, there should, at least, be one true literal, we have,
for any formula: X

x2C
x+

X
x2C

(1� x) � 1 (3)

With these conventions, the previous Boolean formula becomes the following
integer linear programming (ILP) problem:

x1 + x2 + x3 � 1 (4)

x1 + (1� x2) � 1 (5)

x2 + (1� x3) � 1 (6)

x3 + (1� x1) � 1 (7)

(1� x1) + (1� x2) + (1� x3) � 1 (8)

0 � x1; x2; x3 � 1; and integer (9)

De�nition 5 A Boolean formula consisting of many clauses connected by con-
junction (i.e., ^) is said to be in Conjunctive Normal Form (CNF).

Remark 6 A CNF is satis�able i¤ the equivalent ILP has a feasible point.

Clearly, the above system of equations and inequalities do not, as yet, rep-
resent an ILP since there is no �optimisation�. However, it can be turned into
a complete ILP in the ordinary sense by, for example, replacing the �rst of the
above inequalities into:

Max y, s:t : x1 + x2 + x3 � y (10)

Remark 7 The formula is satis�able i¤ the optimal value of y, say ŷ exists
and satis�es ŷ � 1.

Finally, we have Cook�s famous theorem, rounding o¤ all these connections
and bringing into the fold of computational complexity theory, the quintessential
combinatorial economic optimization problem:
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Theorem 8 Cook�s Theorem
SAT is NP �Complete

It is the above kind of context and framework within which I am interpret-
ing Simon�s vision of behavioural economics. In this framework optimization
is a very special case of the more general decision problem approach. The real
mathematical content of satis�cing11 is best interpreted in terms of the sat-
is�ability problem of computational complexity theory, the framework used by
Simon consistently and persistently - and a framework to which he himself made
prioneering contributions.

4 Bounded Rationality as a Superset of Olympian
Rationality

[Linear Programming problems are] solvable in polynomial time..
in �Integer Linear Programming�we come to a �eld where the prob-
lems in general are less tractable, and are NP � Complete. It is
a general belief that these problems are not solvable in polynomial
time. The problems in question are:

�solving systems of linear diophantine inequalities, i.e. solv-
ing linear inequalities in integers;

�solving systems of linear equations in nonnegative integer
variables;

�solving integer linear programming problems.
[T]hese three problems are equivalent in the sense that any method

for one of them yields also methods for the other two. Geometri-
cally, the problems correspond to the intersection of a lattice and a
polyhedron."
Schrijver, pp. 2-3, [[10]]; italics in the original.

The simple analogy I wish to appeal to, for substantiating the case that
the Boundedly Rational Agent is the general case and the Olympian Agent is
the special case, is in terms of the classic di¤erence between Integer Linear
Programming and Linear Programming. From the point of view of problem
solving, underpinned by a model of computation, the former is unambiguously
the more general and the more complex case; the latter is the less general, simple
case. It must also be emphasized that �more complex�refers to the precise sense
of computational complexity - as made clear by reference to NP �Complete in
the above quote.
11 In [16], p. 295, Simon clari�ed the semantic sense of the word satis�ce, by revealing the

way he came to choose the word:

"The term �satis�ce�, which appears in the Oxford English Dictionary as a
Northumbrian synonym for �satisfy�, was borrowed for this new use by H. A.
Simon (1956) in �Rational Choice and the Structure of the Environment� [i.e.,
[11]]"
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Consider the following abstract version of a formalization of what may be
called the standard economic optimization problem (SEP):

Minimize f(x)
subject to: gi (x) � 0, i = 1; 2; :::::::;m
and: hj (x) = 0; hj = 1; 2; ::::::; p
[Naturally, with standard � i.e., �convenient but irrelevant��assump-

tions on f , g and h].
Now, consider the following variant of SEP :

De�nition 9 SEP�:

An optimization problem is a pair fF; cg, where:
F : the set �the domain �of possible alternatives;
c : F ! < (e.g., the criterion function);
Then the problem to solve, associated with SEP� is: Find f 2 F such

that c (f) � c (g) ;8g 2 F:
Now, make explicit the computational content of an SEP * as:

De�nition 10 SEPTM

� Given a combinatorial object (i.e., a number-theoretically speci�ed ob-
ject) f and a set of parameters, S, decide whether f 2 F (where F is
characterized by S).

� Assume that this decision procedure is executed by algorithm Tf (standing
for the Turing Machine indexed by f , which has been e¤ectively encoded,
number-theoretically).

� After the decision implemented by Tf use another (algorithmic) decision
procedure to compute the value c (f), where c is characterised by the set
of parameters Q. Call this latter decision procedure Tc.

� Note that S and Qare to be represented number-theoretically �for exam-
ple, Gödel-numbered.

Remark 11 Firstly, to start with a �given combinatorial object� ab initio is
part of the claim to generality of the decision problem approach to problem solv-
ing in the satis�cing, boundedly rational, vision. Secondly, the combinatorial
object is encoded number theoretically to be processed by a model of computa-
tion. Simon does not always assume that the human problem solver is endowed
with the full facilities of the most powerful model of computation (subject to the
Church-Turing Thesis), but limited by various psychological and neurologically
determined and informed factors. It is in this step that the quali�cation limited
or bounded gets its full signi�cance in a problem solving context. Satis�cing,
however, comes together with the decision problem approach to problem solv-
ing, i.e., in the third of the above four step scheme. Finally, approximating
the combinatorial object suitably, by the agent or the problem solver, is the step
where the structure of the environment [[11]] comes into play..
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Now, consider the standard integer linear programming problem (SLIP )as
an example of SEPTM :

Minimize c0x such that Ax = b and x � 0 & (possibly also c; b
and A) 2 N ( the variables are, naturally, vectorial of suitable dimensions).
According to the SEPTM interpretation this means:

� The parameters S; for the decision procedure Tf are given by A; b.

� Given any integer (vector) x, Tf decides whether Ax = b and x � 0 are
simultaneously satis�ed.

� �Then�, Tc is implemented, which has c forQ to evaluate c0xfor each x
decided by Tf .

Remark 12 �Then�, in the third step above, does not necessarily imply sequen-
tial actions by TMs. More complex decision tasks, employing richer varieties
of SEPTM could imply a set of TMs operating on a parallel architecture and
executing decisions both synchronously and asynchronously. However, Simon al-
most invariably worked within a sequential, synchronous, framework �although
he was, of course, quite familiar with the richer relative possibilities of parallel
architectures.

The two main conclusions of this section are the following. Firstly, given the
computational underpinning of a problem solving approach to rational decision
making and, therefore, the necessity of a model of computation to implement
a decision problem, every such process has an intrinsic complexity measure in
terms of computational complexity theory � in general in the form of NP �
Completreness. Secondly, the whole set up is naturally more general than the
setting in which the Olympian Model is framed and formalized.

5 Computable Rational Agents and Satis�cing12

"The theory proclaims man to be an information processing
system, at least when he is solving problems. ...
...

An information processing theory is dynamic, ... , in the
sense of describing the change in a system through time. Such a
theory describes the time course of behavior, characterizing each
new act as a function of the immediately preceding state of the
organism and of its environment.

The natural formalism of the theory is the program, which
plays a role directly analogous to systems of di¤erential equations in
theories with continuous state spaces ... .

12The �classic�attempt at formalizing Satis�cing, from an orthodox point of view was the
elegant paper by Radner, [7]. However, within the formalism of decisions problems, in the sense
de�ned in this paper, Radner�s formalization would appear to be contrary to Simon�s vision.
Gigerenzer and Selten (op.cit) have resurrected this �classic� vision, in terms of �aspiration
levels�, within the context of modern behavioural economics.
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All dynamic theories pose problems of similar sorts for the
theorist. Fundamentally, he wants to infer the behavior of the sys-
tem over long periods of time, given only the di¤erential laws of
motion. Several strategies of analysis are used, in the scienti�c work
on dynamic theory. The most basic is taking a completely speci�c
initial state and tracing out the time course of the system by ap-
plying iteratively the given laws that say what happens in the next
instant of time. This is often, but not always, called simulation,
and is one of the chief uses of computers throughout engineering
and science. It is also the mainstay of the present work."
Newell & Simon, pp. 9-12 [[6]; italics added]

The point here is that a (rational) problem solving entity is considered to be
an information processing system, which is intrinsically dynamic, encapsulated
in the �program� and, hence, naturally analogous to the role played by, say,
�di¤erential equations�, in classical dynamics13 . With this in mind, and against
the backdrop provided by the discussion in the previous section, the strategy
for my formalization exercise can be summarized in the following sequence of
steps:

� Extract the procedural content of orthodox rational choices (in theory).

� Formalize such a procedural content as a process of computation.

� Given the formalized procedural content as a process of computation, to
be able to discuss its computational complexity.

� Show the equivalence between a process of computation and a suitable
dynamical system.

� To, then, show the possibility of non-maximum rational choice.

� Then, to show that such behaviour is that which is manifested by a bound-
edly rational, satis�cing, agent.

5.1 Rational Choice as a Computation by a Universal Tur-
ing Machine

"In situations that are complex and in which information is very
incomplete (i.e, virtually all real world situations), the behavioral
theories deny that there is any magic for producing behavior even
approximating an objective maximizing of pro�ts and utilities. They
therefore seek to determine what the actual frame of the decision is,
how that frame arises from the decision situation, and how, within
that frame, reason operates.

13 Indeed, even more so in modern dynamical systems theory, particularly in its post-Smale
varieties.
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In this kind of complexity, there is no single sovereign principle
for deductive prediction. The emerging laws of procedural rational-
ity have much more the complexity of molecular biology that the
simplicity of classical mechanics."
Simon, [14], p. S223, italics added.

The following result encapsulates, formally, the content of the �rst three
steps of the above six-step scheme:

Theorem 13 The process of rational choice by an economic agent is for-
mally equivalent to the computing activity of a suitably programmed (Universal)
Turing machine.

Proof. By construction. See §3.2, pp. 29-36, Computable Economics [[20]]

Remark 14 The important caveat is �process�of rational choice, which Simon
�more than anyone else �tirelessly emphasized by characterizing the di¤erence
between �procedural� and �substantive� rationality; the latter being the de�ning
basis for Olympian rationality, the former that of the computationally under-
pinned problem solver facing decision problems. Any decision �rational or not
�has a time dimension and, hence, a content in terms of some process. In the
Olympian model the �process�aspect is submerged and dominated by the static
optimization operator, By transforming the agent into a problem solver, con-
strained by computational formalisms to determine a decision problem, Simon
was able to extract the procedural content in any rational choice. The above
result is a summary of such an approach.

De�nition 15 Computation Universality of a Dynamical System

A dynamical system �discrete or continuous �is said to be capable of com-
putation universality if, using its initial conditions, it can be programmed to
simulate the activities of any arbitrary Turing Machine, in particular, the ac-
tivities of a Universal Turing Machine.

Lemma 16 Dynamical Systems capable of Computation Universality can be
constructed from Turing Machines

Proof. See [20] and [24]

Theorem 17 Only dynamical systems capable of computation universality are
consistent with rationality in the sense that economists use that term in the
Olympian Model.

Proof. See pp. 49-50, [20].
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Remark 18 This result, and its proof, depend on the �rst theorem in this sub-
section and, therefore, its background basis, as explained in the Remark follow-
ing it, given above. In this way, following the Simon�s vision as outlined in
the opening quote of this section, the de�nition of rationality is divorced from
optimization and coupled to the decision problems of an information processing
problem solver, emphasizing the procedural acts of choice.

Theorem 19 Non-Maximum Rational Choice

No trajectory of a dynamical system capable of universal computation can,
in any �useful sense� (see Samuelson�s Nobel Prize lecture, [9]), be related to
optimization in the Olympian model of rationality.
Proof. See [21]

Theorem 20 Boundedly rational choice by an information processing agent
within the framework of a decision problem is capable of computation universal-
ity.

Proof. An immediate consequence of the de�nitions and theorems of this sub-
section.

Remark 21 From this result, in particular, it is clear that the Boundedly Ra-
tional Agent, satis�cing in the context of a decision problem, encapsulates the
only notion of rationality that can �in any useful sense�be de�ned procedurally.

The above de�nitions, theorems and lemma give formal content to the six-
point formalization strategy outlined at the beginning of this section.

6 Concluding Notes

"In your opening chapter, you are very generous in crediting me
with a major role in the attention of the economics profession to the
need to introduce limits on human knowledge and computational
ability into their models of rationality. ..... But you seem to think
that little has happened beyond the issuance of a manifesto, in the
best tradition of a Mexican revolution."
Herbert Simon to Ariel Rubinstein [[8], p. 189].

To give a rigorous mathematical foundation for bounded rationality and
satis�cing, as decision problems, it is necessary to underpin them in a dynamic
model of choice in a computable framework. This I believe has been achieved
in this essay, in a setting that is entirely faithful to Herbert Simon�s precepts
and lifelong decision-theoretic research program. A by-product of the results
in this paper is the exploitation of the duality between dynamical systems and
computability. With this duality it was possible to show in what sense bounded
rationality is the more general case, in the case of an information processing
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problem solver, set in the context of a decision problem, and the Olympian
model is the special case.
A rational choice framework that is entirely underpinned by computability

and dynamical systems theory is naturally amenable to complexity theoretic
analysis - both in terms of standard computational complexity theories and the
more vague dynamic complexity theories. In other, companion writings (see [22]
& [24]), I have developed these two themes in much greater detail and I shall
have to refer the interested reader to them for further developments and the
many felicitous connections.
Most importantly, I hope the message in this essay disabuses unscholarly

assertions about bounded rational behaviour being a case of approximations to,
or constrained versions of, the Olympian Model and satis�cing, concomitantly,
a case of sub-optimal decision process. These kinds of unscholarly assertions
permeate every strand of modern behavioural economics and behavioural game
theory and in some varieties of experimental economics. For example, in the
case of games played by automata, bounded rationality is modelled in terms of
�nite automata, ostensibly to take into account �limited�memory as one case of
constrained Olympian rationality. Nothing in the Olympian model has anything
to do with any kind of model of computation. How, then, can a special case of
that become a model for computation by a �nite automaton? A similar series
of misguided examples can be cited from modern behavioural economics and
behavioural game theory �not to mention orthodox choice theory.
Simon�s intuitive perception of the importance of computability theoretic

underpinnings for choice theory had dynamic origins. In this paper I have tried
to expand that dynamic vision with its dual: the computable one. Together
� the dynamic and the computable � they combine to produce a ferociously
complex framework, when implemented purely theoretically. But, mercifully,
serious empirical investigations �of the kind Simon routinely practised all his
life �entails judicious simpli�cations, as indicated in that letter from Simon to
me, from which I quoted at the beginning of this essay.
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