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Causal Relationships in EconomicsCausal Relationships in Economics

Questions of causality have been central to economics 
from its beginnings, as the title of Adam Smith’s An Inquiry 
into the Nature and Causes of the Wealth of Nations
clearly indicates.  

Economic theory is, at its most fundamental level, a body 
of hypotheses regarding causal relationships among 
economic variables – endowments, production, exchange, 
and consumption of goods, rates of exchange between 
goods and stores of value, aggregations of such 
quantities, and the evolution of these quantities over time.  



3

Causality and Measurement in EconomicsCausality and Measurement in Economics

• Even though questions of causality are an integral part of economic 
theory, the practice of economic measurement has had an uneasy 
relationship with the matter.  

• Haavelmo (1944) and other Cowles Commission econometricians 
devised structural equation models that explicitly represented 
hypothesized causal relationships.  

• Explicit causal interpretations of these types of models have largely 
fallen out of favor, however, and they are today often interpreted 
simply as compact representations of joint probability distributions 
(Pearl, 2000).  

• A perceived empirical failure of such structural modeling efforts 
motivated the extensive adoption of multivariate time series methods 
that have no clear causal interpretation (Heckman, 2000).
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Present Day Practice has its Roots in the 19Present Day Practice has its Roots in the 19thth CenturyCentury

• Mill (1884) regarded causal inference using observational 
data as impossible, a sentiment that has been shared by 
many economists since.  

• Even when confronted with empirical results that seem 
inconsistent with the causal content of economic theory, 
econometricians will generally assign blame to auxiliary 
hypotheses rather than questioning the theory itself (Blaug, 
1992).  

• Thus economic theories are generally “confirmed” or 
“verified”; rigorous testing of hypothesized causal relations 
in economics is sorely limited.



5

Recent Attempts to Ignore MillRecent Attempts to Ignore Mill’’s s 
ImpossibilityImpossibility

Despite Mill’s beliefs on the matter, many scholars have begun to 
infer causal relationships from observational data.  

Reichenbach (1956) proposed that causal relationships among 
random variables have specific implications for associated statistical 
independence relations.  

Hausman (1983) is an early acknowledgment in economics that such 
causal inference should be feasible.  

More recently, several algorithms for conducting such inference have 
been proposed (Spirtes, Glymour and Scheines, 2000; Glymour and
Cooper, 1999; and Pearl, 1995, 2000). Cooper, 1999; and Pearl, 1995, 2000). 
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Causal Inference AlgorithmsCausal Inference Algorithms

The designers of these causal inference algorithms seem to intend 
them to be used in a manner that might be described as “data 
mining”, or “machine learning”.  

In such use, observations of a large number of potentially related 
variables are assembled, and a causal structure among those 
variables is inferred.  Most proposed algorithms conduct this overall 
inference by sequentially conducting several individual tests of
conditional independence among the variables.  

This multiple testing leads to criticism that the overall probability of 
an error is unknown, and possibly unreasonably high, particularly 
for a large system.  
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Monte Carlo EvidenceMonte Carlo Evidence

Casual experimentation with the algorithms using data sets with a 
moderate to high number of variables suggests that results are 
indeed fragile, and reversals of the direction of causal flow are not 
uncommon as one changes the algorithms’ parameters.  

Based on Monte Carlo experimentation, Spirtes, Glymour and 
Scheines (2000) suggest a negative relationship between 
appropriate p-values and number of observations.  

Swanson and Granger (1997) and Dermilap and Hoover (2003) 
investigate such issues, finding that the probabilities of such errors 
are sensitive to the peculiarities of the data sets and difficult to 
quantify.
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TodayToday’’s Presentations Presentation

• We investigate the use of causal inference methods for testing a
specific hypothesized causal relation:

Ho: A causes B. 
We use notions developed from the machine learning literature to 
inform our confidence in rejection probabilities.  The inference
algorithms discussed above cast new light on hypothesis rejections.  

• Our main finding is that these inference algorithms allow researchers 
to qualify hypothesis rejections as either weak basis rejections or 
strong basis rejections.  



9

Preview of ResultsPreview of Results

A small number of  causally-related variables are needed.  

The researcher needs not observe all potentially causally-relevant 
variables.  Observing some variable C that is causally-related in the 
right way to A and B should allow us to reject Ho, regardless of what 
other causally-related variables may exist.  

Testing such a hypothesis with respect to a particular C involves only 
three individual tests of unconditional independence, allowing us to 
numerically estimate the size of such a test. 
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Causal Inference AlgorithmCausal Inference Algorithm

• We use ideas embedded in the Causal Inference Algorithm of Spirtes, 
Meek and Richardson (1999).

• While their algorithm works for arbitrary number of observed 
variables (Vi , i = 1, …, n > 3), we explore testing causal hypotheses 
when n= 3.

• Latent or unobserved variables are formally introduced
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AssumptionsAssumptions

• A1: ReichenbachReichenbach’’ss (1956) principle of the common cause 
holds: two variables are statistically dependent if and only if 
one variable causes the other or they share one or more 
common causes.

• A2: Faithfulness: two variables that share a common cause 
will not be rendered independent by off-setting parameter 
values.  Independence relations reflect underlying causal 
structure and not off-setting parameter values (see Spirtes, 
Glymour and Scheines 2000 for more here).  
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Cases of Interest in Testing A does not cause BCases of Interest in Testing A does not cause B

Suppose A and B are not statistically independent we 
denote this by A ⊥ B.  Then four cases are of interest:

• Case 1: A ⊥ C and B ⊥ C.  By A1 and A2 and the 
independence of A and C we must conclude: A cannot 
cause C either directly or indirectly. We must conclude: A 
o B o C. 

• Case 2: A ⊥ C and B ⊥ C.  As with case 1 we must 
conclude: A cannot cause C either directly or indirectly. We 
must conclude: C o A o B.
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Cases of Interest, ContinuedCases of Interest, Continued

• Case 3: A ⊥ C and B ⊥ C.  Here C is not related to A and B and thus 
provides no information regarding the hypothesis a causality between 
A and B.

• Case 4: A ⊥ C and B ⊥ C.  Here there is no basis for rejecting the 
hypothesis A B.  
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Case I has three interesting possibilitiesCase I has three interesting possibilities

(i)                                       (ii)
A      B                                   L(1)

C                                     A        B

C
(iii)
L(1)

A      B
L(2)

C

Any are possible under case I, thus there is no clear evidence 
that A does not cause B. Here L(1) and L(2) are latent 
variables.
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Case II also has three interesting possibilitiesCase II also has three interesting possibilities

(i)                                        (ii)
A      B                                    L(1)

C                                     A        B

C
(iii)
L(1)

A      B              
L(2)                                         

C

In all cases here there is evidence that A does not cause B.
Again L(1) and L(2) are latent variables.
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Case III has three interesting possibilitiesCase III has three interesting possibilities

(i)                                        (ii)

A      B                                    L(1)

C                                     A        B

C
(iii)

A       B              

C

Since any of these three are possible, case III provides no clear 
evidence that A does not cause B.
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And Finally, Case IV has several possibilitiesAnd Finally, Case IV has several possibilities

(i)                    (ii)                   (iii)

A        B           A        B           A        B

C                     C                    C

(iv)                    (v)                   (vi)

A       B            A        B            A        B

C                      C                     C

Or we could have latent variables mediating between each pair of variables 
A, B, and C. There is no clear evidence that A does not cause B.
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Two Ways to Reject A Causes BTwo Ways to Reject A Causes B

• From the above four cases and each possibility associated 
with each case we saw that it is only case II that gives us 
unambiguous evidence to reject the hypothesis that A 
causes B. 
[Recall in all four cases and their possibilities we observed a 
correlation between A and B.]

• The other case [not mentioned above] that allows us to 
reject the hypothesis that A causes B is if we observe a 
zero correlation between A and B.

• We refer to these two cases below as strong basis 
rejections and weak basis rejections, respectively.
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Instrument for Testing A causes BInstrument for Testing A causes B

• Based on the above we say that C is an 
instrument for testing A causes B.

• To reject A causes B in “strong basis” form we 
need to find A correlated with B, A correlated 
with C and C not correlated with B.

• That is we need to find, in Pearl’s language, the 
following inverted fork between A, B and C:

C A B.
This requires ρ(A,B) 0; ρ(A,C) 0; and ρ(C,B)=0.
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Tests of Correlations: FisherTests of Correlations: Fisher’’s Zs Z

Fisher’s z statistic can be applied to test for 
significance from zero:

z(ρ(i,j);n) = 
1/2(n-3)1/2 x ln{(|1 + ρ( i,j)|) x (|1 - ρ( i,j)|)-1 } .

n is the number of observations used to estimate the 
correlations,  ρ( i,j) is the population correlation 
between variable i and j .
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Monte Carlo ExperimentsMonte Carlo Experiments

• Consider all possible directed acyclic graphs associated with 
variable A, B and C.  There are twenty five such cases. Of 
these nine involve structures such that A causes B (either 
directly or indirectly through C). See Haigh and Bessler
Journal of Business 2004 for details. 

• We include as well latent variables between variable A, B 
and C, as LAB LAC  and LBC . Each of these may or may not be 
present in the system.

• Thus there are 23 = 8 possible arrangements of latent 
variables that may accompany the 9 causal structures (of 
the 25 discussed above) in which A causes B. This gives us 
9 23 = 72 causal structures.
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DAGsDAGs where A causes Bwhere A causes B
1                        2                         3

A         B            A          B             A           B

C                       C                  C

4                       5                          6

A         B            A          B             A           B

C                       C                  C

7                        8                          9

A         B            A          B             A           B

C                       C                  C
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For each of the Nine For each of the Nine DAGsDAGs on the Previous Slide the on the Previous Slide the 
Following Eight Latent Structures are ConsideredFollowing Eight Latent Structures are Considered

1                         2                             3       4

LAB

A        B              A       B                     A        B A         B

LAC LBC

C                       C                              C        C

5                     6                                7        8
LAB LAB LAB

A        B          A         B                     A         B A           B

LAC LBC LAC LBC LAC LBC

C                    C                                C         C
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Linear Structural RepresentationLinear Structural Representation

Each of the 72 DAGs can be represented as a 
recursive structural equation model:

(1) X = Γo +   Γ1X   +  ε

Where Γo is a conformable intercept parameter 
matrix, Γ1 is a lower triangular matrix reflecting the 
72 DAGs discussed above, and ε is a conformable 
innovation vector with finite variance.  

In our case here X’ = (A, B, C, LAB , LAC, LBC).  
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DrawsDraws

• We randomly select one such DAG, use that DAG to parameterize 
equation 1 (previous slide), where parameters of Γo are set to zero 
and  Γ1 are set to reflect three signal strengths following Demiralp
and Hoover (2003).

• Individual elements (A,B,C) are drawn from a uniform mean zero 
variance d distribution. So that the mean parameter value will result 
in one of the three desired population correlation coefficients (weak 
signal, medium signal and strong signal) between the variables. 

• ε is drawn from a N(0,1) distribution.
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Monte Carlo Results IMonte Carlo Results I

Proportion of Rejections of a true Hypothesis A causes B Proportion of Rejections of a true Hypothesis A causes B 
-- alpha is .10alpha is .10

Low Signal Medium Signal High Signal

N=50

Weak-basis 0.421 0.125 0.047

Strong-basis 0.093 0.044 0.012

N=250

Weak-basis 0.174 0.043 0.017

Strong-basis 0.100 0.025 0.007
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Monte Carlo Results IIMonte Carlo Results II

Proportion of Rejections of a true Hypothesis A causes B Proportion of Rejections of a true Hypothesis A causes B 
-- alpha is .20alpha is .20

Low Signal Medium Signal High Signal

N=50

Weak-basis 0.331 0.095 0.036

Strong-basis 0.110 0.043 0.013

N=250

Weak-basis 0.1344 0.043 0.017

Strong-basis 0.100 0.025 0.007
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ConclusionsConclusions

The researcher need not observe all potentially 
causally-relevant variables.  Observing some variable 
C that is causally-related in the right way to A and B should 
allow us to reject Ho, regardless of what other causally-related 
variables exist.  

Testing such a hypothesis with respect to a particular C 
involves only three individual tests of unconditional 
independence, allowing us to numerically estimate the size of 
such a test. 
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Conclusions ContinuedConclusions Continued

• Such testing gives us weak basis rejections and 
strong basis rejections.

• Weak basis rejections of the hypothesis follow 
from the sharp hypothesis failure to reject ρ(A,B) 
=0.

• Strong basis rejections follow from rejection of 
the hypothesis ρ(A,B) =0, ρ(A,C) =0, and failure 
to reject ρ(B,C)=0.

• Strong basis rejections are more reliable, 
reflecting their more strenuous testing conditions.
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Conclusions ContinuedConclusions Continued

• Rejecting a causal hypothesis is much easier than 
proving a causal hypothesis.

• Causal hypotheses not rejected with a particular  
instrument C must await further testing with a 
yet to be discovered instrument C*.

• We conclude with the asymmetry: rejected causal  
hypotheses based on the instrument C, remain 
rejected when the larger set C and C* is studied. 
Causal hypotheses not rejected under instrument 
C, may well be rejected under instrument C*.  


