New Approaches for financial prediction, portfolio management, and market modeling

Details references are given within slides and can be obtained from the following WWW site. Please cite accordingly whenever you make work basing on them.

Lei Xu

http://www.cse.cuhk.edu.hk/~lxu/

Department of Computer Science and Engineering, The Chinese University of Hong Kong

- 1. Financial Prediction
- RPCL competitive learning based piecewise linear prediction
- Extended radial basis functions, Mixture of expert model and financial prediction
- Finite mixture of ARCH and GRACH models for prediction

2. Portfolio Management

- Portfolio Management by Learned Decisions
- Markowitz Portfolio, Sharpe's ratio and Downside risk
- Improved Portfolio Sharpe Ratio Maximization with Diversification
- Adaptive Portfolio Management based on Extended RBF nets and analyses of market factors

3. Arbitrage Pricing Theory

- Capital Asset Pricing Model vs. Arbitrage Pricing Theory
- Three Types of APT Implementation and Incapability of Factor analysis
- Temporal Factor Analysis (TFA) and APT
- TFA based APT for Prediction and Portfolio Management

4. Challenges and Advances of Statistical Learning

- Two types of Intelligent Ability: Learning from Samples
- Key Ingredients of Statistical Learning
- Two Key Challenges and Advances on Seeking Solutions
- A Unified Theory: Bayesian Ying-Yang Harmony Learning

1. Financial Prediction

- RPCL competitive learning based piecewise linear prediction
- Extended radial basis functions, Mixture of expert model and financial prediction
- Finite mixture of ARCH and GRACH models for prediction
- APT-TFA based prediction

	ent3.9hp			_			- E	23
	Stock	Price	Pre	li	ction			
	CICON	THUC			otton	16	(22) S	
								-
Trend Checker	Dow Jones Composite	Average	3					
HSI Constituent Stock								
HSI - Finance	Company	Price	Da	w.	Company		Price	
HSI - Utilities	3M Co.	EL	1-	×.	Coca-Cola Co.	DI		Ē
HSI - Property	AES Corp.		1-	14	Consolidated Edison Inc.			ī
HSI - Comm. & Ind	Airborne Inc.		-	-	Continental Airlines Inc. Cl B			ï
Dow Jones Composite	Alcoa Inc.	0	1 -		CSX Corp.	0		Ï
Industrial Average	Alexander & Baldwin Inc.	E1 .	-	×	Delta Air Lines Inc.			i
Transportation Average	Altria Group Inc.	E (-		Dominion Resources Inc. (Virginia)			j
Utility Average	American Electric Power Co. Inc.				Duke Energy Corp.		0	Ï
A CONTRACTOR OF THE OWNER	American Express Co.				E.I. DuPont de Nemours & Co.		()	i
LOGIN Favorite Stock Tracer	AMR Corp.		- 1	r.	Eastman Kodak Co.			
Active Stocks	AT&T Corp.	E (1 (-	*	Edison International			j
And Andrews Control of the	Boeing Co.	0	- 1	\mathcal{H}	Exelon Corp.			j
12-12-12	Burlington Northern Santa Fe Corp.		- 1	×	Exxon Mobil Corp.			1
Free Newsletter	Caterpillar Inc.	L (¥	FedEx Corp.			İ
TOUR ENDER FIELE	CenterPoint Energy Inc.		-		FirstEnergy Corp.			1
Subscribe	Citigroup Inc.	E1 (-	×	GATX Corp.		(;;	j
	CNF Inc.		1.1		General Electric Co.	171	1	

The interface of HK stock analyzer and the graph shows the predicted stock price on 29th April and the historical stock price of HSBC Holding from 15th April to 25th April.

Implemented by the EM algorithm (Xu, 1995, Proc. of IEEE NNSP-1995, USA)

Lei Xu(1995), ``Channel Equalization by Finite Mixtures and The EM Algorithm", *Proc. of IEEE Neural Networks and Signal Processing 1995 Workshop*, Vol.5, pp603-612, Aug. 31 – Sep. 2, 1995, Cambridge, Massachusetts, USA.

Another implementation: from Clustering to Gaussian mixture

Phase I:

When m_1, m_2, m_3 are given, we can get a_j, μ_j by the least square regression, i.e.

 $\min \sum_{t} \|\varepsilon_t\|^2, \varepsilon_t = y_t - \mu_2 - \mathbf{a}_2^t (\mathbf{x}_t - m_2)$

Competitive Learning $d_2 > d_1$ $\overset{m_2}{\star}$ $d_2 < d_1$ $\overset{m_2}{\star}$ d_2

 m_1

$$m_c^{new} = m_c^{old} + \eta(\mathbf{x}_t - m_c^{old})$$

$$c = \arg\min_j d_j, \quad d_j = f_j \|\mathbf{x}_t - m_j^{old}\|^2$$

 f_j frequency m_j wins

Lei Xu, A. Krzyzak & E.Oja, (1993), "Rival Penalized Competitive Learning for Clustering Analysis, RBF net and Curve Detection", *IEEE Trans. on Neural Networks*, Vol.4, No.4, pp636-649, 1993.

Phase III: When a_i, μ_i, m_i are given, we can predict $\hat{y}_t = \mu_c + \mathbf{a}_c^t (\mathbf{x}_t - m_c), c = \arg \min_i \|\mathbf{x}_t - m_j\|^2$ \mathbf{a}_2, μ_2 $\mathbf{X}_t, \mathcal{Y}_t$ \mathbf{a}_{1}, μ_{1} \mathbf{a}_3, μ_3 When a_j, μ_j, m_j are given, we can predict $\hat{y}_t = \sum_{j=1}^{\kappa} p(j | \mathbf{x}_t) [\mu_j + \mathbf{a}_j^t (\mathbf{x}_t - m_j)]$ $p(j|\mathbf{x}_t) = \frac{G(\mathbf{x}_t \mid m_j, \sigma_j^2)}{\sum_{i=1}^k G(\mathbf{x}_t \mid m_j, \sigma_j^2)}$

Fig. 5. Trading system with two steps: prediction step followed by trading step. In prediction step, the prediction model outputs $y_{(t)}$ — the estimation of desired output U(t) when the input Z(t) = $[z_t, z_{t+1}, \ldots, z_{t+d-1}, z_{t+d}]$ is available. In trading step, the trading model will output a trading signal I(t) based on $y_{(t)}$ and current information z_{t+d} for the next trading activity.

$$I(t) = \begin{cases} -1, & \text{if } \hat{z}_{t+1} - z_t > 0\\ 0, & \text{if } \hat{z}_{t+1} - z_t = 0\\ 1, & \text{otherwise} \end{cases}$$
(27)

where I(t) = 1, 0 and -1 stand for the "buy long," "do nothing" and "buy short" signals respectively.

Fig. 12. Profits from different prediction models with trading strategy 1.

Gaussian Mixture

Comparison of EM Algorithm And Gradient Approach

• For Gaussian mixtures, connection between EM and gradient is set up

$$\Theta^{(k+1)} = \Theta^{(k)} + P(\Theta^{(k)}) \frac{\partial L}{\partial \Theta^{(k)}}$$

EM searches in a positive projection of $\frac{\partial L}{\partial \Theta^{(k)}}$

- EM converges from any initial conditions Automatic satisfaction of Constraints
- $P(\Theta^{(k)})$ varies adaptively : Quasi Newton Speed.

clarified a wide spreading misunderstanding (Xu & Jordan, MIT AI Memo, 1992, then Xu, L., and M.I.Jordan, "On Convergence Properties of The EM Algorithm for Gaussian Mixtures", Neural Computation, Vol. 8, No.1, 1996, pp.129-151). (SCI紀錄之被引用量为52) (Google Scholar 紀錄之被引用量为131)

The existing efforts usually lead to a rough estimate

 $\Delta(k)$

Two Steps of Solving

Step 1 Enumerate k for a set of candidate values, fixed at each candidate, make learning

$$\theta^{*}(k) = \arg \min_{\theta} F(p(x | \theta), X)$$
Step 2 Select the best one k^{*} by
$$k^{*} = \arg \min_{k} [\Delta(k) + F(p(x | \theta(k)), X)]$$
Estimated bound of
generalization error
fitting error
k

Very computational extensive !!!

 k^*

k

 k^*

k

Lei Xu (1997), ``Bayesian Ying-Yang Machine, Clustering and Number of Clusters", *Pattern Recognition Letters, Vol.18, No.11-13*, pp1167-1178, 1997.

Lei Xu (1998), "Rival Penalized Competitive Learning, Finite Mixture, and Multisets Clustering", *Proc. Intentional Joint Conference on Neural Networks*, Vol., May 5-9, 1998, Anchorage, Alaska.

Lei Xu (2001), ``Best Harmony, Unified RPCL and Automated Model Selection for Unsupervised and Supervised Learning on Gaussian Mixtures, ME-RBF Models and Three-Layer Nets ", *International Journal of Neural Systems, Vol.11, No.1*, pp3-69, 2001.

Lei Xu (2002), "BYY harmony learning, structural RPCL, and topological self-organizing on mixture models", *Neural Networks, Vol. 15*, pp1125-1151, 2002.

Then, we can get \mathbf{a}_{j}, μ_{j} by the least square regression, i.e.

$$\min \sum_{t} \sum_{j=1}^{k} p(j | \mathbf{x}_{t}) \| y_{t} - \mu_{j} - \mathbf{a}_{j}^{t} (\mathbf{x}_{t} - m_{j}) \|^{2}$$

Prediction error based RPCL learning

Prediction error based Gaussian Mixture

Lei Xu(1995), "Channel Equalization by Finite Mixtures and The EM Algorithm", Proc. of IEEE Neural Networks and Signal Processing 1995 Workshop, Vol.5, pp603-612, Aug. 31 – Sep. 2, 1995, Cambridge, Massachusetts, USA.

M step:

$$\max \sum_{t} \sum_{j=1}^{k} p(j | \varepsilon_t) \ln[\alpha_j G(\varepsilon_t | 0, \lambda_j^2)]$$

$$\max_{\alpha_{j} \geq 0, \lambda_{j}^{2} \geq 0} \sum_{t} \sum_{j=1}^{k} p(j | \varepsilon_{t}) \ln[\alpha_{j} G(\varepsilon_{t} | 0, \lambda_{j}^{2})]$$
$$\min_{\alpha_{j}, \mathbf{a}_{j}, m_{j}} \sum_{t} \sum_{j=1}^{k} p(j | \varepsilon_{t}) \| y_{t} - \mu_{j} - \mathbf{a}_{j}^{t} (\mathbf{x}_{t} - m_{j}) \|^{2}$$

``Comparison between Mixture of ARMA and H. Y. Kwok, C. M. Chen, and Lei Xu, Mixture of AR Model with Application to Time Series Forecasting", Proc. of International Conference on Neural Information Processing (ICONIP'98), October 21-23, 1998, Kitakyushu, Japan, Vol.2, pp1049-1052.

Under the assumption that the principle is US\$5,000. The profit obtained in last day is US\$11.758.5

C.H.Wong, F. Yung, & L. Xu, Proc. of NCNN96, China

H.Y. Kowk, C.M.Chen, & L. Xu, Proc. ICONIP98

Summary

Examples of Mixture of experts

1. Hard - competition

$$p(j | \mathbf{x}_{t}) = \begin{cases} 1, & \text{if } j = c \\ 0, & \text{otherwise.} \end{cases} c = \arg\min_{j} d_{j} \\ \text{for different } d_{j}. \\ 2. \text{ Rivial penalized competition} \\ p(j | \mathbf{x}_{t}) = \begin{cases} 1, & \text{if } j = c, \ c = \arg\min_{j} d_{j}, \\ -\gamma, & \text{if } j = r, \ r = \arg\min_{j \neq c} d_{j} \\ 0, & \text{otherwise.} \end{cases} \mathbf{a}_{1}, \mu_{1} \\ \mathbf{a}_{1}, \mu_{1} \\ \mathbf{a}_{2}, \mu_{2} \\ \mathbf{a}_{3}, \mu_{3} \\ \mathbf{a}_{3}, \mu_{3} \\ \mathbf{a}_{3}, \mu_{3} \\ \mathbf{a}_{3}, \mu_{3} \\ \mathbf{a}_{3}, \mathbf{a}_{3}, \mu_{3}$$

1. Financial Prediction

- RPCL competitive learning based piecewise linear prediction
- Extended radial basis functions, Mixture of expert model and financial prediction
- Finite mixture of ARCH and GRACH models for prediction
- APT-TFA based prediction

Mixture-of-experts

Linear Mixture-of-experts

х

RBF nets and Extended RBF nets

Step I of learning

K-mean algorithm

EM algorithm

Mixture-of-experts

$$p(y \mid x) = \sum_{j} p(j \mid x) G(y \mid f(x, \theta_j), \sigma_j^2 I) \quad E(y \mid x) = f(x, \theta) = \sum_{j} p(j \mid x) f(x, \theta_j)$$

•The EM algorithm (Jordan & Jacobs, 1994)

- •Study on its convergence (Jordan & Xu, Neural Networks, 1995)
- •J(k) for selecting k and automatic selection during learning
 - (Xu, Neurocomputing, 98, Intl J Neural Systems, 01, Neural Networks, 02)

Extended RBF nets

- statistical consistency, convergence rates and receptive field size, among early major theoretical results in the literature of RBF nets. (Xu, Krzyzak, & Yuille, Harvard Robotic Lab, T.Rep, 1992, Neural Networks, 94)
- EM algorithm in place of the suboptimal clustering +LMS way (Xu, Neurocomputing, 98)
- J(k) for selecting k and automatic selection (either RPCL or BYY learning) (Xu, Neurocomputing, 98, Intl J Neural Systems, 01, Neural Networks, 02)
- applied to time series prediction, financial portfolio management.

Mixture-of-experts

Alternative Mixture-of-Experts (ME)

$$p(y | x) = \sum_{j} p(j | x)G(y|W_{j}x + c_{j}, \sigma_{j}^{2}I) \quad E(y | x) = f(x, \theta) = \sum_{j} p(j | x)(W_{j}x + c_{j})$$

• Easy to be implemented by the EM algorithm (Xu, Jordan & Hinton, IJCNN, 1994; A. NIPS, 1995)

• J(k) for selecting k and automatic selection during learning (Xu, Neurocomputing, 98, Intl J Neural Systems, 01, Neural Networks, 02)

$$G(x|W_{1}x+c_{1},\sigma_{1}^{2}I)$$

$$G(x|W_{2}x+c_{2},\sigma_{2}^{2}I)$$

$$F(j|\mathbf{x}_{t}) = \frac{\alpha_{j}G(\mathbf{x}_{t} | m_{j}, \Sigma_{j})}{\sum_{j=1}^{k} \alpha_{j}G(\mathbf{x}_{t} | m_{j}, \Sigma_{j})}$$

$$F(j|\mathbf{x}_{t}) = \frac{\alpha_{j}G(\mathbf{x}_{t} | m_{j}, \Sigma_{j})}{\sum_{j=1}^{k} \alpha_{j}G(\mathbf{x}_{t} | m_{j}, \Sigma_{j})}$$

$$F(j|\mathbf{x}_{t}) = \frac{\alpha_{j}G(\mathbf{x}_{t} | m_{j}, \Sigma_{j})}{\sum_{j=1}^{k} \alpha_{j}G(\mathbf{x}_{t} | m_{j}, \Sigma_{j})}$$

$$F(j|\mathbf{x}_{t}) = \frac{\alpha_{j}G(\mathbf{x}_{t} | m_{j}, \Sigma_{j})}{\sum_{j=1}^{k} \alpha_{j}G(\mathbf{x}_{t} | m_{j}, \Sigma_{j})}$$

$$F(j|\mathbf{x}_{t}) = \frac{\alpha_{j}G(\mathbf{x}_{t} | m_{j}, \Sigma_{j})}{\sum_{j=1}^{k} \alpha_{j}G(\mathbf{x}_{t} | m_{j}, \Sigma_{j})}$$

The EM algorithm for Alternative ME

E step:

$$p(j|\mathbf{x}_{t}) = \frac{\alpha_{j}G(\mathbf{x}_{t} | m_{j}, \Sigma_{j})G(y_{t}|W_{j}\mathbf{x}_{t} + c_{j}, \sigma_{j}^{2}I)}{\sum_{j=1}^{k} \alpha_{j}G(\mathbf{x}_{t} | m_{j}, \Sigma_{j})G(y_{t}|W_{j}\mathbf{x}_{t} + c_{j}, \sigma_{j}^{2}I)}$$
M step:

$$\max \sum_{t} \sum_{j=1}^{k} p(j|\mathbf{x}_{t}) \ln[\alpha_{j}G(\mathbf{x}_{t} | m_{j}, \Sigma_{j})]$$

$$\min \sum_{t} \sum_{j=1}^{k} p(j|\mathbf{x}_{t}) \left\| y_{t} - (W_{j}\mathbf{x}_{t} + c_{j}) \right\|^{2}$$

Lei Xu (1998a), "RBF Nets, Mixture Experts, and Bayesian Ying-Yang Learning", *Neurocomputing, Vol. 19, No.1-3*, pp223-257, 1998

Lei Xu, M.I.Jordan & G. E. Hinton (1995), `` An Alternative Model for Mixtures of Experts", *Advances in Neural Information Processing Systems 7*, eds., Cowan, J.D., Tesauro, G., and Alspector, J., MIT Press, Cambridge MA, 1995, pp633-640.

M.I.Jordan & <u>Lei Xu</u> (1995), `` Convergence results for the EM approach to mixtures-of-experts architectures'', *Neural Networks*, Vol.8, No.9, pp1409-1431.

Lei Xu (2001), "Best Harmony, Unified RPCL and Automated Model Selection for Unsupervised and Supervised Learning on Gaussian Mixtures, ME-RBF Models and Three-Layer Nets ", *International Journal of Neural Systems, Vol.11, No.1*, pp3-69, 2001.

Lei Xu (2002b), "BYY harmony learning, structural RPCL, and topological self-organizing on mixture models", *Neural Networks, Vol. 15*, pp1125-1151, 2002.

Versus Gaussian Mixture based RPCL learning

Gaussian cluster

$$d_i^x(\theta_i^x) = -\ln[\alpha_i G(\mathbf{x}_i \mid m_i, \Sigma_i)],$$

L. Xu, IJCNN98, May 5-9, 1998, Alaska, Vol.II, pp2525-2530. L. Xu, Intl J. Neural Systems, Vol.11, No.1, pp3-69, 2001.

- $\theta_{c}^{x \, new} = \theta_{c}^{x \, old} \eta_{c} \, \frac{\partial d_{c}^{x}(\theta_{c}^{x})}{\partial \theta_{c}^{x}},$ $\theta_{r}^{x \, new} = \theta_{r}^{x \, old} + \eta_{r} \, \frac{\partial d_{r}^{x}(\theta_{r}^{x})}{\partial \theta_{r}^{x}},$ $= m^{old} + n \, (\mathbf{x} m^{old}), \, c = 0$
- $m_c^{new} = m_c^{old} + \eta_c (\mathbf{x}_t m_c^{old}), \ c = \arg\min_j d_j$ $m_r^{new} = m_r^{old} \eta_r (\mathbf{x}_t m_r^{old}), \ r = \arg\min_{j \neq c} d_j$ $\Sigma_j = S_j^T S_j, \ \alpha_j = \gamma_j^2$

Prediction error based RPCL Learning

$$\begin{split} \varepsilon_{t,j} &= y_t - W_j \mathbf{x}_t - c_j \\ W_c^{new} &= W_c^{old} + \eta_c \varepsilon_{t,c} \mathbf{x}_t^T, \\ W_r^{new} &= W_r^{old} - \eta_r \varepsilon_{t,r} \mathbf{x}_t^T \\ c_c^{new} &= c_c^{old} + \eta_c \varepsilon_{t,c}, \\ c_r^{new} &= c_r^{old} - \eta_r \varepsilon_{t,r} \\ \lambda_c^{2new} &= (1 - \eta_c) \lambda_c^{2old} + \eta_c \frac{\left\| \varepsilon_{t,c} \right\|^2}{d} \\ \lambda_r^{new} &= \lambda_r^{old} + \frac{\eta_r}{\lambda_r^{old}} (\lambda_c^{2old} - \frac{\left\| \varepsilon_{t,c} \right\|^2}{d}) \end{split}$$

Table 1

The results of prediction on FOREX rate of USD-DEM-SET Type A (No. of units = 5)

Algorithms	NRBF two-stage	EM-NRBF	ENRBF two-stage	EM-ENRBF
Training (NMSE)	0.553	0.894	0.143	0.152
Testing (NMSE)	2.92	0.774	0.452	0.448

Table 2

The results of prediction on FOREX rate of USD-DEM-SET Type A (by NRBF two-stage only)

No. of units	5	10	15	20
Training (NMSE)	0.553	0.647	0.514	0.396
Testing (NMSE)	2.92	4.29	3.85	1.70

Table 3

The results of prediction on FOREX rate of USD-DEM-SET Type A (No. of units = 20)

Algorithms	Training flops *	Training (NMSE)	Testing (NMSE)
NRBF two-stage	$4.81 imes 10^5$	0.396	1.703
EM-NRBF (CCL) II	5.94×10^{5}	0.238	0.768
ENRBF two-stage	3.91×10^{5}	0.173	0.452
EM-ENRBF (CCL) II	$3.96 imes 10^6$	0.151	0.445

*Here one flop is counted by MATLAB as an addition or multiplication operation.

Table 4 The results of trading investment based on the prediction on USD-DEM-SET Type A

Algorithms	Net profit point	Profit in US\$ (in 112 days)
EM-NRBF (CCL)	1425	9262.5
Adaptive EM-NRBF (CCL)	3966	25779.0
EM-ENRBF (CCL)	2063	13406.5
Adaptive EM-ENRBF (CCL)	2916	18954.0

Table 5

The results of trading investment by Supervised Decision Network on USD-DEM-SET Type A

Algorithms	Net profit point	Profit in US\$ (in 112 days)
EM-NRBF (CCL)	1605	10432.5
Adaptive EM-NRBF (CCL)	4237	27540.5
EM-ENRBF (CCL)	2660	17290.0
Adaptive EM-ENRBF (CCL)	3207	20845.5

Fig. 2. The results of prediction on Forex data of USD-DEM-Set Type A (No. of units = 5), corresponding to Table 1, where the solid line is for data and the dashed line is for prediction result, and this convention is kept the same for all the figures in this paper: (a) by NRBF two-stage, (b) by EM-NRBF, (c) by ENRBF two-stage, (d) by EM-ENRBF.

Fig. 3. The results of prediction on Forex data of USD-DEM-Set Type A (No. of units = 20), corresponding to Table 3: (a) by NRBF two-stage, (b) by EM-NRBF, (c) by ENRBF two-stage, (d) by EM-ENRBF Algorithm II.

Fig. 4. The results of prediction on Forex data of USD-DEM-SET Type B (No. of units = 20): (a) by EM-NRBF (CCL), (b) by Adaptive EM-NRBF (the prediction and the real data are almost overlapped).

1. Financial Prediction

- RPCL competitive learning based piecewise linear prediction
- Extended radial basis functions, Mixture of expert model and financial prediction
- Finite mixture of ARCH and GRACH models for prediction
- APT-TFA based prediction

Autogressive model
$$z_{t+1} = \sum_{\tau=1}^{p} a_{\tau} z_{t+1-\tau} + \varepsilon_{t}, \quad P(\varepsilon_{t}) = G(\varepsilon_{t} \mid 0, \lambda^{2})$$

a ARCH model :
 $\lambda^{2}(t) = \alpha_{0} + \sum_{i=1}^{q} \alpha_{i} \lambda^{2}(t-i)$
a GARCH model :
 $\lambda^{2}(t) = \alpha_{0} + \sum_{i=1}^{q} \alpha_{i} \lambda^{2}(t-i) + \sum_{i=1}^{p} \beta_{i} \varepsilon_{t-i}^{2}$
a conditional heterodastic variance

Maximum Likelihood Learning

W. Wong, F. Yip, and L. Xu, ``Financial Prediction by Finite Mixture GARCH Model", Proc. of International Conference on Neural Information Processing (ICONIP'98), October 21-23, 1998, Kitakyushu, Japan, Vol.3, pp1351-1354.

Maximum Learning on
$$P(\varepsilon_t | \theta) = \sum_{j=1}^k \pi_j G(\varepsilon_t | 0, \lambda_j^2(t)),$$

 $\theta = \{\pi_j, c_j, a_{j,\tau}, \tau = 1, \dots, q_j, \alpha_{i,j}, \beta_{i,j}\}_{j=1}^k$

BHHH (Berndt, Hall, Hall and Hausman) algorithm:

$$\theta^{new} = \theta^{old} + \lambda_i [\hat{I}_{\theta\theta}]^{-1} \frac{1}{T} \sum_t \frac{\partial l_t}{\partial \theta}$$
$$\hat{I}_{\mathbf{a}_j \mathbf{a}_j} = \sum_{i=1}^{n} -\frac{1}{2} p(j|\varepsilon_t) \lambda_j^{-4}(t) \frac{\partial \lambda_j^3(t)}{\partial \mathbf{a}_j} \frac{\partial \lambda_j^2(t)}{\partial \mathbf{a}_j} \frac{\varepsilon_j^2(t)}{\lambda_j^2(t)}$$

The EM algorithm

After the completion of parameter training, we have the prediction formula:

$$\hat{y}_{t} = \sum_{j=1}^{k} p(j|\varepsilon_{t}) \left[\sum_{\tau=1}^{q_{j}} a_{j,\tau} z_{t+1-\tau} + c_{j}\right]$$

$$p(j|\varepsilon_{t}) = \frac{\alpha_{j} G(\varepsilon_{t} \mid 0, \lambda_{j}^{2}(t))}{\sum_{j=1}^{k} \alpha_{j} G(\varepsilon_{t} \mid 0, \lambda_{j}^{2}(t))}$$

- ★ USD vs DEM
- ⋆ USD vs GRP
- ⋆ USD vs SWF
- ⋆ USD vs FRN

W.C.Wong, F.Yip, & L.Xu, Proc. ICONIP98

Root-mean-square Error

USD vs.	GARCH model	Finite Mixture of GARCH model	Improve ment (%)
DEM	0.0114	0.0102	10.5
FRN	0.0405	0.0364	10.1
GRP	0.0028	0.0021	25.0
SWF	0.0107	0.0089	16.8

<section-header>

Tang, H, Chiu KC and Lei Xu, ``Finite Mixture of ARMA-GARCH Model For Stock Price Prediction", Proc. of 3rd International Workshop on Computational Intelligence in Economics and Finance (CIEF'2003), North Carolina, USA, September 26-30, 2003,

pp.1112-1119.

GARCH.

	CK HDG	HSBC HDG
Conv. ARMA-GARCH	2.7550	2.3820
Mixture AR-GARCH	2.6025	2.2466
Mixture ARMA-GARCH	2.5524	2.1889

Table 1: A summary of mean square errors for different approaches.

Figure 2: Prediction of CK prices with mixture of AR-

Figure 4: Prediction of HSBC prices with conventional ARMA-GARCH.

Figure 5: Prediction of HSBC prices with mixture of AR-GARCH.

	CK HDG	HSBC HDG
Conv. ARMA-GARCH	2.7550	2.3820
Mixture AR-GARCH	2.6025	2.2466
Mixture ARMA-GARCH	2.5524	2.1889

Table 1: A summary of mean square errors for different approaches.

Mixture-of-Experts of ARMA-GARCH models

$$p(z_{t+1} | \mathbf{x}_{t}) = \sum_{j} p(j | \Xi_{t}) G\left(z_{t+1} | \sum_{\tau=1}^{q_{j}} a_{j,\tau} z_{t+1-\tau} + c_{j} + \sum_{\tau=1}^{p_{j}} b_{j,\tau} \varepsilon_{j}(t-\tau), \lambda_{j}^{2}(t)\right)$$
$$= \sum_{i} p(j | \Xi_{t}) G(\varepsilon_{j}(t) | 0, \lambda_{j}^{2}(t))$$

$$p(j|\Xi_{t}) = \frac{\alpha_{j}G(\Xi_{t} \mid m_{j}, \Sigma_{j})}{\sum_{j=1}^{k} \alpha_{j}G(\Xi_{t} \mid m_{j}, \Sigma_{j})}, \ \Xi_{t} = \left\{ \mathbf{x}_{t}, \varepsilon_{j}(t), others \right\}$$

$$z_{t+1} = \sum_{\tau=1}^{q_{j}} a_{j,\tau} z_{t+1-\tau} + c_{j} + \varepsilon_{j}(t) + \sum_{\tau=1}^{p_{j}} b_{j,\tau} \varepsilon_{j}(t-\tau),$$

$$P(\varepsilon_{j}) = G(\varepsilon_{j} \mid 0, \lambda_{j}^{2}(t)), \ j = 1, \cdots, k$$

$$\lambda_{j}^{2}(t) = \alpha_{0,j} + \sum_{i=1}^{q} \alpha_{i,j} \varepsilon_{j}^{2}(t-i) + \sum_{i=1}^{p} \beta_{i,j} \lambda^{2}(t-i)$$

Alternative Mixture-of-Experts

E step:

$$h_{j}(t) = \frac{\alpha_{j}G(\Xi_{t} \mid m_{j}, \Sigma_{j})G(\varepsilon_{t} \mid 0, \lambda_{j}^{2}(t))}{\sum_{j=1}^{k} \alpha_{j}G(\Xi_{t} \mid m_{j}, \Sigma_{j})G(\varepsilon_{t} \mid 0, \lambda_{j}^{2}(t))}$$
M step:

$$\max \sum_{t} \sum_{j=1}^{k} h_{j}(t) \ln[\alpha_{j}G(\Xi_{t} \mid m_{j}, \Sigma_{j})]$$

$$\max \sum_{t} \sum_{j=1}^{k} h_{j}(t) \ln G(\varepsilon_{t} \mid 0, \lambda_{j}^{2}(t))$$

Tang H and Lei Xu, `` MIXTURE-OF-EXPERT ARMA-GARCH MODELS FOR STOCK PRICE PREDICTION", Proc. of 2003 International Conference on Control, Automation, and Systems, Oct. 22-25, Gyeongju, KOREA, pp402-407.

Figure 4: First step prediction of HSBC pric Gaussian mixture ARMA-GARCH.

Figure 2:	First step	prediction	of HSBC	prices	with
conventior	nal ARMA-	GARCH.			

	CK HDG	HSBC HDG
Conventional	2.3799	2.1651
Gaussian Mixture	2.1101	1.9899
Mixture-of-Expert	2.0030	1.9225

Table 1: Mean square errors of first step prediction using different ARMA-GARCH models.

Figure 6: First step prediction of HSBC prices with mixture-of-expert ARMA-GARCH.

Figure 1: First step prediction of CK prices with (Figure 5: First step prediction of CK prices with ventional ARMA-GARCH. mixture-of-expert ARMA-GARCH.

	CK HDG	HSBC HDG
Conventional	2.3799	2.1651
Gaussian Mixture	2.1101	1.9899
Mixture-of-Expert	2.0030	1.9225

Table 1: Mean square errors of first step prediction using different ARMA-GARCH models.

Figure 3: Prediction of CK prices with mixture of ARMA-GARCH.

Figure 7: Second step prediction of CK priconventional ARMA-GARCH.

Figure 9: Second step prediction of CK prices with Gaussian mixture ARMA-GARCH.

	CK HDG	HSBC HDG
Conventional	4.9627	4.2001
Gaussian Mixture	4.8216	3.9935
Mixture-of-Expert	4.4147	3.7120

Table 2: Mean square errors of second step prediction using different ARMA-GARCH models.

Figure 11: Second step prediction of CK prices with mixture-of-expert ARMA-GARCH.

Figure 8: Second step prediction of HSBC Figure 10: Second step prediction of HSBC prices with Gaussian mixture ARMA-GARCH.

	CK HDG	HSBC HDG
Conventional	4.9627	4.2001
Gaussian Mixture	4.8216	3.9935
Mixture-of-Expert	4.4147	3.7120

Table 2: Mean square errors of second step prediction using different ARMA-GARCH models.

Figure 12: Second step prediction of HSBC prices with mixture-of-expert ARMA-GARCH.

- Portfolio Management by Learned Decisions
- Markowitz Portfolio, Sharpe's ratio and Downside risk
- Improved Portfolio Sharpe Ratio Maximization with Diversification
- Adaptive Portfolio Management based on Extended RBF nets and analyses of market factors

Hang Seng Index -34.43 Nasdaq 100 Index +27.2												
Hom	e Stock Market	ŀ	Foreign Excha	nge	Fir	nance N	ews	My P	ortfolio	Lo	gout	
Welcon	ne , mok chak ki !								Acco	unt Mana	igement	
mok cl	nak ki's Portfolio					Transac	tion Inf	ormatio	n / Buy /	Sell / R	emove	
Country	Name	Symbol	Last Trade Price	Chan	ge P	revClose	Open	DayHigh	DayLow	More Info	Recom'd	
France	CAC 40	^FCHI	4468.29	+26.75 0).60%	4441.54	4452.59	4485.61	4437.54	chart	0.00137	
	Dow Jones 30 Industrials	^DJI	10190.82	+14.74 0	0.14% 1	10176.08	10178.57	10237.94	10138.65	chart	0.2605	
United State							44000.04	44400 77				
United State Japan	Nikkei 225	^N225	10962.98	-184.29 -1	1.65% 1	11147.27	11069.84	11122.77	10896.12	chart	0.2015	
	Nikkei 225	^N225 ^SPC	10962.98 1110.83	-184.29 -1 +7.14 (11122.77 1112.45		chart chart	0.2015	
Japan	Nikkei 225).65%	1103.69	1105.19		1102.58			

Portfolio Management by learning decision signals

 $I_{t}^{a_{t}^{i}} = 1$

 $I_t^i = I_t^{a_t^i} \bullet I_t^p$ Let Xu and Y.M. Cheung, "Adaptive Supervised Learning Decision Networks for Trading and Portfolio Management", Lei Xu and Y.M. Cheung, ``Adaptive Supervised Learning Journal of Computational Intelligence in Finance, Vol.5, No.6, pp11-16.

(2)

the ith foreign currency of interest.

$$\sum_{i=1}^m \mathbf{I}^{\mathbf{a}_t^i} = 1$$

That is, we are limited to investing in, at most, only one currency each day. The second component is the position signal, I^p, with

 $I^{p}_{t} = \begin{cases} 1, & \text{which means to take long position} \\ 0, & \text{which means to take neutral position} \\ -1, & \text{which means to take short position} \end{cases}$

At the current day, t, we can calculate yesterday's return by

$$\mathbf{r}_{t}^{i} = -\mathbf{I}_{t-1}^{i} \left(\mathbf{z}_{t}^{i} - \mathbf{z}_{t-1}^{i} \right) - \left| \mathbf{I}_{t-1}^{i} - \mathbf{I}_{t-2}^{i} \right| \boldsymbol{\gamma}$$
(3)

with $1 \le i \le m$, where γ is a transaction cost rate. We know that the best investment decision for yesterday

$$I_{t-1} = \left\{ I_{t-1}^{i} \right\}_{i=1}^{m}$$

should be the one that optimizes total returns

$$\sum\nolimits_{i=1}^m \mathbf{r}_t^i$$

which results in

 $I_{t-1}^{i} = [I_{t-1}^{a^{i}}, I_{t-1}^{p}]$

$$I_{t-1}^{i} = [I_{t-1}^{a^{i}}, I_{t-1}^{p}]$$

with

$$I^{a_{t-1}^{i}} = \begin{cases} 1, \text{ if } i = j \text{ with } j = \operatorname{argmax}_{1 \le i \le m}(r_{t}^{i}) \\ 0, \text{ otherwise} \end{cases}$$

and

$$I_{t-1}^{p} = \begin{cases} 1, & \text{if } z_{t}^{i} - z_{t+1}^{i} > 0 \\ 0, & \text{if } z_{t}^{i} - z_{t+1}^{i} = 0 \\ -1, & \text{if } z_{t}^{i} - z_{t+1}^{i} < 0 \end{cases}$$
(5)

(4)

We assume that there is some relationship as follows

$$[I_{t}, I_{t}^{p}] = f[I_{t-1}, I_{t-1}^{p}, z_{t}^{i}, z_{t-1}^{i}, \dots, z_{t-d+1}^{i} | 1 \le i \le m]$$
(6)

Use Extended RBF nets to learn it and then make a decision

$$I_{t}^{i} = \begin{cases} \hat{I}_{t}^{aj} \bullet \hat{I}_{t}^{p}, & \text{if } i = j \text{ with } j = \operatorname{argmax}_{1 \le i \le m}(\hat{I}_{t}^{ai}) \\ 0, & \text{otherwise} \end{cases}$$

FIGURE 1. The USD-DEM rate series of 1096 data points. Each horizontal bar represents 10 data points.

FIGURE 2. The results by *Existing ENRBF ASLD*. Upper graph: the trading signal on the test data [-1,1]. Lower graph: the profit gained (%).

FIGURE 3. The results by *Adaptive CCL-ENRBF ASLD*. Upper graph: the trading signal on the test data [-1,1]. Lower graph: the profit gained (%).

FIGURE 4. The results by *Existing ENRBF SASLD*. Upper graph: the trading signal on the test data [-1,1]. Lower graph: the profit gained (%).

FIGURE 5. The results by Adaptive CCL-ENRBF SASLD. Upper graph: the trading signal on the test data [-1,1]. Lower graph: the profit gained (%).

FIGURE 6. A plot of all results, along with results of an old prediction trading system by Cheung et al. [1996].

2. Portfolio Management

- Portfolio Management by Learned Decisions
- Markowitz Portfolio, Sharpe's ratio and Downside risk
- Improved Portfolio Sharpe Ratio Maximization with Diversification
- Adaptive Portfolio Management based on Extended RBF nets and analyses of market factors
- TFA based Adaptive Portfolio Management

Sharpe's Method

- appropriateness of investing in asset i
- Single asset investment:
 - Choose the asset with highest S_i to invest in
- Portfolio investment:
 - Choey, Kang, Weigend (1997)
 - Moody & Wu (1997)

Downside risk

Traditional risk (Markovtz 1952):

 $var(r_i)$ Upside fluctuation Downside fluctuation

Downside risk (Markowtz 1959, Fishburn 1977):
Only fluctuation below target counted as risk

$$downV_{\alpha}(G) = \int_{-\infty}^{G} (G-r)^{\alpha} dF(r)$$

Target returns

2. Portfolio Management

- Portfolio Management by Learned Decisions
- Markowian Portfolio, Sharpe's ratio and Downside risk
- Improved Portfolio Sharpe Ratio Maximization with Diversification
- Adaptive Portfolio Management based on Extended RBF nets and analyses of market factors
- TFA based Adaptive Portfolio Management

cater for investor's preference

Kei Keung Hung, Yiu-ming Cheung, and <u>Lei Xu</u>, `` An Extended ASLD Trading System to Enhance Portfolio Management", *IEEE Transactions on Neural Networks, Vol. 14, No. 2*, 2003, 413-425.

 Improved Portfolio Sharpe Ratio Maximization with Diversification' (IPSRM-D)

Select portfolio weights according to:

Expected return coefficient $\max_{\mathbf{w}} \frac{\mathbf{w}^T \overline{\mathbf{r}} + H \mathbf{w}^T \mathbf{U} \mathbf{w}}{\mathbf{w}^T \mathbf{D} \mathbf{w}} + B \mathbf{w}^T ([1] - \mathbf{w})$ Diversification term Portfolio Downside risk coefficient

s.t.
$$\sum_{i=1}^{N} w_i = l, \quad w_i \ge 0$$

Portfolio Downside Risk $\mathbf{w}^T \mathbf{D} \mathbf{w}$ • measure fluctuation below target return G $\mathbf{D} = [d_{i,j}]$ $d_{i,j} = \int_{-\infty}^{G} \int_{-\infty}^{G} (G - r_i)^{\frac{\alpha}{2}} (G - r_j)^{\frac{\alpha}{2}} p(r_i,r_j) dr_i dr_j$

• Portfolio Upside Volatility $\mathbf{w}^T \mathbf{U} \mathbf{w}$

measure fluctuation above target return G

$$\mathbf{U} = [u_{i,j}] \qquad u_{i,j} = \int_{-\infty}^{G} \int_{-\infty}^{G} (r_i - G)^{\frac{\alpha}{2}} (r_j - G)^{\frac{\alpha}{2}} p(r_i, r_j) \, \mathrm{d} r_i \, \mathrm{d} r_j$$

May be desired by active investor: check performance frequently, sell assets at high point

- Diversification term $\mathbf{w}^{T}([l]-\mathbf{w})$
 - min. when one of $\{w_i\}$ is 1 and others are 0
 - max. when all $\{w_i\}$ are equal
 - make the portfolio distribute to more assets

Experimental Demonstration (1)

• Six stocks:

- S&P 500 Composite Price Index (USA)
- Hang Seng Index (Hong Kong)
- NIKKEI 255 Stock Average (Japan)
- Shanghai SE Composite Price Index (China)
- CAC 40 Price Index (France)
- Australia SE All Ordinary Price Index (Australia)
- Transaction Cost 3%
- 1365 data points (1992 1997)
- In this experiment, $\alpha = 2, G = 0, H = B = 1$

Improved Portfolio Sharpe Ratio Maximization (IPSRM)

IPSRM w/wo diversification

	IPSRM	IPSRM-D
No. of indexed involved	1	6
Degree of diversification	0.000	0.559
Mean return	0.239	0.140
Variance of return	6.271	1.937
IPSR	1.692	1.676
Upside volatility	0.980	0.556
Downside risk	0.721	0.416

Use of the parameters H, B

More convenient methods?

I expect 10% return. Find w with min. dn. risk
I can bare only (8%)² dn. risk. Find w with max. expected return.
In IPSRM-D
How to set parameters *H* & *B* to meet specific

- expected return or risk?
- Difficult since the relationship is non-linear

The method with Control of Expected Portfolio Return

 $\max_{\mathbf{w}} \frac{r_{spec} + H\mathbf{w}^{T}\mathbf{U}\mathbf{w}}{\mathbf{w}^{T}\mathbf{D}\mathbf{w}} + B\mathbf{w}^{T}([1] - \mathbf{w})$ subject to $\begin{cases} \sum_{i=1}^{N} w_{i} = 1, & w_{i} \ge 0\\ \mathbf{w}^{T}\overline{\mathbf{r}} = r_{spec} & \text{fixed expected return} \end{cases}$

Constrained Optimization: by the Augmented Lagrange method

Experimental demonstration (2) Control of Expected Portfolio Return

	Expected return fixed a		
	0.062	0.122	
Mean return	0.117	0.137	
Variance of return	0.384	0.600	
Improved Portfolio Sharpe Ratio	2.228	2.175	
Upside Volatility	0.307	0.371	
Downside Risk	0.190	0.234	

The method with Control of Portfolio Downside Risk

$$\max_{\mathbf{w}} \frac{\mathbf{w}^{T} \overline{\mathbf{r}} + H \mathbf{w}^{T} \mathbf{U} \mathbf{w}}{v_{spec}} + B \mathbf{w}^{T} ([1] - \mathbf{w})$$

subject to
$$\begin{cases} \sum_{i=1}^{N} w_{i} = 1, & w_{i} \ge 0\\ \mathbf{w}^{T} \mathbf{D} \mathbf{w} = v_{spec} & \text{fixed downside risk} \end{cases}$$

Constrained Optimization: by the Augmented Lagrange method

Experimental demonstration (3) Controlled expected downside risk Expected downside risk = 0.3589 Expected downside risk = 0.8308 yn er staar de staar Profit gain (%) -10 L 0 Number of days

Experimental demonstration (3) Control of downside portfolio risk

	Expected downside risk fixed at		
	0.359	0.831	
Mean return	0.105	0.132	
Variance of return	0.320	0.741	
Improved Portfolio Sharpe Ratio	2.193	2.027	
Upside Volatility	0.282	0.388	
Downside Risk	0.176	0.257	

Summary

- Controlled Expected Return and Downside Risk
- Select w in accordance to investor's preference
- Extension of the Sharpe Ratio to portfolio case
 New terms: Upside volatility, diversification term

2. Portfolio Management

- Portfolio Management by Learned Decisions
- Markowitz Portfolio, Sharpe's ratio and Downside risk
- Improved Portfolio Sharpe Ratio Maximization with Diversification
- Adaptive Portfolio Management based on Extended RBF nets and analyses of market factors

Adaptive Portfolio Management

Xu, L, ``BYY harmony learning, independent state space and generalized APT financial analyses '', IEEE Tr. on Neural Networks, 12 (4), 2001, 822-849.

• The return of the portfolio on the tth day is defined by :

$$R_{t} = (1 - \alpha_{t})r^{f} + \alpha_{t} \sum_{j=1}^{m} \beta_{t}^{j} x_{t}^{j} \qquad x_{t}^{(j)} = \frac{p_{t}^{(j)} - p_{t-1}^{(j)}}{p_{t-1}^{(j)}}$$

 α_t : proportion of money spent on securities

borrowing from a risk-free bond is allowed $lpha_{_t}>0$

 r^{f} : return from the risk-free bond

 β_t^{j} : proportion of α_t spent on the j^{th} security

short sale is not permitted $1 \ge \beta_t^j \ge 0$ $x_t^{(j)}$ and $p_t^{(j)}$ are the return and closing price for the jth security on the tth day respectively.

$$R_t = (1 - \alpha_t)r^f + \alpha_t \sum_{i=1}^m \beta_t^j x_t^j$$

 $Sp = \frac{M(R_T)}{\sqrt{V(R_T)}}$: the return obtained per unit of risk

Observation based:

$$\begin{aligned}
\alpha_t &= e^{-\delta_t} \\
\beta_t^j &= \frac{e^{\xi_t^j}}{\sum_{r=1}^m e^{\xi_t^r}} & \text{where } \delta_t \text{ and } \xi_t^j \text{ are controlled by observations} \\
\text{Hidden factors based:} & \alpha_t &= e^{-\delta_t} \\
\beta_t^j &= \frac{e^{\xi_t^j}}{\sum_{r=1}^m e^{\xi_t^r}} & \text{where } \delta_t \text{ and } \xi_t^j \text{ are controlled by hidden market factors y}_t \\
\delta_t &= g(y_t, \psi) & \text{factors y}_t
\end{aligned}$$

The exact functional form of both

 $g(y_t,\psi)$ and $f(y_t,\phi)$ are unknown, it can be approximated by the adaptive Extended Normalized Radial Basis Function (ENRBF) algorithm [Xu, 1998]

$$g(y_{t},\psi) = \sum_{p=1}^{k} (W_{p}^{T}y_{t} + c_{p})\varphi(\mu,\Sigma,k)$$

$$f(y_{t},\phi) = \sum_{p=1}^{\hat{k}} (\hat{W}_{p}^{T}y_{t} + \hat{c}_{p})\varphi(\hat{\mu},\hat{\Sigma},\hat{k})$$

where $\varphi(\mu,\Sigma,k) = \frac{e^{-0.5(y_{T}-u_{p})^{T}\Sigma_{p}^{-1}(y_{T}-u_{p})}}{\sum_{p=1}^{k} e^{-0.5(y_{T}-u_{p})^{T}\Sigma_{p}^{-1}(y_{T}-u_{p})}}$

An Adaptive Algorithm

• Use the gradient ascent approach

$$\theta^{new} = \theta^{onu} + \eta \nabla_{\theta} S_{p}$$

and

anow

$$\theta = \psi \cup \phi$$

$$\psi = \left\{ u_p, \Sigma_p, W_p, c_p \right\}_{p=1}^k, \quad \psi = \left\{ \hat{u}_p, \hat{\Sigma}_p, \hat{W}_p, \hat{c}_p \right\}_{p=1}^{\hat{k}}$$

Kai Chun Chiu, and Lei Xu, "Stock price and index forecasting by arbitrage pricing theory-based gaussian TFA learning", in H. Yin et al., eds., Lecture Notes in Computer Sciences, Vol.2412, pp366-371, 2002, Springer Verlag.

Detailed Updating Rules Updating the parameter set ψ $u_p^{new} = u_p^{old} + \eta \ (\nabla_{\zeta_T} S_p) \varphi(\mu, \Sigma, k) \tau(\mu, \Sigma, W_p, c, k) (y_T - \mu_p)$ $\Sigma_p^{new} = \Sigma_p^{old} + \eta (\nabla_{\zeta_T} S_p) \varphi(\mu, \Sigma, k) \tau(\mu, \Sigma, W_p, c, k) \kappa(\mu, \Sigma)$ $W_p^{new} = W_p^{old} + \eta (\nabla_{\zeta_T} S_p) \varphi(\mu, \Sigma, k) y_T$ $c_p^{new} = c_p^{old} + \eta (\nabla_{\zeta_T} S_p) \varphi(\mu, \Sigma, k) y_T$

$$\hat{u}_{p}^{new} = \hat{u}_{p}^{old} + \hat{\eta} \ (\nabla_{\xi_{T}^{(j)}} S_{p}) \varphi(\hat{\mu}, \hat{\Sigma}, \hat{k}) \tau(\hat{\mu}, \hat{\Sigma}, \hat{W}_{p,r}, \hat{c}, \hat{k}) (y_{T} - \hat{\mu}_{p})$$

$$\hat{\Sigma}_{p}^{new} = \hat{\Sigma}_{p}^{old} + \eta (\nabla_{\xi_{T}^{(j)}} S_{p}) \varphi(\hat{\mu}, \hat{\Sigma}, \hat{k}) \tau(\hat{\mu}, \hat{\Sigma}, \hat{W}_{p,r}, \hat{c}, \hat{k}) \kappa(\hat{\mu}, \hat{\Sigma})$$

$$W_{p,r}^{new} = W_{p,r}^{old} + \eta (\nabla_{\xi_{T}^{(j)}} S_{p}) \varphi(\hat{\mu}, \hat{\Sigma}, \hat{k}) y_{T}$$

$$c_{p,r}^{new} = c_{p,r}^{old} + \eta (\nabla_{\xi_{T}^{(j)}} S_{p}) \varphi(\hat{\mu}, \hat{\Sigma}, \hat{k}) y_{T}$$

where η and $\hat{\eta}$ are learning rates,

$$\begin{split} M(R_{T}) &= \frac{1}{T} \sum_{t=1}^{T} R_{t}, \qquad V(R_{T}) = \frac{1}{T} \sum_{t=1}^{T} [R_{t} - M(R_{T})]^{2} \\ \nabla_{\zeta_{T}} S_{p} &= \frac{\left\{ V(R_{T}) - M(R_{T}) [R_{T} - M(R_{T})] (1 - \frac{1}{T}) \right\} \left(\sum_{j=1}^{m} e^{\xi_{T}^{(j)}} x_{T}^{(j)} - r_{t}^{f} \right) e^{\xi_{T}}, \\ \nabla_{\zeta_{T}^{(j)}} S_{p} &= \frac{\left\{ V(R_{T}) - M(R_{T}) [R_{T} - M(R_{T})] (1 - \frac{1}{T}) \right\} e^{\xi_{T}} x_{T}^{(j)} \left(\sum_{r=1}^{m} e^{\xi_{r}^{(r)}} - e^{\xi_{T}^{(j)}} \right) e^{\xi_{T}^{(j)}}, \\ \nabla_{\zeta_{T}^{(j)}} S_{p} &= \frac{\left\{ V(R_{T}) - M(R_{T}) [R_{T} - M(R_{T})] (1 - \frac{1}{T}) \right\} e^{\xi_{T}} x_{T}^{(j)} \left(\sum_{r=1}^{m} e^{\xi_{r}^{(r)}} - e^{\xi_{T}^{(j)}} \right) e^{\xi_{T}^{(j)}}, \\ \nabla_{\zeta_{T}^{(j)}} S_{p} &= \frac{\left\{ V(R_{T}) - M(R_{T}) [R_{T} - M(R_{T})] (1 - \frac{1}{T}) \right\} e^{\xi_{T}} x_{T}^{(j)} \left(\sum_{r=1}^{m} e^{\xi_{r}^{(r)}} - e^{\xi_{T}^{(j)}} \right) e^{\xi_{T}^{(j)}}, \\ \nabla_{\zeta_{T}^{(j)}} S_{p} &= \frac{\left\{ V(R_{T}) - M(R_{T}) [R_{T} - M(R_{T})] (1 - \frac{1}{T}) \right\} e^{\xi_{T}} x_{T}^{(j)} \left(\sum_{r=1}^{m} e^{\xi_{r}^{(r)}} - e^{\xi_{T}^{(j)}} \right) e^{\xi_{T}}, \\ \nabla_{\zeta_{T}^{(j)}} S_{p} &= \frac{\left\{ V(R_{T}) - M(R_{T}) [R_{T} - M(R_{T})] (1 - \frac{1}{T}) \right\} e^{\xi_{T}} x_{T}^{(j)} \left(\sum_{r=1}^{m} e^{\xi_{r}^{(r)}} - e^{\xi_{T}^{(j)}} \right) e^{\xi_{T}}, \\ \nabla_{\zeta_{T}^{(j)}} S_{p} &= \frac{\left\{ V(R_{T}) - M(R_{T}) [R_{T} - M(R_{T})] (1 - \frac{1}{T}) \right\} e^{\xi_{T}} x_{T}^{(j)} \left(\sum_{r=1}^{m} e^{\xi_{r}^{(r)}} - e^{\xi_{T}^{(j)}} \right) e^{\xi_{T}}, \\ \nabla_{\zeta_{T}^{(j)}} S_{p} &= \frac{\left\{ V(R_{T}) - M(R_{T}) [R_{T} - M(R_{T})] (1 - \frac{1}{T}) \right\} e^{\xi_{T}} x_{T}^{(j)} \left(\sum_{r=1}^{m} e^{\xi_{T}^{(r)}} \right) e^{\xi_{T}}, \\ \nabla_{\zeta_{T}^{(j)}} S_{p} &= \frac{\left\{ V(R_{T}) - M(R_{T}) [R_{T} - M(R_{T})] (1 - \frac{1}{T}) \right\} e^{\xi_{T}} x_{T}^{(j)} \left(\sum_{r=1}^{m} e^{\xi_{T}} \right) e^{\xi_{T}}, \\ \nabla_{\zeta_{T}^{(j)}} S_{p} &= \frac{\left\{ V(R_{T}) - M(R_{T}) [R_{T} - M(R_{T})] T^{(j)} x_{T}^{(j)} \right\} e^{\xi_{T}} x_{T}^{(j)} \left(\sum_{r=1}^{m} e^{\xi_{T}} \right) e^{\xi_{T}} x_{T}^{(j)} \left(\sum_{r=1}^{m} e^{\xi_{T}} \right) e^{\xi_{T}} x_{T}^{(j)} x_$$

Simulation Result and Performance Evaluation

Data Considerations

 Experiments based on the interest rate and stock prices of Hong Kong stock market

- Data obtained from 1 Nov 2001 to 11/11/2002
- The performance was studied for 180 trading days.
- Eight stocks were selected to form the portfolios:

0001 CHECUNG KONG	0002 CLP HOLDINGS	0003 HK & CHINA GAS	0004 WHARF
0005 HSBC HOLDINGS	0008 PCCW	0992 LEGEND GROUP	1038 CKI HOLDINGS

K.C., Chiu and Lei Xu, "Stock forecasting by ARCH driven gaussian TFA and alternative mixture experts models", Proc. of 3rd International Workshop on Computational Intelligence in Economics and Finance (CIEF'2003), paper CIEF3-80, NorthCarolina, USA, September 26-30, 2003, pp 1096 -1099.

Evaluate the performance of the portfolio management system in 4 different scenarios, where transactions were not in lots

The four scenarios are:

Experiment 1	No Transaction Cost and Short Sale Not Permitted
Experiment 2	Has Transaction Cost, Short Sale Not Permitted
Experiment 3	No Transaction Cost, Short Sale Permitted
Experiment 4	Has Transaction Cost, Short Sale Permitted

No Transaction Cost, Short Sale Not Permitted

	Mean	Standard Deviation	Max	Min	Sharpe Ratio
The Portfolio	1.0541	0.0235	1.1020	0.9910	44.8553
Hang Seng Index	0.9771	0.0727	1.1099	0.8211	13.4402

No Transaction Cost, Short Sale Not Permitted

No Transaction Cost, Short Sale Not Permitted

	Mean	Standard Deviation	Max	Min	Sharpe Ratio
The Portfolio	1.0541	0.0235	1.1020	0.9910	44.8553
0001	0.8712	0.1213	1.0621	0.6262	7.1822
0002	1.0188	0.0222	1.0680	0.9660	45.8919
0003	1.0572	0.0361	1.1413	0.9859	29.2853
0004	0.9938	0.1109	1.2764	0.8205	8.9612
0005	1.0257	0.0464	1.1239	0.9078	22.1056
0008	0.8678	0.1855	1.0864	0.4764	4.6782
0992	0.8985	0.0854	1.0815	0.6593	10.5211
1038	1.0591	0.0450	1.1545	0.9959	23.5356

Compare Portfolio Return with its Constituents

With Transaction Cost, Short Sale Not Permitted

every change in β_i^j involves a transaction of which a transaction cost

$$c_{t} = -\alpha_{t} \sum_{j=1}^{m} r_{c} |\beta_{t}^{j} - \beta_{t-1}^{j}| (1 + x_{t}^{j})$$

, where r_c is the rate of transaction cost

$$\begin{split} R_{t} &= \left(1 - \alpha_{t}\right) r^{f} + \alpha_{t} \sum_{j=1}^{m} \left(\beta_{t}^{j} x_{t}^{j} - r_{c} \sum_{j=1}^{m} r_{c} \left|\beta_{t}^{j} - \beta_{t-1}^{j}\right| \left(1 + x_{t}^{j}\right)\right) \\ &\frac{dSp}{d\xi_{t}^{j}} = \left[V(R_{T}) - M(R_{T})[R_{T} - M(R_{T})]\right] e^{\xi_{T}^{j}} \left[x_{t}^{j} - r_{c} sign\left(e^{\xi_{T}^{j}} - e^{\xi_{T}^{j-1}}\right)\right] \\ &\cdot \left(\sum_{r=1}^{m} e^{\xi_{T}^{r}} - e^{\xi_{T}^{j}}\right) \frac{e^{\xi_{T}^{j}}}{T\sqrt{V(R_{T})^{3}} \left(\sum_{r=1}^{m} e^{\xi_{T}^{r}}\right)^{2}} \end{split}$$

	Mean	Standard Deviation	Max	Min	Sharpe Ratio
The Portfolio	1.0452	0.0220	1.0911	0.9886	47.5091
Hang Seng Index	0.9771	0.0727	1.1099	0.8211	13.4402

Compare Portfolio Return with its Constituents

Compare Portfolio Return with its Constituents

	Mean	Standard Deviation	Max	Min	Sharpe Ratio
The Portfolio	1.0452	0.0220	1.0911	0.9886	47.5091
0001	0.8712	0.1213	1.0621	0.6262	7.1822
0002	1.0188	0.0222	1.0680	0.9660	45.8919
0003	1.0572	0.0361	1.1413	0.9859	29.2853
0004	0.9938	0.1109	1.2764	0.8205	8.9612
0005	1.0257	0.0464	1.1239	0.9078	22.1056
0008	0.8678	0.1855	1.0864	0.4764	4.6782
0992	0.8985	0.0854	1.0815	0.6593	10.5211
1038	1.0591	0.0450	1.1545	0.9959	23.5356

With Transaction Cost, Short Sale Not Permitted

-		Mean	Standard Deviation	Max	Min	Sharpe Ratio
	Experiment 1	1.0541	0.0235	1.1020	0.9910	44.8553
	Experiment 2	1.0452	0.0220	1.0911	0.9886	47.5091

• all the return related attributes decreased

transaction cost was charged for every transaction

- The standard deviation and Sharpe Ratio better
- Still better than the performance of Hang Seng Index

No Transaction Cost, Short Sale Permitted

$$\alpha_t = \delta_t$$

$$\beta_t^j = \frac{\xi_t^j}{\sum_{r=1}^m \xi_r^r}$$

$$\frac{\partial Sp}{\partial \delta_T} = \frac{\left[V(R_T) - M(R_T)(R_T - M(R_T))\right]}{T\sqrt{V(R_T)^3}} \left(\frac{\sum_{r=1}^m e^{\xi_T^r} x_T^r}{\sum_{r=1}^m e^{\xi_T^r}} - r^f\right)$$

$$\frac{\partial Sp}{\partial \xi_T^{j}} = \frac{[V(R_T) - M(R_T)(R_T - M(R_T))]e^{\delta_T} x_T^{j} \left(\sum_{r=1}^m e^{\xi_T^{r}} - e^{\xi_T^{j}}\right)}{T \sqrt{V(R_T)^3} \left(\sum_{r=1}^m e^{\xi_T^{r}}\right)^2}$$

No Transaction Cost, Short Sale Permitted

No Transaction Cost, Short Sale Permitted

No Transaction Cost, Short Sale Permitted

	Mean	Standard Deviation	Max	Min	Sharpe Ratio
Your Portfolio	1.0700	0.0336	1.1376	0.9953	31.8452
0001	0.8712	0.1213	1.0621	0.6262	7.1822
0002	1.0188	0.0222	1.0680	0.9660	45.8919
0003	1.0572	0.0361	1.1413	0.9859	29.2853
0004	0.9938	0.1109	1.2764	0.8205	8.9612
0005	1.0257	0.0464	1.1239	0.9078	22.1056
0008	0.8678	0.1855	1.0864	0.4764	4.6782
0992	0.8985	0.0854	1.0815	0.6593	10.5211
1038	1.0591	0.0450	1.1545	0.9959	23.5356

Compare Portfolio Return with its Constituents

No Transaction Cost, Short Sale Permitted

	Mean	Standard Deviation	Max	Min	Sharpe Ratio
Experiment 2.1	1.0541	0.0235	1.1020	0.9910	44.8553
Experiment 2.2	1.0452	0.0220	1.0911	0.9886	47.5091
Experiment 2.3	1.0700	0.0336	1.1376	0.9953	31.8452

- Short sales were permitted → the portfolio was still able to generate money from stock market even though the stock prices declined The portfolio was doing very well
- Hang Seng Index decreased for more than 10% However, the portfolio increased for about 14%
- Short sales brought return to the portfolio, but also brought risk The risk was still low

With Transaction Cost, Short Sale Permitted

$$R_{t} = (1 - \alpha_{t})r^{f} + \alpha_{t} \sum_{j=1}^{m} \left(\beta_{t}^{j} x_{t}^{j} - r_{c} \sum_{j=1}^{m} r_{c} \left|\beta_{t}^{j} - \beta_{t-1}^{j}\right| (1 + x_{t}^{j})\right)$$
$$\frac{\partial Sp}{\partial \delta_{T}} = \frac{[V(R_{T}) - M(R_{T})(R_{T} - M(R_{T}))]}{T\sqrt{V(R_{T})^{3}}} \left(\frac{\sum_{r=1}^{m} e^{\xi_{T}^{r}} x_{T}^{r}}{\sum_{r=1}^{m} e^{\xi_{T}^{r}}} - r^{f}\right)$$
$$\frac{dSp}{d\xi_{t}^{j}} = [V(R_{T}) - M(R_{T})[R_{T} - M(R_{T})]]\xi_{T}^{j} [x_{t}^{j} - r_{c}sign(\xi_{T}^{j} - \xi_{T}^{j-1})] \cdot \frac{\sum_{r=1}^{m} \xi_{T}^{r} - \xi_{T}^{j}}{T\sqrt{V(R_{T})^{3}} (\sum_{r=1}^{m} \xi_{T}^{r})^{2}}$$

With Transaction Cost, Short Sale Permitted

With Transaction Cost, Short Sale Permitted

With Transaction Cost, Short Sale Permitted

Compare Portfolio Return with its Constituents

	Mean	Standard Deviation	Max	Min	Sharpe Ratio
The Portfolio	1.0629	0.0296	1.1231	0.9952	35.9088
0001	0.8712	0.1213	1.0621	0.6262	7.1822
0002	1.0188	0.0222	1.0680	0.9660	45.8919
0003	1.0572	0.0361	1.1413	0.9859	29.2853
0004	0.9938	0.1109	1.2764	0.8205	8.9612
0005	1.0257	0.0464	1.1239	0.9078	22.1056
0008	0.8678	0.1855	1.0864	0.4764	4.6782
0992	0.8985	0.0854	1.0815	0.6593	10.5211
1038	1.0591	0.0450	1.1545	0.9959	23.5356

With Transaction Cost, Short Sale Permitted

	Mean	Standard Deviation	Max	Min	Sharpe Ratio
Experiment 1	1.0541	0.0235	1.1020	0.9910	44.8553
Experiment 2	1.0452	0.0220	1.0911	0.9886	47.5091
Experiment 3	1.0700	0.0336	1.1376	0.9953	31.8452
Experiment 4	1.0629	0.0296	1.1231	0.9952	35.9088

Evaluate the performance of the portfolio management system in 4 different scenarios, where transactions were in lots

Stock Code	Company Name	No. of Shares per Board Lot
0001	CHEUNG KONG	1000
0002	CLP HOLDINGS	500
0003	HK & CHINA GAS	1000
0004	WHARF HOLDINGS	1000
0005	HSBC HOLDINGS	400
0008	PCCW	1000
0992	LEGEND GROUP	2000
1038	CKI HOLDINGS	1000

The four scenarios are:

Experiment 1 No Transaction Cost and Short Sale Not Permitted
Experiment 2 Has Transaction Cost, Short Sale Not Permitted
Experiment 3 No Transaction Cost, Short Sale Permitted
Experiment 4 Has Transaction Cost, Short Sale Permitted

4		Mean	Standard Deviation	Max	Min	Sharpe Ratio
	Experiment 1	1.0541	0.0235	1.1020	0.9910	44.8553
	Experiment 2	1.0493	0.0214	1.0936	0.9928	49.0327

- The following values decreased:
 - -Mean

- -Standard deviation
- -Maximum return
- Because the transactions were now in lots
 - \rightarrow Fewer stocks could be purchased
 - \rightarrow more money was placed in risk-free bond
- Return from stock market is usually greater than the return from risk-free bond
 - \rightarrow lowered the return of the portfolio