3. Arbitrage Pricing Theory

- Capital Asset Pricing Model vs. Arbitrage Pricing Theory
- Temporal Factor Analysis (TFA) and APT
- TFA based APT for Prediction
- TFA based APT for Portfolio Management

Capital Asset Pricing Model

\bullet Portfolio A is preferred to portfolio B if
(i) $\quad E_{A}(R) \geq E_{B}(R)$ and
(ii) $\quad \operatorname{var}_{A}(R) \leq \operatorname{var}_{B}(R)$ or $\quad S D_{A}(R) \leq S D_{B}(R)$
-Portfolios that satisfy this known as the set of efficient portfolios.

$$
\begin{aligned}
& R_{p}=x_{1} R_{1}+x_{2} R_{2} \\
& E R_{p}=\mu_{p}=\left(x_{1} E R_{1}+x_{2} E R_{2}\right)=x_{1} \mu_{1}+x_{2} \mu_{2} \\
& \mu_{p}=\sum_{i=1}^{n} x_{i} \mu_{i} \\
& \sigma_{p}^{2}=\sum x_{i}^{2} \sigma_{i}^{2}+\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i \neq j} x_{j} \sigma_{i j}
\end{aligned}
$$

The efficient frontier shows all the combinations of (μ_{p}, σ_{p}) which minimizes risk σ_{p} for a given level of μ_{p}.

Efficient Frontier and Correlation.
(the set of efficient portfolios forms the efficient frontier.)

Each point on the efficient frontier corresponds to a different set of optimal proportions $x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, \cdots \quad \sum x_{i}^{*}=1$

The Optimal Portfolio

An investor can be anywhere along $r Z^{\prime}$, but M is always a fixed bundle of stocks (or fixed proportions of stocks) held by all investors.
-Hence point M is known as the market portfolio and $r Z^{\prime}$ is known as the capital market line (CML).

$$
\begin{gathered}
\left(E R_{i}-r\right)=\beta_{i}\left(E R^{m}-r\right) \Rightarrow E R_{i}=r+\beta_{i}\left(E R^{m}-r\right) \\
\beta_{i}=\operatorname{cov}\left(R_{i}, R^{m}\right) / \operatorname{var}\left(R^{m}\right)
\end{gathered}
$$

$E R^{m}$ is the expected return on the market portfolio that is the 'average' expected return from holding all assets in the optimal proportions x_{i}^{*}

Expected return $=\mu_{i}=E R_{i}$
Variance of returns $=\sigma_{i}^{2}=\operatorname{var}\left(R_{i}\right)$
Covariance of returns $=\sigma_{i, j}=\operatorname{cov}\left(R_{i}, R_{j}\right)$

○*

e..g. changes in inflation, industrial production, investor confidence and interest rates

Rotation indeterminacy

$$
y_{t}^{\prime}=\Phi y
$$

Rotation indeterminacy

IDENTIFYING THE FACTORS

Several researchers have investigated stock returns and estimated that there are anywhere from three to five factors. Subsequently, various people attempted to identify these factors.

By Chen, Roll, and Ross, the following factors were identified:

1. Growth rate in industrial production,
2. Rate of inflation (both expected and unexpected).
3. Spread between long-term and short-term interest rates,
4. Spread between low-grade and high-grade bonds.

Traditional Approach ONE

- Maximum Likelihood Factor Analysis
- Likelihood Ratio (LR) test on the residuals to ascertain minimum factor number
- Limitations
- \boldsymbol{k} increases progressively with \# of securities pused
$\Rightarrow \quad$ tends to bias towards more factors
- Rotational indeterminacies

Traditional Approach TWO

[Chamberlain \& Rothschild 1983]

- Eigenvalue Analysis Approach
- \boldsymbol{k} eigenvalues of Σ increases without bound as \boldsymbol{p} increases
$\Rightarrow \quad$ eigenvectors can be used as factor loadings.
- Limitation
- Assumption of infinite assets is strong and unrealistic [Shukla and Trzcinka 1990] 1989]

3. Arbitrage Pricing Theory

- Capital Asset Pricing Model vs. Arbitrage Pricing Theory
- NonGaussian factor analysis (NFA), Temporal Factor Analysis (TFA), and APT
- TFA based APT for Prediction
- TFA based APT for Portfolio Management

Two Major Problems in APT Analysis

- Determination of the appropriate number of priced factors \boldsymbol{k}

The problems can be solved by either of NonGaussian factor analysis (NFA) and Temporal Factor Analysis (TFA).

Non-Gaussian Factor Analysis (NFA)

$$
\begin{aligned}
& p\left(y_{t}\right)=\prod_{j=1}^{k} p\left(y_{t}^{(j)}\right) \\
& \left\{\begin{array}{l}
y_{t}=\varepsilon_{t} \\
x_{t}=A y_{t}+e_{t}, \quad \begin{array}{l}
\text { Non-Gaussian } \\
t=1,2, \cdots, N
\end{array}
\end{array}\right.
\end{aligned}
$$

- Independence Constraint

Xu, L, `BYY harmony learning, independent state space and generalized APT financial analyses ", IEEE Tr. on Neural Networks, 12 (4), 2001, 822-849.

Relationship between APT and NFA

- To analyze APT using NFA, the APT model may simply be rewritten in the following form:

$$
R_{t}-\bar{R}=A f_{t}+e_{t}
$$

- If we let $x_{t}=R_{t}-\bar{R}$ and $y_{t}=f_{t}$, we get exactly the NFA model

$$
x_{t}=A y_{t}+e_{t}
$$

Independent factor models

- Nongaussian: y from nongaussian

Moulines, Cardoso, \& Gassiat, 1997, Attias, 1999

$$
\begin{aligned}
& q\left(y^{(j)}\right)=\sum_{i(} \beta_{j G} G\left(y^{(j)} \mid m_{j i}, \sigma_{j i)}^{2}\right. \text { subject to } \\
& \int y^{(j)^{2}} q\left(y^{(j)}\right) d y^{(j)}=1, \quad \int y^{(j)} q\left(y^{(j)}\right) d y^{(j)}=0
\end{aligned}
$$

The EM algorithm: integral can be avoided but with the computing complexity increasing with \boldsymbol{m}.

NFA by Harmony Learning

$$
q\left(y^{(j)}\right)=\sum_{i} \beta_{j i} G\left(y^{(j)} \mid m_{j i}, \sigma_{j i}^{2}\right) \text { subject to }
$$

$$
\int y^{(j)^{2}} q\left(y^{(j)}\right) d y^{(j)}=1, \quad \int y^{(j)} q\left(y^{(j)}\right) d y^{(j)}=0
$$

$y_{t}=\arg \max \left[q\left(x_{t} \mid y\right) q(y)\right]$ from $\max _{p(y \mid x)}^{y} H(p \| q)$

versus

> ML learning $p(y \mid x)=\frac{q(x \mid y) q(y)}{q(x)}$ from $\min _{p(y \mid x)} K L(\theta)$

$$
\begin{array}{r}
p_{0}(x)=\frac{1}{N} \sum_{t=1}^{N} \delta\left(x-x_{t}\right) \quad \begin{array}{c}
x=A y+\varepsilon \\
q(x)=\int G(x \mid A y, \Sigma) p(y) d y
\end{array}
\end{array}
$$

NFA with automatic model selection

$$
q(y)=|\Lambda|^{-0.5} q_{0}\left(V \Lambda^{-0.5} y\right), q_{0}(y)=\prod q\left(y_{j}\right) \quad \mathrm{q}\left(y_{j}\right) \text { is a mixture of }
$$

 Gaussians or from a mixture of sigmoid, Subject to
$\int y_{j}^{2} q_{0}\left(y_{j}^{2}\right) d y_{j}=1$
$\Lambda=\operatorname{diag}\left[\lambda_{1}, \ldots, \lambda_{m}\right]$
$U^{T} U=I, V^{T} V=I$
$\mathrm{A}=\mathrm{U} \Lambda \mathrm{V}^{\mathrm{T}}$
$\delta U, \delta V$ are updated in theStiefelmanifold via updating $\delta \lambda_{j}$

Xu, L (2004a), in press, IEEE Trans on Neural Networks
Xu L, Neural Information Processing - Letters and Reviews, Vol.1, No.1, pp1-52, 2003.

- Factors are independent
- Overcome rotation indeterminacies [Xu 2000]
- Factor determination via a simple cost function $J(k)$ [Xu 2001]

Data Consideration

- \# of trading days: 522
- Total number of securities: 86
- 30 Hang Seng Index (HSI)
- 32 Hang Seng China-Affiliated Corporations Index (HSCCI)
- 24 Hang Seng China Enterprises Index (HSCEI)

Kai-Chun Chiu, and Lei Xu (2003), ` ${ }^{\text {NFA }}$ for Factor Number Determination in APT", International Journal of Theoretical and Applied Finance, pp 253-267, 2004.

Data Preprocessing

Test Methodology

- ML Factor Analysis
- LR Statistics [Lawley \& Maxwell 1963]

$$
\begin{aligned}
& L R=\left(N-\frac{2 p+4 k+11}{6}\right)\left\{\left(\ln \left|A A^{\prime}+\Sigma\right|-\ln |S|\right)\right. \\
& \left.+\left(\operatorname{tr}\left[\left(A A^{\prime}+\Sigma\right)^{-1} S\right]-p\right)\right\} \\
& \text { Follows } \chi^{2} \text { distribution with } \\
& {\left[(p-k)^{2}-(p+k)\right] / 2 \quad \text { degrees of freedom }}
\end{aligned}
$$

- Level of significance $=5 \%$

Eigenvalues Analysis

- Choose the number of eigenvalues that are significantly larger than the rest of the others.
- NFA
- Model selection via the cost function J(k) [Xu 2001]

$$
\min _{k} J(k)=\frac{1}{2}\left[\ln |\Sigma|-\frac{1}{N} \sum_{t=1}^{N} \ln q\left(\hat{y}_{t} \mid \hat{y}_{t-1}, \theta_{y}\right)\right]
$$

Summarized Results				
Stock Index	Total \# of Securities	MLFA	Eigen- value	$J(k)$
HIS	30	11	1	4
HSCCI	32	12	1	4
HSCEI	24	9	1	5
All	86	33	1	5

NFA: Plot of $J(k)$ for factor number determination

Implication by MLFA

Result Interpretation and Analysis

- factor \# needed to explain cross-sectional security returns generation increases as more securities are added
- Implication by Eigenvalue Analysis
- basically only one factor is needed to account for all returns (Conclusion in line with CAPM)
- Implication by NFA
- Factor \# is 4 or 5 (Consistent with the conjecture by Roll \& Ross [1980])

Two Intuitive Question

- Q: Should factor \# increases as more securities are added?
- Probably not. So MLFA tends to bias towards more factors.
- Q: Is it likely that only one factor is enough?
- Not quite so since the multi-factor APT is a generalization of the single-factor CAPM. So eigenvalue analysis tends to bias towards fewer factors

Temporal Factor Analysis

Xu, L (2001), '`BYY harmony learning, independent state space and generalized APT financial analyses ", IEEE Tr. on Neural Networks, 12 (4), 822-849. Xu, L (2000), '`Temporal BYY learning for state space approach, hidden Markov model and blind source separation", IEEE Tr. on Signal Processing 48, 2132-2144.
$\underset{\substack{\text { ATtenporan of APT } \\ \text { Ext }}}{\substack{\text { Temp } \\ y_{t} \\=B y_{t-1}+\varepsilon_{t} \\ x_{t}=A y_{t}+e_{t}}}$
$\mathrm{t}=1,2,3 \ldots \mathrm{n}$
y_{t} is independen t among its components

Adaptive Portfolio Management Algorithm

- The way to find the hidden factors:

Step 1 Fix A, B and Σ and estimate the hidden factors y_{t} by

$$
\begin{aligned}
& y_{t}=\left[I+A^{T} \Sigma^{-1} A\right]^{-1}\left(A^{T} \Sigma^{-1} \bar{x}_{t}+B y_{t-1}\right), \\
& \varepsilon_{t}=y_{t}-B y_{t-1}, \\
& e_{t}=\bar{x}_{t}-A y_{t} .
\end{aligned}
$$

Step 2 Fix y_{t}, update A, B and Σ_{e} by the gradient ascent approach $B^{\text {new }}=B^{o l d}+\eta \operatorname{diag}\left[\varepsilon_{t} y_{t-1}\right]$,
$A^{\text {new }}=A^{\text {old }}+\eta e_{t} y_{t-1}{ }^{T}$,
$\Sigma^{n e w}=(1-\eta) \Sigma^{o l d}+\eta e_{t} e_{t}^{T}$.

Kai Chun Chiu and Lei Xu, ``A comparative study of Gaussian TFA learning and statistical tests for determination of factor number in APT", Proceedings of International Joint Conference on Neural Networks 2002 (IJCNN '02), Honolulu, Hawaii, USA, May 12-17, 2002, pp2243-2248.

APT extensions

| StqC | Total
 \# of | MLF
 A | Eige
 $\mathrm{n}-$ | $\mathrm{J}(\mathrm{k})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

3. Arbitrage Pricing Theory

- Capital Asset Pricing Model vs. Arbitrage Pricing Theory
- Temporal Factor Analysis (TFA) and APT
- TFA based APT for Prediction
- TFA based APT for Portfolio Management

Kai Chun Chiu, and Lei Xu, (2002) "Stock price and index forecasting by arbitrage pricing theory-based gaussian TFA learning", in H. Yin et al., eds., Lecture Notes in Computer Sciences, Vol.2412, pp366-371, Springer Verlag.

- The adaptive ENRBF algorithm in [Xu, 1998] is used. The input vector consists of nonstationary raw index prices and is set as $\quad x_{t}=\left[p_{t-1}, p_{t-2}, p_{t-3}\right]^{\text {Tat time } t}$.
- S-ENRBF Approach
- Quite similar to the previous approach, the adaptive ENRBF algorithm is adopted. The input vector at time t is stationary returns

$$
x_{t}=\left[\tilde{R}_{t-1}, \tilde{R}_{t-2}, \tilde{R}_{t-3}\right]^{T}
$$

- Step 1: the inverse mapping $y_{t}=W x_{t}$ is effected on the stock price of index constituents via the technique called Independent Component Analysis (ICA) for higher order dependence reduction;
- Step 2: Then, the adaptive ENRBF algorithm is adopted for establishing the relationship between $y_{t-1}, x_{t-1}^{(j)}$ and $x_{t}^{(j)}$
- APT-Based TFA-ENRBF Approach
- Step 1: the Gaussian TFA algorithm instead of the LPM-ICA algorithm is used to recover independent hidden factors;
- Step 2: Same as the previous approach.

Experimental Results (RMSE)

Approach	HSI	HSCCI	HSCEI	HSBC
N-Adaptive ENRBF	232.9625	25.8021	9.9819	0.7957
S-Adaptive ENRBF	80.8164	8.7290	4.2516	0.4347
ICA-ENRBF	63.9681	6.0765	3.4340	0.3147
APT-based TFA-ENRBF	47.6031	4.5202	2.2187	0.2346

Implementation of TFA

DSRBF

Implementation of TFA

HSBC Holdings

Comparsion between Performance of DSRBF and DSRBF + TFA

Cheung Kong Holdings

Heng Seng Bank

Neural Network	Mean Square Error of Testing Data
DSRBF	10.46414
DSRBF + TFA	2.95054

Comparsion between Performance of DSRBF and DSRBF + TFA

Sun Hung Kai Props

Neural	Mean Square Error of Testing Data
Network	11.38626
DSRBF + TFA	5.948012

3. Arbitrage Pricing Theory

- Capital Asset Pricing Model vs. Arbitrage Pricing Theory
- Temporal Factor Analysis (TFA) and APT
- TFA based APT for Prediction
- TFA based APT for Portfolio Management

Kai-Chun Chiu and Lei Xu, (2004) ``Arbitrage Pricing Theory Based Gaussian Temporal Factor Analysis for Adaptive Portfolio Management", Decision Support Systems 37, pp 485-500, 2004.

Observations Based

	Mean	Standard Deviation	Max	Min	Sharpe Ratio
The Portfolio	1.0249	0.0260	1.0896	0.9520	39.4192
Hang Seng Index	0.9771	0.0727	1.1099	0.8211	13.4402

Hidden Factors Based

	Mean	Standard Deviation	Max	Min	Sharpe Ratio
The Portfolio	1.0541	0.0235	1.1020	0.9910	44.8553
Hang Seng Index	0.9771	0.0727	1.1099	0.8211	13.4402

Attributes	Mean	Standard Deviation	Maximum	Minimum	Sharpe Ratio
Change	$+2.8491 \%$	-9.6154%	$+1.1380 \%$	$+4.0966 \%$	$+13.7905 \%$

- hidden factors based

- It generated a better return

- Lower risk
- Sharpe ratio increased by more than 13\%

Risk-Return Statistics

Component Name	Expected Return	Risk	S_{p}
Risk-free Security	0.00148%	0.0018%	
HSI	0.18%	1.48%	
HSCCI	0.03%	2.51%	
HSCEI	-0.20%	2.55%	
Return-based Portfolio (short selling disallowed)	0.08%	0.61%	0.13
APT-based Portfolio (short selling disallowed)	0.19%	1.04%	0.18
APT-based Portfolio (short sell allowed)	0.33%	1.62%	0.20

4. Challenges and Advances of Statistical Learning

- Two types of Intelligent Ability: Learning from Samples
- Key Ingredients of Statistical Learning
- Two Key Challenges and Advances on Seeking Solutions
- A Unified Theory: Bayesian Ying-Yang Harmony Learning

Fundamentals，Challenges，and Advances of Statistical Learning for Knowledge Discovery and Problem Solving：A BYY Harmony Perspective

面向知识发现和问题求解的統計學習：基本问题，主要挑战，和統一理论Lei Xu
http：／／www．cse．cuhk．edu．hk／～1xu／
Department of Computer Science and Engineering， The Chinese University of Hong Kong

Outlines

＿•Two types of Intelligent Ability：Learning from Samples发现知识和求解问题是体现智能的两个基本能力－－通过学习获得
－Key Ingredients of Statistical Learning从有限个样本中学习－－统计学习的三个基本要素
－Two Key Challenges and Advances on Seeking Solutions两个主要挑战－一几十年来应对挑战的发展轮廓

[^0]
Two types of I ntelligent Ability

Two types of I ntelligent Ability

How to get the abilities

Two Types of Learning from Samples

Statistical Learning

4. Challenges and Advances of Statistical Learning

- Two types of Intelligent Ability: Learning from Samples
- Key Ingredients of Statistical Learning
- Two Key Challenges and Advances on Seeking Solutions
- A Unified Theory: Bayesian Ying-Yang Harmony Learning

Key Challenge 主要挑战 I

Learner＇s hardware appropriately represents dependences among data

（matching structures of underlying world）
Regression

Memory based：individual 逐个记忆

Empirical density

$$
p_{0}(x)=\frac{1}{N} \sum_{t=1}^{N} \delta\left(x-x_{t}\right) \quad \uparrow \uparrow \uparrow \overbrace{}^{\wedge} \uparrow\left(x-x_{i}\right)
$$

Parzen window density
Blurred memory 记忆与适当模糊

$$
p_{h}(x)=\frac{1}{N} \sum_{t=1}^{N} K_{h}\left(x, x_{t}\right)
$$

Simpler Kernel

Dimension 2

Ensemble Feature based：总体特征

$$
\mu_{i}=\frac{1}{N} \sum_{t=1}^{N} x_{i}^{t} \quad \mu_{i}=E\left(x_{i}\right)
$$

－Mean and covariance matrix

$$
\sigma_{i j}=E\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)
$$

－higher order statistics
－third－order：skewness
－fourth－order：kurtosis

－．．．

$$
\rho_{i j \cdot m}=E\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right) \cdots\left(x_{m}-\mu_{m}\right)
$$

The number increases exponentially ！

$$
\rho_{i \cdot \cdot i}=E\left(x_{i}-\mu_{i}\right)\left(x_{i}-\mu_{i}\right) \cdots\left(x_{i}-\mu_{i}\right)
$$

Specific purpose：Parametric family专用目的：参数族

－Gaussian $G(x \mid m, \Sigma)$

Domain specific densities
e．g．，exponential family

Case by case：too narrow for a general purpose ！

Best：Seeking Structures that indirectly specify distribution families

通过结构间接表示分布族

－Start at typical structures 典型结构

－Aim at a general framework 通用框架 to integrate －existing studies
－investigating new structures

VS

Multi－bodies world

Dependence structures among samples from multi－body world

to be introduced one by one

Forward Architecture

TYPE II
Training Skills of Problem Solving
via building up input－response type dependence per sample

Redundancy reduction structures

Redundancy＇s role for understanding perception（Attneave， 1954），sensory pathways （Barlow 1959，1989）， and pattern recognition
 （Watanabe，1960）

Classifier combination (Xu, Krzyzak, \& Suen, (90\&92) EM convergence study (Jordan \& Xu, 95)
Alternative ME model (Xu, Jordan, \&Hinton, 94\& 95)

Independence subspace

 (Linear Latent structures)
for $F A$ \& BFA: adaptive algorithm \& $J(k)$ curve $(X u, 98)$
For NFA: LMSER (Xu, 91\&93), approximately EM algorithm (France,96), much exactly BYY learning (fast !) and $\mathrm{J}(\mathrm{k})$ curve ($\mathrm{Xu}, 01 \& 02$)

For all the three: adaptive BYY learning algorithm with k selected automatically during learning (Xu, 03\&03).

Independence space

Dimensional $x=A y+e$ change

observation
space
$x=\left[x_{1}, x_{2}, x_{3}\right]$

Fig. 7. Comparisons between NFA and IFA. (a) On the MSEs between the recovered factors and the original factors. (b) On time complexity.

A bi-directional perspective

EM convergence and three advantages (Xu \& Jordan, 92)
Hard-cut EM with automatic selection on k (Xu, 95\&96)
$\mathrm{J}(\mathrm{k})$ curve for $\mathrm{k}(\mathrm{Xu}, 96$ \&97)
$G\left(x \mid m_{1}, \sum_{1}\right)$
$G\left(x \mid m_{3}, \sum_{3}\right)$

RPCL with automatic selection on k (Xu, Krzyzak, Oja, 91\&93)
$G\left(x m_{2}, \sum_{2}\right)$

Bi-directional structures

TYPE II
Training Skills of
Problem Solving

The World

Helmholtz Machine (1995)

LMSER (Xu, 1991)

Others

-Kawato et al's Forward-inverse optics model
-Pattern Theory (Mumford, Grenander)

pd) Input Pattern Space X

one-body world
(see Proceedings for details)

Dependence structures among

 samples from one-body world

Multi-body world

- qualitatively by the topology

quantitatively by the dependence structures among variables within and across objects

Mixture of independent state spaces

Xu, L. ``Temporal BYY Encoding, Markovian State Spaces, and Space Dimension Determination", IEEE Tr. Neural Networks, Vol. 15, No. 5, pp1276-1295.

Multi-body world

A general framework

Key Challenge 主要挑战 II

$$
\delta\left(x-x_{i}\right)
$$

$$
\begin{gathered}
q_{0}(x)=\frac{1}{N} \sum_{t=1}^{N} \delta\left(x-x_{t}\right) \\
P\left\{\sup _{\alpha \in \Lambda}\left[p_{*}\left(x \mid \theta^{*}\right)-q_{0}(x)\right]>\varepsilon\right\}= \\
\exp \left\{-2 \varepsilon^{2} N\right\}-2 \sum_{t=2}^{\infty}(-1)^{t} \exp \left\{-2 \varepsilon^{2} t^{2} N\right\}
\end{gathered}
$$

（Kolmogorov \＆Smirnov，1930）

Chance of a failed retrieval of a memorized item or getting a wrong memorized item increases exponentially with dimension

Best parametric model matching 参数模型最佳匹配

$\stackrel{l}{\text { optimizing a matching cost }}$

$$
\begin{gathered}
F(p(x \mid \theta), \mathrm{X}), \quad X=\left\{x_{t}\right\}_{t=1}^{N} \\
p(x \mid \hat{\theta}(X))
\end{gathered}
$$

e．g．，Maximum Likelihood（ML）最大似然

One piece of evidence， take it by 100%

Two pieces of evidence take each by 50% subject to the template

More pieces of evidence

The large number law

$$
p_{*}(x \mid \theta) \rightarrow p_{*}\left(x \mid \theta_{0}\right) \quad \hat{\theta}(\mathrm{X}) \rightarrow \theta_{0} \quad \text { as } N \rightarrow \infty
$$

We do not known structure of $p_{*}(x \mid \cdot)$

a family with same structure but in different scales

$$
p(x \mid \theta(k)), k=1,2, \ldots \infty
$$

The number of hidden unit

Provide that there is a k^{*} and $\theta^{*}\left(k^{*}\right)$ such that $p\left(x \mid \theta^{*}\left(k^{*}\right)\right) \quad$ is equal or close to the true $\quad p_{*}\left(x \mid \theta_{0}\right)$

We do not have $N \rightarrow \infty$

- VC Dimension based SRM
- AIC
- BIC, SIC
- Cross Validation
- MML/MDL
- Bayesian Approach

$$
k^{*}=\arg \min _{k}[\Delta(k)+F(p(x \mid \theta(k)), \mathrm{X})]
$$

The existing efforts usually lead to a rough estimate $\quad \Delta(k)$

Step 1 Enumerate k for a set of candidate values, fixed at each candidate, make learning

$$
\theta^{*}(k)=\arg \min _{\theta} F(p(x \mid \theta), \mathrm{X})
$$

Step 2 Select the best one k^{*} by

$$
k^{*}=\arg \min _{k}\lfloor\Delta(k)+F(p(x \mid \theta(k)), \mathrm{X})]
$$

Very computational extensive !!!

3. Challenges and Advances of Statistical Learning

- Two types of Intelligent Ability: Learning from Samples
- Key Ingredients of Statistical Learning
- Two Key Challenges and Advances on Seeking Solutions
- A Unified Theory: Bayesian Ying-Yang Harmony Learning

Bayesian Ying-Yang Harmony Learning

Basic Learning Principle: Ying-Yang Harmony
(a) Best matching

$$
\begin{array}{r}
p(x, y)=p(y \mid x) p(x) \longrightarrow \quad q(x, y)=q(x \mid y) q(y) \\
\left.\min K L(p \| q)=\int p(y \mid x) p(x) \ln \frac{p(y \mid x) p(x)}{q(x \mid y) q(y)} d x d y \quad \text { Hest matching jifference }\right) \longleftarrow
\end{array}
$$

(b) The simplest one in complexity or most firm.

$$
\operatorname{Max} H(\theta, k)=H(p \| q)=\int p(y \mid x) p(x) \ln [q(x \mid y) q(y)] d x d y-\ln z_{q}
$$

$$
H(\theta, k)=H(p \| q)=\int p(y \mid x) p(x) \ln [q(x \mid y) q(y)] d x d y-\ln z_{q}
$$

工-p(x) is fixed from ${ }^{-}\left\{x_{t}\right\}_{t=1}^{N}$ but $\boldsymbol{p}(\boldsymbol{x} \mid \boldsymbol{y})$ is at least not totally fixed.

Least complexity nature fix $q, \max _{p} H(p \| q) \Rightarrow p(y \mid x)=\delta\left(y-y_{t}\right), y_{t}=f\left(x_{t}\right)$

- pushes $\boldsymbol{p}(\boldsymbol{y} \mid \boldsymbol{x})$ in the least complexity.

Matching nature

$$
\operatorname{fix} p, \max _{q} H(p \| q) \Rightarrow q_{t}=p_{t}
$$

- pushes $\boldsymbol{q}(x \mid y), q(y)$ in the least complexity also.
- Therefore, we have $\max _{\theta, k} H(\theta, k) \Rightarrow\left\{\begin{array}{l}\text { parameter learning } \\ \text { model selection }\end{array}\right.$

Parameter Learning with Automated Model Selection

$$
\begin{aligned}
& q(\mathbf{y}, l)=\sum_{l=1}^{k} q(\mathbf{y} \mid l) \alpha_{l}, \mathrm{k}=\left\{\left\{\mathrm{m}_{1}\right\}_{l=1}^{k}, k\right\} \\
& q(\mathbf{y} \mid l)=\prod_{i=1}^{m_{l}} q\left(y_{i} \mid l\right)
\end{aligned}
$$

$$
\begin{array}{cc}
\mathrm{P}(\mathrm{y}, \mathrm{l} \mid \mathrm{X}) & \mathrm{q}(\mathrm{x} \mid \mathrm{y}, \mathrm{l}) \\
P(x)= \begin{cases}\frac{1}{N} \sum_{t=1}^{N} K\left(\frac{x-x_{t}}{h}\right) \\
\frac{1}{N} \sum_{t=1}^{N} \delta\left(x-x_{t}\right)\end{cases} & \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \\
\hline
\end{array}
$$

- Set some $\quad \alpha_{l}=0$ is equivalent to reduce $k \Rightarrow k-1$
-Set the variance of $q\left(y_{i} \mid l\right)$ to be 0 is equivalent to reduce $m_{l} \Rightarrow m_{l}-1$ $H(\theta, k)$
k fixed at large value.

Parameter Learning Followed By Model Selection

Step 1 Enumerate \mathbf{k}, at each \mathbf{k}, make parameter learning

$$
\max _{\theta} H(\theta, k)
$$

Step 2

$$
k^{*}=\arg \min _{k} J(k), \quad J(k)=-H\left(\theta^{*}, k\right)
$$

Alternatively, parameter learning can also be made via $\min _{\theta} K L(p \| q)$ $K L(p \| q)=\int_{x, y} p(y \mid x) p(x) \ln \frac{p(y \mid x) p(x)}{q(x \mid y) q(y)} d x d y$

Also act as a general scheme that integrates:

Parameter Learning

Model selection
Regularization

Better performances in the cases of a small size of samples

Ying Yang Alternative Minimization

$\operatorname{Max}_{\theta} H(p \| q)$ can be further implemented alternatively by

- Yang Step: Fix $q(x, y)$ get $p(\mathrm{x}, \mathrm{y})=\arg \max _{p(x, y)} H(p \| q)$
- Ying Step: Fix $p(\mathrm{x}, \mathrm{y})$ get $q(\mathrm{x}, \mathrm{y})=\arg \max _{q(x, y)} H(p \| q)$

It will converge to a local maximum of $\boldsymbol{H}(\boldsymbol{p} \| \boldsymbol{q})$

It also works when $\boldsymbol{H}(\boldsymbol{p} \| \boldsymbol{q})$ is replaced by $\boldsymbol{K L}(\boldsymbol{p} \| \boldsymbol{q})$
The well know Expectation-Maximization (EM) is its special case

Ying-Yang in a local alternative perspective:

 Rival Penalized Competition

Rival Penalized Competitive Learning
(Xu, Krzyak, Oja, 91\&93)

Listed in the following table are the results of 100 experiments on a Gaussian mixture with $\mathrm{k}=5$, in comparison with three typical model selection criteria AIC, CAIC,
BIC/MDL. Experiments were made by considering the ball shape 2×2 covariance matrix, the elliptic 2×2 covariance matrix, and the ball shape 10×10 covariance matrix, in different sizes n of samples. In this table, S denotes the rate of successes, O denotes over-estimated values of k, and U denotes under-estimated values of k. It can be clearly
 observed that the above $J(k)$ (i.e., BYY-HDS) outperforms others considerably.

Table 1. Rates of underestimating (U), success (S), and overestimating (O) by each criteria on the simulation data sets in 100 replications

Example	Sample	AIC			CAIC				MDL				BYY-HDS		
	size	U	S	O	U	S	O	U	S	O	U	S	O		
	80	0	26	74	69	31	0	48	52	0	11	76	13		
	200	0	48	52	16	79	5	12	85	3	6	84	10		
	400	0	43	57	12	87	1	8	90	2	5	88	7		
Elliptic	100	0	21	79	87	13	0	82	18	0	16	61	23		
	250	0	34	66	69	31	0	57	43	0	14	59	27		
	500	0	23	77	41	59	0	37	62	1	12	69	19		
High	100	0	27	73	39	48	13	25	51	24	23	55	22		
Dimensional	500	0	45	55	32	57	11	27	60	13	17	71	12		
	1000	0	47	53	10	76	14	8	81	11	8	84	8		

| Average | 0 | 34.9 | 65.1 | 41.7 | 53.4 | 4.9 | 33.8 | 60.2 | 6.0 | 12.4 | 71.9 | 15.7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

on the well known IRIS real data set of $\mathbf{1 5 0}$ samples from three classes (i.e., iris species setosa, versicolor, virginica) and each sample having four dimensions (i.e., sepal length, sepal width, petal length, and petal width). Again, the top figure shows the projections of the data set on the first three dimensions. The bottom figure gives the results of selection. It can be observed that only the above J(k) (i.e., BYYHDS) has successfully determined the correct $\mathrm{k}=5$, while AIC output a higher on $\mathrm{k}=5$ but CAIC and both MDL output the wrong one $\mathrm{k}=2$.

Fig. 1. The curves obtained by the criteria AIC, CAIC, BIC, 10 -fold CV, BYY-HEC and BYY-HDS on the data sets of a 10 -dimensional $x(d=10)$ generated from a 3 -dimensional y $(k=3)$ with different sample sizes. (a) $n=20$ and (b) $n=100$.

Factor analysis (FA)

k=3

Table 1
Rates of underestimating (U), success (S), and overestimating (O) by each criteria on simulation data sets with different sample sizes in 100 experiments

Criteria	$n=20$			$n=40$			$n=100$		
	U	S	0	U	S	0	U	S	0
AIC	2	68	30	0	81	19	0	85	15
CAIC	26	73	1	2	98	0	0	100	0
BIC	10	84	6	1	99	0	0	100	0
BYY-HEC	6	74	20	0	98	2	0	100	0
BYY-HDS	11	86	3	1	99	0	0	100	0
10-Fold CV	3	71	26	0	87	13	0	92	8

Summary

- BYY system as a general framework that integrates typical structures for statistical learning
- BYY system + Kullback divergence KL(p\|q) a unified perspective for maximum likelihood learning on various structures
- BYY system + Best harmony H(p\|q) a new theory with a new mechanism for automatic model selection during parameter learning no need on two stage implementation
- BYY system + Best harmony + regularization further improve performances in the cases of a small size of samples.
- A natural perspective of alternative minimization algorithms
- Firstly proposed in 1995

Xu, L (1996), Advances in NIPS 8, 444-450 (1996). A part of its preliminary version on Proc. ICONIP95-Peking, 977-988(1995).

- Developed in past years (see recent papers below)

Xu, L. (2004), "Temporal BYY Encoding, Markovian State Spaces, and Space Dimension Determination", IEEE Tr. Neural Networks, Vol. 15, No. 5, pp1276-1295.
$\mathrm{Xu}, \mathrm{L}(2004)$, "Advances on BYY harmony learning: information theoretic perspective, generalized projection geometry, and independent factor autodetermination", IEEE Tr. Neural Networks, Vol. 15, No. 5, pp885-902 .
Xu, L (2003), ' ${ }^{\text {Data smoothing regularization, multi-sets-learning, and problem }}$ solving strategies", Neural Networks, Vol. 15, Nos. 5-6, 817-825.
Xu, L (2003), " BYY learning, regularized implementation, and model selection on modular networks with one hidden layer of binary units", Neurocomputing Vol. 51, 277-301.
$\mathbf{X u}, \mathrm{L}$ (2002), ${ }^{\text {' } B Y Y \text { harmony learning, structural RPCL, and topological self- }}$ organizing on mixture models", Neural Networks, Vol.15, Nos. 8-9, 1125-1151.
Xu, L (2001), "BYY harmony learning, independent state space and generalized APT financial analyses ", IEEE Tr. on Neural Networks, 12 (4), 822-849.
Xu, L (2001), "Best harmony, unified RPCL and automated model selection for unsupervised and supervised learning on Gaussian mixtures, three-layer nets and ME-RBF-SVM models", Intl J. of Neural Systems, 11(1), 43-69.
Xu, L (2000), " ${ }^{\text {Temporal BYY learning for state space approach, hidden Markov }}$ model and blind source separation", IEEE Tr. on Signal Processing 48, 21322144.

Relations to and Key differences from approaches below

－Maximum likelihood
－Information geometry
－Helmholtz machines
－Variational approximation
－Minimum description length（MDL）
－Bit－back based MDL
－Bayesian approach
－Akaike information criterion（AIC）
－Bayesian information criterion（BIC）

Xu，L（2004），＂Advances on BYY harmony learning：information theoretic perspective，generalized projection geometry，and independent factor auto－ determination＂，IEEE Tr．Neural Networks，Vol．15，No．5，pp885－902 ．。

For more details，see：http：／／www．cse．cuhk．edu．hk／～1xu／

其它工作

二十餘年來在模式識別，人工智能，信號處理，統計學習及統一理論等多個重要研究方向，不鏵在理論方法方面且在技術應用方面都做出了若干開創性工作。
－•發表學術期刊娮交近百篇（或際學術期刊上70餘篇，《中國科學》和《科學通报》上4

According to SCI－EXPANDED，his papers got over 1400 citations，and his 10 most cited papers scored near 850．Among them，one single his paper scored 275，each of the other nine papers are scored between 43－96．

According to Google Scholar，his papers scored over 1800 citations．The 10 most cited papers scored near 1200．Among them，one single paper scored 416，each of other nine papers are scored between 55－131．

By CiteSeer，ranked at the 2061－th among 10，000 most cited authors of 773109authors．

－還被國外30餘本學術專著或教科書中引用。

[^0]: －A Unified Theory：Bayesian Ying－Yang Harmony Learning一个统计学习之统一理论体系

