
3. Arbitrage Pricing Theory

Capital Asset Pricing Model vs. Arbitrage 
Pricing Theory

Temporal Factor Analysis (TFA) and APT

TFA based APT for Prediction 

TFA based APT for Portfolio Management

•Portfolio A is preferred to portfolio B if 

Capital Asset Pricing Model
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•Portfolios that satisfy this  known as the set of efficient portfolios.
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The efficient frontier shows all the combinations of (           ) which 
minimizes risk      for a given level of .pµ

pp σµ ,

pσ

(the set of efficient portfolios forms the efficient 
frontier.)

Each point on the efficient frontier corresponds to a different set of 
optimal proportions L,,, *
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Efficient Frontier and Correlation.

An investor can be anywhere along        , but M is always a fixed bundle 
of stocks (or fixed proportions of stocks) held by all investors. 

Zr ′

The Optimal Portfolio

Zr ′•Hence point M is known as the market portfolio and         is known as the 
capital market line (CML). 
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is the expected return on the market portfolio that is the ‘average’
expected return from holding all assets in the optimal proportions 

mER

( ) ( )rERrER m
ii −=− β ( )rERrER m

ii −+= β

( )mm
ii RRR var/),cov(=β
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Variance of returns = 
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fundamental factor modelsfundamental factor models
assume the B as given and estimate the assume the B as given and estimate the yytt

macroeconomic factor modelsmacroeconomic factor models
assume the assume the yytt as given and estimate the Bas given and estimate the B

statistical models (factor analysis)statistical models (factor analysis)
simultaneously estimate B and simultaneously estimate B and yytt

e.g. changes in inflation, industrial production, investor 

confidence and interest rates
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Rotation indeterminacy

Gaussian 

factor analysis

Nongaussian: y from 
nongaussian
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Rotation Indeterminacy

IDENTIFYING THE FACTORS

Several researchers have investigated stock returns and 
estimated that there are anywhere from three to five factors. 
Subsequently, various people attempted to identify these factors.

By  Chen, Roll, and Ross, the following factors were identified:

1. Growth rate in industrial production,
2. Rate of inflation (both expected and unexpected).
3. Spread between long-term and short-term interest rates,
4. Spread between low-grade and high-grade bonds.



Maximum Likelihood Factor Analysis
Likelihood Ratio (LR) test on the residuals to 
ascertain minimum factor number 

Limitations
k increases progressively with # of 
securities p used

tends to bias towards more factors

Rotational indeterminacies
⇒

Traditional Approach ONE

[Chamberlain & Rothschild 1983]

Eigenvalue Analysis Approach
k eigenvalues of       increases without bound as p 
increases 

eigenvectors can be used as factor loadings. 

Limitation
Assumption of infinite assets is strong and unrealistic

[Shukla and Trzcinka 1990]
tends to bias towards too few factors [Brown 

1989]
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3. Arbitrage Pricing Theory

Capital Asset Pricing Model vs. Arbitrage 
Pricing Theory

NonGaussian factor analysis (NFA), 
Temporal Factor Analysis (TFA),  and APT

TFA based APT for Prediction 

TFA based APT for Portfolio Management

Two Major Problems in APT Analysis

Rotation indeterminacy (inherent in 
conventional maximum likelihood factor 
analysis)

Determination of the appropriate number of 
priced factors k

The problems can be solved by either of NonGaussian factor analysis 
(NFA) and Temporal Factor Analysis (TFA).



Independence Constraint
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Xu, L, ``BYY harmony learning, independent  state space and generalized APT 
financial analyses ", IEEE Tr. on Neural Networks,  12 (4),   2001, 822-849.

Relationship between APT and NFA

To analyze APT using NFA, the APT model may 
simply be rewritten in the following form:

If we let                                       we get exactly 
the NFA model
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Independent factor models

Nongaussian: y from nongaussian

.

The EM algorithm:  integral can be avoided 
but with the computing complexity increasing with m.
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Xu, 1998, Neurocomputing, V.22, 81-112,1998
IEEE Trans. Neural Networks, Vol.12. July, 2001

NFA by Harmony Learning
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q(yj) is a mixture of
Gaussians or from a 
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Automatic selection 
on m

          
  updating  via jδλ

Xu, L (2004a), in press,    IEEE Trans on Neural Networks 

Xu L, Neural Information Processing - Letters and Reviews, Vol.1, No.1, pp1-52, 2003.

NFA with automatic model selection

Factors are independent 
Overcome rotation indeterminacies [Xu 2000]

Factor determination via a simple cost 
function J(k) [Xu 2001]

Benefits of NFA for APT Analysis



Data Consideration

Source: Hong Kong Stock Market

Period: Jan 1, 1998 – Dec 31, 1999

# of trading days: 522

Total number of securities: 86
30 Hang Seng Index (HSI)
32 Hang Seng China-Affiliated Corporations Index 
(HSCCI)
24 Hang Seng China Enterprises Index (HSCEI)

Kai-Chun Chiu, and Lei Xu (2003), ``NFA for Factor Number Determination in APT", 

International Journal of Theoretical and Applied Finance, pp 253-267, 2004.

Data Preprocessing



Test Methodology

ML Factor Analysis
LR Statistics [Lawley & Maxwell 1963]

Follows        distribution with 
degrees of freedom

Level of significance = 5%
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Eigenvalues Analysis
Choose the number of eigenvalues that are 
significantly larger than the rest of the 
others.

NFA
Model selection via the cost function J(k)
[Xu 2001]
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Summarized Results

513386All

51924HSCEI

411232HSCCI

411130HIS

J(k)Eigen-

value                          

MLFATotal # of 
Securities

Stock 
Index

NFA: Plot of J(k) for factor number determination



Result Interpretation and Analysis

Implication by MLFA
factor # needed to explain cross-sectional security 
returns generation increases as more securities are 
added 

Implication by Eigenvalue Analysis
basically only one factor is needed to account for all 
returns (Conclusion in line with CAPM)

Implication by NFA
Factor # is 4 or 5 (Consistent with the conjecture by 
Roll & Ross [1980])  

Q: Should factor # increases as more securities 
are added?

Probably not. So MLFA tends to bias towards more 
factors.

Q: Is it likely that only one factor is enough?
Not quite so since the multi-factor APT is a 
generalization of the single-factor CAPM. So 
eigenvalue analysis tends to bias towards fewer 
factors

Two Intuitive Question 



Xu, L (2001), ``BYY harmony learning, independent  state space and generalized 
APT financial analyses ", IEEE Tr. on Neural Networks,  12 (4), 822-849.  

Xu, L (2000), ``Temporal BYY learning for  state space approach, hidden 
Markov model  and  blind source separation",  IEEE Tr. on Signal
Processing 48,  2132-2144. 
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A Temporal 
Extension of APT

components its amongt independen is ty

Temporal Factor Analysis

The way to find the hidden factors:

Step 1  Fix A , B  and Σ  and estimate the hidden factors ty  by 
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Adaptive Portfolio 
Management Algorithm



Kai Chun Chiu and Lei Xu,  ``A comparative study of Gaussian TFA 
learning and statistical tests for determination of factor number in
APT",  Proceedings of International Joint Conference on Neural 
Networks 2002 (IJCNN '02),     Honolulu, Hawaii, USA, May 12-17, 
2002, pp2243-2248.
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3. Arbitrage Pricing Theory

Capital Asset Pricing Model vs. Arbitrage 
Pricing Theory

Temporal Factor Analysis (TFA) and APT

TFA based APT for Prediction

TFA based APT for Portfolio Management

Kai Chun Chiu, and Lei Xu, (2002) "Stock price and index forecasting by 
arbitrage pricing theory-based gaussian TFA learning", in H. Yin et al., eds., 
Lecture Notes in Computer Sciences, Vol.2412, pp366-371, Springer Verlag.

N-ENRBF Approach
The adaptive ENRBF algorithm in [Xu, 1998] is used. The 
input vector consists of nonstationary raw index prices and 
is set as                                      at time t.

S-ENRBF Approach
Quite similar to the previous approach, the adaptive ENRBF 
algorithm is adopted. The input vector at time t is stationary 
returns
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Temporal Factor Analysis
(TFA)
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(2) yt-1
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xt-1
(2) xt-1

(m)

Gaussian Alternative
Mixture-of-Experts Model

xt-1
(j)

stock returns at time t-1

hidden factors
at time t-1

return of the target
at time t-1
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Temporal Factor Analysis
(TFA)

xt-1
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(2) yt-1
(k)

xt-1
(2) xt-1

(m)

Gaussian Alternative
Mixture-of-Experts Model

xt-1
(j)

stock returns at time t-1

hidden factors
at time t-1

return of the target
at time t-1
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ICA-ENRBF Approach

Step 1:  the inverse mapping                is effected on the stock price of index 
constituents via the technique called Independent Component Analysis 
(ICA) for higher order dependence reduction;

Step 2: Then, the adaptive ENRBF algorithm is adopted for establishing the 
relationship between

APT-Based TFA-ENRBF Approach

Step 1:  the Gaussian TFA algorithm instead of the LPM-ICA algorithm is 
used to recover independent hidden factors;

Step 2: Same as the previous approach.
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Experimental Results (RMSE)

0.2346 2.2187 4.5202 47.6031 APT-based 
TFA-ENRBF

0.3147 3.4340 6.0765 63.9681 ICA-ENRBF 

0.4347 4.2516 8.729080.8164 S-Adaptive 
ENRBF 

0.7957 9.9819 25.8021 232.9625 N-Adaptive 
ENRBF 

HSBC HSCEI HSCCI HSI Approach

Implementation of TFA

X1 X1 X1
( t = T+1 ) ( t = T+2 ) ( t = T+3 )

DSRBF

X1 ( t = T+3 )

X1 X1 X1
( t = T ) ( t = T+1 ) ( t = T+2 )

input

X1 ( t = T+1 )

TrainingTraining

Trained parametersTrained parameters

PredictionPrediction



DSRBF

ŷt =  c1 zt
1 + c2 zt

2

xt = [ xt,1 , xt,2 , xt,3 ]
T

desired 
output

Time 
Delay

Time 
Delay

Time 
Delay

yt = [ yt-1 , yt-2 , yt-3 ]
T

c1 c2êt êtzt
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yt-3yt-2

yt-2

yt
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ENRBF2ENRBF1

yt-1

Implementation of TFA

X1 X1 X1
( t = T+1 ) ( t = T+2 ) ( t = T+3 )

DSRBF

X1 ( t = T+3 )

input

TFA

X1 X2 X3 X4 X5

Independent 
factors

(t = T) Y1  Y2  Y3

(t = T)

X1 ( t = T+1 )

TrainingTraining

Trained parametersTrained parameters

PredictionPrediction



HSBC Holdings

Comparsion between Performance of DSRBF and DSRBF + TFA
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HSBC Holdings Source Data

Neural 
Network

Mean Square Error of 
Testing Data

DSRBF 10.40589

DSRBF + TFA 8.268526

Cheung Kong Holdings 

Comparsion between Performance of DSRBF and DSRBF + TFA
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Cheung Kong Holdings Source Data

Neural 
Network

Mean Square Error of 
Testing Data

DSRBF 13.48662

DSRBF + TFA 5.100805



Heng Seng Bank

Comparsion between Performance of DSRBF and DSRBF + TFA
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Heng Seng Bank Source Data

Neural 
Network

Mean Square Error of 
Testing Data

DSRBF 10.46414

DSRBF + TFA 2.95054

Sun Hung Kai Props

Comparsion between Performance of DSRBF and DSRBF + TFA

20

30

40

50

60

70

80

90

100

04
/2

4/
00

05
/2

4/
00

06
/2

4/
00

07
/2

4/
00

08
/2

4/
00

09
/2

4/
00

10
/2

4/
00

11
/2

4/
00

12
/2

4/
00

01
/2

4/
01

02
/2

4/
01

03
/2

4/
01

Time

P
ri

ce

Price Predicted by DSRBF

Price Predicted by DSRBF + TFA

Sun Hung Kai Props Source Data

Neural 
Network

Mean Square Error of 
Testing Data

DSRBF 11.38626

DSRBF + TFA 5.948012



Hutchison Whamp

Compa rs ion be twe e n Pe rforma nc e  of DSRBF a nd DSRBF  +  TFA
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Hutchison Whamp Source Data

Neural 
Network

Mean Square Error of 
Testing Data

DSRBF 10.03561

DSRBF + TFA 5.945724

3. Arbitrage Pricing Theory

Capital Asset Pricing Model vs. Arbitrage 
Pricing Theory

Temporal Factor Analysis (TFA) and APT

TFA based APT for Prediction 

TFA based APT for Portfolio Management

Kai-Chun Chiu and Lei Xu, (2004) ``Arbitrage Pricing Theory Based Gaussian 
Temporal Factor Analysis  for Adaptive Portfolio Management", Decision Support 
Systems 37,    pp 485- 500, 2004.



13.44020.82111.10990.07270.9771Hang Seng Index

39.41920.95201.08960.02601.0249The Portfolio

Sharpe RatioMinMaxStandard DeviationMean

Observations Based

13.44020.82111.10990.07270.9771Hang Seng Index

44.85530.99101.10200.02351.0541The Portfolio

Sharpe RatioMinMaxStandard DeviationMean

Hidden Factors Based



• hidden factors based

- It generated a better return

- Lower risk

- Sharpe ratio increased by more than 13%

+13.7905%+4.0966%+1.1380%-9.6154%+2.8491%Change

Sharpe RatioMinimumMaximum
Standard 
Deviation

MeanAttributes

Performance in Profit



Risk-Return Statistics

1.62%

1.04%

0.61%

2.55%

2.51%

1.48%

0.0018%

(std. dev) 

Risk 

0.180.19% APT-based Portfolio (short 
selling disallowed) 

0.200.33%APT-based Portfolio (short sell 
allowed) 

0.130.08%Return-based Portfolio (short 
selling disallowed) 

-0.20%HSCEI 

0.03%HSCCI 

0.18%HSI 

0.00148% Risk-free Security 

(mean)

SpExpected 
Return 

Component Name 

略

4. Challenges and Advances of Statistical Learning

Two types of Intelligent Ability:  Learning 
from Samples
Key Ingredients of Statistical Learning
Two Key Challenges and Advances on 
Seeking Solutions
A Unified Theory: Bayesian Ying-Yang 
Harmony Learning



Fundamentals, Challenges, and Advances of 
Statistical Learning for Knowledge Discovery and 

Problem Solving:   A BYY Harmony Perspective

面向知识发现和问题求解的統計學習: 
基本问题、主要挑战、和統一理论

Lei Xu

http://www.cse.cuhk.edu.hk/~lxu/

Department of Computer Science and Engineering,

The Chinese University of Hong Kong   

• Two types of Intelligent Ability:  Learning from Samples
发现知识和求解问题是体现智能的两个基本能力--通过学习获得

Outlines

• Key Ingredients of Statistical Learning
从有限个样本中学习--统计学习的三个基本要素

• Two Key Challenges and Advances on Seeking Solutions  
两个主要挑战--几十年来应对挑战的发展轮廓

• A Unified Theory: Bayesian Ying-Yang Harmony Learning
一个统计学习之统一理论体系



explorationobservation experiment

thinking collaborationcommunication

TYPE I

Knowledge about 
the world it survives

Why  ?
(interpret what are 

observed)

The World

Two types of Intelligent Ability

The World

TYPE II

skill of handling each 
issue encountered in 

the world 
How to do ? 

(problem solving)

Two types of Intelligent Ability

operation competitiondriving cooperation



TYPE II

Obtain Skills of Problem Solving via

• reasoning , inference, 
optimization

•learning from samples 
(fast implementation)

How to get the abilities

The World

TYPE I

Obtain World Knowledge via

• loading from authorized 
sources (e.g., textbooks)

•learning from samples (pieces of 
uncertain evidences)

( )∑ 22,mxG

( )∑11,mxG

( )∑ 33,mxG

The World

TYPE I

Discovering World Knowledge

via mining invariant dependence 
underlying a set of all samples

TYPE II

Training Skills of Problem Solving

via building up input-response 
type dependence per sample

Two Types of Learning from Samples



Learner
(hardware)

Sample 
gathering
(world)

Learning theory
(software)

三个基本要素
Key Ingredients

Statistical Learning
Using statistical approach for removing uncertainties
from Sampling and observation noises

4. Challenges and Advances of Statistical Learning

Two types of Intelligent Ability:  Learning 
from Samples
Key Ingredients of Statistical Learning
Two Key Challenges and Advances on 
Seeking Solutions
A Unified Theory: Bayesian Ying-Yang 
Harmony Learning



Key Challenge   主要挑战 I

Learner’s hardware appropriately represents
dependences among data 
(matching structures of underlying world)

Learner
(hardware)

Sample 
gathering
(world)

Multi-point

Regression

Parzen window density
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t
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N
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1
0

1 δ
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x

Curse of dimension !

Memory based:  individual 逐个记忆
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t
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N
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....

),( th xxK
Blurred memory  记忆与适当模糊

Empirical  density

Dimension 2

Histogram

Simpler kernel



The number increases exponentially !

Ensemble Feature based:    总体特征

))(( jjiiij xxE µµσ −−= X1

X2
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Mean and covariance matrix

higher order statistics
third-order: skewness
fourth-order: kurtosis
…
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Domain specific densities

e.g.,    exponential family

Specific purpose:  Parametric family
专用目的: 参数族

),|( ΣmxG

X1

X2

Gaussian 

Case by case:    too narrow for a general purpose !



Best: Seeking Structures that 
indirectly specify distribution families

通过结构间接表示分布族

• Aim at a general framework 通用框架 to integrate 
• existing studies
• investigating new structures

• Start at typical structures 典型结构

Multi-point Regression

Two 
Previous
examples

+ more
(to be introduced later)

Dependence structures among 
samples from multi-body world

Multi-bodies world

VS

One-body world
Dependence structures among 
samples from one-body world



Dependence structures among 
samples from one-body world

Three Architectures 三种构筑

The World The WorldThe World

to be introduced one by one

f(x)y =

The World

TYPE II
Training Skills of Problem 

Solving
via building up input-response 
type dependence per sample

Forward Architecture

Redundancy reduction 
structures

uniform

1

Redundancy’s role for 
understanding 
perception (Attneave, 
1954), sensory pathways 
(Barlow 1959, 1989), 
and pattern recognition 
(Watanabe, 1960)

Network SystemClassification

x

Y=F(X)

10 output units 0 1 2 3 4 5 6 7 8 9

)(xfy =

Pair-wise structures



          z

  PM1(z|1,x)             PM1(z|2,x)            PM1(z|3,x)                              PM2(1|x)    PM2(2|x)   PM2(3|x)

   Expert 1           Expert 2        Expert 3
                                                                    x1             x2                      x3

                                                                   Gating Network

                              Input                                     Input
                                 x

Mixture of Experts (ME)

The World

{yt}

p(y|x)

{xt}

f(x)y =

Pair-wise structures

Three layer net RBF net

Classifier combination (Xu, Krzyzak, & Suen, (90&92)
EM convergence study (Jordan & Xu, 95)
Alternative ME model (Xu, Jordan, &Hinton, 94& 95)

RBF & Kernel regression 
(Xu & Yuille, 92&94)
Adaptive EM algorithm (98)

The World

p(y|x)

p(x)

∏
=

=
k

j

jyqyq
1

)( )()(

Maximum
Information
Transfer

f(x)y =

Less redundancy

Redundancy reduction structures

y 2

y 1

X2

X1

[y1,y2]

[x1,x2]

PCA

(a)

PCA

X2

X1

[y1,y2]

[x1,x2]

ICA

(b)

ICA

X2

X1

1 2

[x1,x2]

CDF

[y ,y ]

uniform

(c)

CDF

Oja PCA rule (82)
Oja PSA rule (89)
Xu (91) PSA global 
convergence and 
PSA k-PCA
(symmetry broken)

Informax (Bell, 94) for superGaussian
MMI (Amari, 95) for subGaussian
FastICA (Oja, 96) for both (sequential)
LPM-ICA(Xu, 96) for both (parallel)
One-bit-conjecture & proof (Xu, 98 &03)



1y
ky

1x 2x L L dxL

Hidden factor

P(x|y)

The World

Backward Architecture How  observations   generated

Y

X

Independence subspace
(Linear Latent  structures)

X1

X2

2nd Principal
Component

1st Principal Component

Factor analysis
(FA)

0or  1=jy

BFA

2a
1a

µ
1y

2y

e

x=Ay+eDimensional 
change

Independence space

],[ 21 yyy =

],,[ 321 xxxx =

observation 
space

     eAyx +=

Y

X

∏
=

=
k

j

jyqyq
1

)( )()(

e+x =
Gaussian noise

NFA

for FA & BFA : adaptive algorithm & J(k) curve (Xu, 98)

For NFA:  LMSER (Xu, 91&93), approximately
EM algorithm (France,96), much exactly 

BYY learning (fast !) and J(k) curve (Xu, 01&02)

For all the three:  adaptive BYY learning algorithm with 
k selected automatically during learning (Xu, 03&03).



     eAyx +=

Y

X

∏
=

=
k

j

jyqyq
1

)( )()(

e+x =

NFA

Gaussian Mixture

1   ,0   
1j
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=

K

j αα
L

1α1 kl= kα

( ) ( )∑
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N

i
ixx

N
xp
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1 δ

X

( )11,ΣµxG

1x̂ kx̂

( )kkxG Σ,µL
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Σ=
k

r rrr xGxq
1

,)( µα

( )∑ 22,mxG

( )∑11,mxG

( )∑ 33,mxG



P(x|y)
how  x  

generated

The World

A bi-directional perspective

     Ayx=

Y

X

exist 
implicitly

computed
during 
learning

Bayesian 
inverse

The World

p(y|x)

p(x)

Forward Backward

( )∑22,mxG

( ) ( )∑
=

−=
N

i
ixx

N
xp

1

1 δ
EM convergence and three advantages (Xu & Jordan, 92)

Hard-cut EM with automatic selection on k (Xu, 95&96)

J(k) curve for k  (Xu, 96 &97)

RPCL with automatic selection on k  (Xu, Krzyzak, Oja,  91&93)

Gaussian Mixture

1   ,0   
1j

j =≥ ∑
=

K

j αα
L

1α1 kl= kα

( )11 ,ΣµxG

1x̂ kx̂

( )kkxG Σ,µL

X

( )∑=
Σ=

k

r rrr xGxq
1

,)( µα

( )∑11,mxG

( )∑ 33,mxG

Bayesian
Inverse



Bi-directional structures

Dipole Field STM  F2

STM      F1

Gain Control

Attentional
Subsystem

Orienting
Subsystem

STM Reset
Wave

Input Pattern

Gain Control

+

+

+ +

+

+
+

+

+
-

-

LTM
LTM

recognition 
weights

generative 
weights

1,2
1,jθ

2,3
, jkθ

kθ

2,1
, jiφ

3,2
,kjφ

k

j

i

Helmholtz Machine (1995)

Others
•Kawato et al’s Forward-inverse optics 
model
•Pattern Theory (Mumford, Grenander)

TYPE II
Training Skills of 
Problem Solving

TYPE I
Discovering World 

Knowledge

The World

1x 2x
3x

1u
2u 3u

W

11 , yz 22 , yz

LMSER (Xu, 1991)

Grossberg’s ART 

(1977)

X    real
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(a)

1x 2x
3x

1u
2u 3u

W

11, yz 22 , yz

Xu(91) for nonlinear PCA or ICA

Gaussian
noise

Y

X

eAyx +=

0or  1=jy

BFA

New adaptive algorithm other 
than BP  + selection of hidden 
units (Xu, 02&03)

New adaptive algorithm + 
selection of m (Xu, 02&03)



Motor Control

Representation Space Y q(y)

Input Pattern Space Xp(d)

q(d|y)p(y|d)

x2 x1

d

y

q(d-x|y)

p(y|d) q(y)

x
d

p(d)

Dependence structures among 
samples from one-body world

pair-wise 
architectures
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one-body world (see Proceedings for details)



Multi-body world

quantitatively by the 
dependence structures 
among variables within 
and across objects

within 
each body

Across multi-bodies

A C

B

D

E

qualitatively by the topology

A C

B
D

E

Difficult to learn topology from samples

three special cases studied in literature:

Given topology: learn quantitative dependence 
among variables;

2-D lattice(c)

Null topology: learn ID and quantitative
dependence among variables;

Allocation on 
lattice  topology.



1st principle
component

2nd principle
component

A
C

B
D

E

a

( )3
jw( )1

jw

( )2
jw

jm

x
jte ,Mixture of PCA

(local PCA)
Xu (94,95,02)

independent
component

Mixture of ICA
(local ICA(Xu,01&02)

• Local NFA (Xu, 03)

• Local LMSER (Xu, 03)

…

• MCA (Xu&Oja, 92) 
Local MCA (Xu, 94&01)

Mixture of BFA
(local BFA) 
(Xu, 02&03)

point 
structuresBeyond

ttt eAyx ++= µˆ

State 
Space 
Y

Observation Space X

ttt yBy ε+= −1

Tt xxx ,...,,...,1

ttt eAyx ++= µˆ

State 
Space 
Y

Observation Space X

ttt yBy ε+= −1

Tt xxx ,...,,...,1

ttt eAyx ++= µˆ

State 
Space 
Y

Observation Space X

ttt yBy ε+= −1

Tt xxx ,...,,...,1

Xu, L. ``Temporal BYY  Encoding,  Markovian State Spaces, and Space Dimension 
Determination", IEEE Tr.  Neural Networks, Vol. 15, No. 5, pp1276-1295.

Mixture of independent state spaces



Dependence structures  among 
samples from multi-body world

visible topology
among 

multi-bodies

invisible topology
among 

multi-bodies
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Multi-body world

A general framework

The World

q(x|y)

q(y)

p(y|x)

p(x)
)()|(),( xPxyPyxP =

YANG representation (Machine)

)()|(),( yqyxqyxq =
YING representation (Machine)

Bayesian Ying Yang System

{

Stochastic: randomly pick u by P(u|v)
maximum posteriori: u=argmax P(u|v)
regression: u=EP(u\v)[u]
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after update

Integrated structures
Representation Space Y q(y)

Input Pattern Space XP(x)

q(x|y)P(y|x)

Key Challenge 主要挑战 II

The number of hidden unit

X=[x0,x1,…,xd]

Y=[y0,y1,…,yk]  

    eAyx +=

Complexity of Learner’s structure matching the 
size of samples
(reliable structures of underlying world)

Learner
(hardware)

Sample 
gathering
(world)

Learning theory
(software)



The large number law

( ) ( )∑
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−=
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t
txx

N
xq
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0

1 δ
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( )ixx −δ

x

(Kolmogorov & Smirnov, 1930)
01.0=ε
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εθ
α

Chance of a failed retrieval of a memorized 
item or getting a wrong memorized item
increases exponentially with dimension

逐个记忆
One piece of evidence, take it by 100%

Two pieces of evidence, take each by 50%
…
More pieces of evidence

Best parametric model matching  参数模型最佳匹配

( )∑
=

=
N

t
txp

N
LL

1

|ln
1

 )(      ),(max θθθθ

e.g.,  Maximum Likelihood (ML) 最大似然

One piece of evidence, 
take it by 100%

Two pieces of evidence
take each by 50% subject 
to the template

More pieces of evidence
… …

( ))ˆ|( Χxp θ

( )( ) N
ttxΧxpF 1}{    , ,| ==Χθ

optimizing a matching cost

( ) 0
ˆ θθ →Χ)|()|( 0** θθ xpxp → ∞→Nas   

The large number law



The number of hidden unit

X=[x0,x1,…,xd]

Y=[y0,y1,…,yk]  

    eAyx +=

We do not known structure of )|(* ⋅xp
a family with same structure but in different scales

( )( ) ∞= ,....2,1  ,| kkxp θ

( )** kθ
( )( )**| kxp θ ( )0* |θxp

Provide that there is a k* and            such that
is equal or close to the true

k

er
ro

r generalization error

fitting error

Number of clusters=8
No error

∞→N havenot  do We



Existing Efforts 

VC Dimension based SRM
AIC
BIC, SIC 
Cross Validation
MML/MDL
Bayesian Approach

( )k∆The existing efforts usually lead to a rough estimate

k

er
ro

r generalization error

fitting error( )k∆

( ) ( )( )[ ]Χ+∆= ,)(|minarg* kxpFkk k θ

Two Steps of Solving

Very computational extensive !!!

k

er
ro

r

fitting error

( )( )Χ= ,|minarg)(* θθ θ xpFk

Step 1  Enumerate  k for a set of candidate 
values,  fixed at each candidate, make learning

( ) ( )( )[ ]Χ+∆= ,)(|minarg* kxpFkk k θ

Step 2  Select the best one k* by  

Estimated bound of
generalization error



3. Challenges and Advances of Statistical Learning

Two types of Intelligent Ability:  Learning 
from Samples
Key Ingredients of Statistical Learning
Two Key Challenges and Advances on 
Seeking Solutions
A Unified Theory: Bayesian Ying-Yang 
Harmony Learning

Representation Space q(y)

Input Pattern SpaceP(x)

q(x|y)P(y|x)

(a) Best matching

( ) ( ) ( )xpxypyxp =, ( ) ( ) ( )yqyxqyxq =,
Best matching

(Least difference)

(b)  The simplest one in complexity or most firm.

Basic Learning Principle: Ying-Yang Harmony

( ) ( ) ( ) ( ) ( ) ( ) qzdxdyyqyxqxpxypqpHkHMax ln]ln[, −== ∫θ

Half job only

Bayesian Ying-Yang  Harmony Learning

( ) ( ) ( ) ( ) ( )
( ) ( )∫= dxdy

yqyxq

xpxyp
xpxypqpKL lnmin



( ) ( ) ( ) ( ) ( ) ( ) qzdxdyyqyxqxpxypqpHkH ln]ln[, −== ∫θ

– pushes  p(y|x) in the least complexity.

– pushes  q(x|y),  q(y) in the least complexity also.

– )(xp is fixed from { } ,1
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ttx =
but  p(x|y) is at least not totally fixed.
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Parameter Learning  with  Automated Model Selection
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Parameter Learning Followed By Model Selection

( ),,max kH θ
θ

Step 1   Enumerate k, at each k, make parameter learning

Alternatively, parameter learning can also be made via  ( )qpKL
θ

min

( ) ( ) ( ) ( ) ( )
( ) ( )∫=

yx

dxdy
yqyxq

xpxyp
xpxypqpKL

,

ln

( ),minarg* kJk
k

=Step 2  ( ) ( )kHkJ ,*θ−=

( )kJ

*k k

Also act as a general scheme 
that integrates:

Parameter Learning

Model selection

Regularization

Better performances in the cases of a small size of samples



Ying Yang Alternative Minimization

( )qpHp
yxq

yxp ),(maxargy)(x,get     
),(Fix       : Step Yang

=
•

( )qpHq
p

yxq ),(maxargy)(x,get     
y)(x,Fix       :Step Ying

=
•

( )qpHMax
θ

can be further implemented alternatively by

It will converge to a local maximum of H(p||q)

The well know Expectation-Maximization (EM) is its special case

It also works when H(p||q) is replaced by KL(p||q)

(a) there are five 
classes with 
each class 
consisting of  
200 Gaussian 
samples. 

(b) the initialize 
value of  k is 10. 

(c) after 50 
iterations of 
implementing the 
best harmony 
learning

(d) a correct k=5 is 
determined after 
learning has 
converged.



Ying-Yang in a local alternative perspective:
Rival Penalized Competition

Rival Penalized Competitive Learning 

(Xu, Krzyak, Oja, 91&93)
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Listed in the following table are the results of 100 
experiments on a Gaussian mixture with k=5, in comparison 
with three typical model selection criteria AIC, CAIC, 
BIC/MDL. Experiments were made by considering the ball 
shape 2x2 covariance matrix ,  the elliptic 2x2 covariance 
matrix ,  and the ball shape 10x10 covariance matrix ,  in 
different sizes n of samples. In this table, S denotes the rate 
of successes, O denotes over-estimated values of k, and U 
denotes under-estimated values of k. It can be clearly 
observed that the above J(k) (i.e., BYY-HDS) outperforms 
others considerably. 



on the well known IRIS real data 
set of 150 samples  from three 
classes (i.e., iris species setosa, 
versicolor, virginica)  and each 
sample having four dimensions 
(i.e., sepal length, sepal width, 
petal length, and petal width). 
Again, the top figure shows the 
projections of the data set on the 
first three dimensions. The 
bottom figure gives the results of 
selection. It can be observed that 
only the above J(k) (i.e., BYY-
HDS) has successfully 
determined the correct k=5, 
while AIC output a higher on 
k=5 but CAIC and both MDL 
output the wrong one  k=2.

IRIS Data

    eAyx +=

Y

X

X1

X2

2nd Principal
Component

1st Principal Component

Factor analysis
(FA)

d=10

k=3



Summary

• BYY system as a general framework that integrates 
typical structures for statistical learning

• BYY system + Kullback divergence KL(p||q)
a unified perspective for maximum likelihood learning
on various structures 

• BYY system + Best harmony  H(p||q)
a new theory with a new mechanism for 
automatic model selection  during  parameter learning
no need on two stage implementation

• BYY system + Best harmony + regularization
further improve performances in the cases of a small size of
samples.

• A natural perspective of alternative minimization algorithms

Firstly  proposed  in 1995
Xu, L (1996), Advances in  NIPS  8, 444-450 (1996).  A part of  its preliminary 

version  on  Proc.  ICONIP95-Peking,   977-988(1995).
Developed in past years (see recent papers below)

Xu, L. (2004), ``Temporal BYY  Encoding, Markovian State Spaces, and Space 
Dimension Determination“,    IEEE Tr.  Neural Networks, Vol. 15, No. 5, 
pp1276-1295.

Xu, L (2004), ``Advances   on BYY  harmony learning:   information theoretic  
perspective, generalized projection  geometry, and independent factor auto-
determination",  IEEE Tr.  Neural Networks, Vol. 15, No. 5, pp885-902 .

Xu, L (2003), ``Data smoothing regularization, multi-sets-learning, and problem 
solving strategies", Neural Networks, Vol. 15,  Nos. 5-6,    817-825.

Xu, L (2003), `` BYY learning, regularized implementation, and model selection on 
modular networks with one hidden layer of binary units", Neurocomputing Vol. 
51,  277-301.

Xu, L (2002), ``BYY harmony learning,  structural  RPCL, and  topological self-
organizing  on mixture models", Neural Networks, Vol.15, Nos. 8-9,  1125-1151.
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•Maximum likelihood
•Information geometry
•Helmholtz machines
•Variational approximation 
•Minimum description length (MDL) 
•Bit-back based MDL
•Bayesian approach
•Akaike information criterion (AIC) 
•Bayesian information criterion (BIC)

Relations to and Key differences from approaches below

其它工作
二十餘年來在模式識別、人工智能、信號處理、統計學習及統一理論等多個重要研究
方向，不僅在理論方法方面且在技術應用方面都做出了若干開創性工作。

•發表學術期刊論文近百篇 (國際學術期刊上70餘篇，《中國科學》和《科學通报》上4
篇)，還在主要國際出版社的編輯書中貢獻20餘篇,并發表了大量國際會議論文。

According to SCI-EXPANDED, his papers got over 1400 citations, and his 10 most cited 
papers scored near 850. Among them, one single his paper scored 275, each of the other 
nine papers are scored between 43—96.

According to Google Scholar, his papers scored over 1800 citations. The 10 most cited 
papers scored near 1200. Among them, one single paper scored 416, each of other nine 
papers are scored between 55—131.

By CiteSeer, ranked at the 2061-th among 10,000 most cited authors of 773109authors. 

•還被國外30餘本學術專著或教科書中引用。

•應邀在國際主要學術大會做大會報告/特邀報告/學術講座40餘次。

For more details, see:    http://www.cse.cuhk.edu.hk/~lxu/


