i 3. Arbitrage Pricing Theory

= Capital Asset Pricing Model vs. Arbitrage
Pricing Theory

= Temporal Factor Analysis (TFA) and APT
s TFA based APT for Prediction
= TFA based APT for Portfolio Management

Capital Asset Pricing Model

~ «Portfolio A is preferred to portfolio B if

(i) E,(R=E,(R) and
(if)  var,(R)<var,(R) or SD,(R)<SD (R)

Portfolios that satisfy this known as the set of efficient portfolios.
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The efficient frontier shows all the combinations of ( x,,o,) which
minimizes sk o for a given level of #,.

Fp

= 10%

Efficient Frontier and Correlation.

(the ser of efficient portfolios forms the efficient
frontier.)

Each point on the efficient frontier corresponds to a different set of
optimal proportions x;,x,,x;,---  y.x =1

The Optimal Portfolio
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An investor can be anywhere along ;7' but M is always a fixed bundle

of stocks (or fixed proportions of stocks) held by a/l investors.

*Hence point M is known as the market portfolio and »Z' is known as the

capital market line (CML).




(ER, - r)= B,(ER" - ) = ER, =r+pB,(ER" - r)
)il =cov(Rl.,Rm)/var(R’")

ER™ 1S the expected return on the market portfolio that is the “average’
expected return from holding al// assets in the optimal proportions

*

X.

1

Expected return= 4. = ER ,
Variance of returns = 52 — yar(r,)
Covariance of returns = &, . = cov (R,, R )

R, =R + By, +e,

R N TN

actual mean factors noise component
return return

fundamental factor models
assume the B as given and estimate the y,

macroeconomic factor models
assume the y, as given and estimate the B

me.g. changes in inflation, industrial production, investor
confidence and interest rates

statistical models (factor analysis)

simultaneously estimate B and y;,

Rotation indeterminacy y'=dy
t




Rotation indeterminacy

4

= Gaussian  ¢(y)=G(o.A)=6ly,0.2,)

J=1

Rotation Indeterminacy

factor analysis x=Ay+e

szATZyA+Ze

= Nongaussian: y from _ . y
nongaussian q(x) .[Q(x v)q(v)dy

IDENTIFYING THE FACTORS

Several researchers have investigated stock returns and
estimated that there are anywhere from three to five factors.
Subsequently, various people attempted to identify these factors.

By Chen, Roll, and Ross, the following factors were identified.:

1. Growth rate in industrial production,

2. Rate of inflation (both expected and unexpected).

3. Spread between long-term and short-term interest rates,
4. Spread between low-grade and high-grade bonds.




i Traditional Approach ONE

= Maximum Likelihood Factor Analysis
= Likelihood Ratio (LR) test on the residuals to
ascertain minimum factor number
= Limitations

= Kkincreases progressively with # of
securities p used

— tends to bias towards more factors
= Rotational indeterminacies

Traditional Approach TWO

Chamberlain & Rothschild 1983]

Eigenvalue Analysis Approach

= keigenvalues of ¥ increases without bound as p
Increases
— eigenvectors can be used as factor loadings.
Limitation
= Assumption of infinite assets is strong and unrealistic
[Shukla and Trzcinka 1990]
tends to bias towards too few factors [Brown
1989]




* 3. Arbitrage Pricing Theory

= Capital Asset Pricing Model vs. Arbitrage
Pricing Theory

= NonGaussian factor analysis (NFA),
Temporal Factor Analysis (TFA), and APT

s TFA based APT for Prediction
s TFA based APT for Portfolio Management

Two Major Problems in APT Analysis

* = _Rotation indeterminacy (inherent in
conventional maximum likelihood factor

analysis)

= Determination of the appropriate number of
priced factors k

The problems can be solved by either of NonGaussian factor analysis
(NFA) and Temporal Factor Analysis (TFA).




i Non-Gaussian Factor Analysis (NFA)
k
r)=11rG")
j=1

V=& . Non-Gaussian
x, =Ay, +e, t=12,---,N

- Gaussian
= Independence Constraint

Xu, L, "BYY harmony learning, independent state space and generalized APT
financial analyses ", IEEE Tr. on Neural Networks, 12 (4), 2001, 822-849.

i Relationship between APT and NFA

= To analyze APT using NFA, the APT model may
simply be rewritten in the following form:

R —R =Af +e,

m [fwe Ietxt =R -Randy, = f, Weget exactly
the NFA model

x, =Ay, +e,




i Independ

ent factor models

x=Ay+e

= Nongaussian: y from nongaussian

Moulines, Cardoso, & Gassiat,

9(x) = [glx —Ay)q()dy

1997, Attias, 1999

___________________________________________________________________

)= 8,6 |m,, o

J‘ P72 q(y‘f))dy‘f’:l, J‘ i)

) subject to :
q(ym )dy(f) —0 |

The EM algorithm: integral can be avoided
but with the computing complexity increasing with m.

NFA by Harmony Learning
J m)zO.S[mln(Ziz')+m+|n‘ZH
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NFA with automatic model selection

a(0) A A ¢ (VAy), q,(») =] [a0v;)

-~

y, =argmax [qlx |y )a(¥)]

fl

max H ( p"q) =
[ P04)p(x)Inlg(xy)a(y Ndxay

p(y]x) is free

Automatic selection
on m

q(y) is a mixture of
Gaussians or from a
mixture of sigmoid,
Subject to

[ a6y, =1

A =diag4,...,4,]
U'u=1Vv'v=I
A=UAVT

oU, oV areupdated
in theStiefelmanifold
via updating o4,

Xu, L (2004a), in press, IEEE Trans on Neural Networks
Xu L, Neural Information Processing - Letters and Reviews, Vol.1, No.1, pp1-52, 2003.

Benefits of NFA for APT Analysis

= Factors are independent

= Overcome rotation indeterminacies [Xu 2000]
= Factor determination via a simple cost

function J(k) [Xu 2001]




Data Consideration

m Source: Hong Kong Stock Market
= Period: Jan 1, 1998 — Dec 31, 1999
m # of trading days: 522

m Total number of securities: 86

= 30 Hang Seng Index (HSI)

= 32 Hang Seng China-Affiliated Corporations Index
(HSCCI)

= 24 Hang Seng China Enterprises Index (HSCEI)

Kai-Chun Chiu, and Lei Xu (2003), "NFA for Factor Number Determination in APT",
International Journal of Theoretical and Applied Finance, pp 253-267, 2004.

Data Preprocessing

DailyClosing Prices Adjusted Return
Prs Pryse--By ¥

Fr— P
P }'} — F

Daily Stock Returns

Mean Stock Return
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‘ Test Methodology

s ML Factor Analysis

= LR Statistics [Lawley & Maxwell 1963]

2p+4k+11

LR=(N - M(n| 4442 |~In|S|)

+ (tr[(44'+2) "S- p)}
= Follows 12 distribution with

) degrees of freedom
[(p=k)" = (p+K)]/2

= Level of significance = 5%

i—-—Eigmvahestnalysis

= Choose the number of eigenvalues that are
significantly larger than the rest of the
others.

= NFA

= Model selection via the cost function J(k)
[Xu 2001]

. 1 1 & o
min.J (k) =§{ln 12| —ﬁ;m q(y, Iytl,é’y)}




Summarized Results

Stock | Total #of | MLFA Eigen- J(k)
Index | Securities value
HIS 30 11 1 4
HSCCI 32 12 1 4
HSCEI 24 9 1 S
All 86 33 1 5
NFA: Plot of Jtk) for factor number determination
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Result Interpretation and Analysis

m Implication by MLFA

= factor # needed to explain cross-sectional security
returns generation increases as more securities are

added
= Implication by Eigenvalue Analysis

= Dbasically only one factor is needed to account for all
returns (Conclusion in line with CAPM)

= Implication by NFA

= Factor # is 4 or 5 (Consistent with the conjecture by
Roll & Ross [1980])

Two Intuitive Question

= Q: Should factor # increases as more securities

are added?
= Probably not. So MLFA tends to bias towards more
factors.

m  Q: Is it likely that only one factor is enough?

= Not quite so since the multi-factor APT is a
generalization of the single-factor CAPM. So
eigenvalue analysis tends to bias towards fewer

factors




Temporal Factor Analysis

Xu, L (2001), "BYY harmony learning, independent state space and generalized
APT financial analyses ", IEEE Tr. on Neural Networks, 12 (4), 822-849.

Xu, L (2000), “"Temporal BYY learning for state space approach, hidden
Markov model and blind source separation', IEEE Tr. on Signal
Processing 48, 2132-2144.

A Temporal

Extension of APT ) yt :Byt—1+g
t=1,2,3...n

=Ay +
\xt yt e

¥, I1s independen t among its components

Adaptive Portfolio
anagement Algorithm

= The way to find the hidden factors:

Stepl Fix 4, B and X and estimate the hidden factors y, by
el AT )
£ -y by,
e, =X/ — Ay .

Step2 Fix y,,update 4, B and X, by the gradient ascent approach
B _RB* 4 ndiag[etyt_l],
Ay _ Aold + netyt—1T9
4 g




+

Kai Chun Chiu and Lei Xu, A comparative study of Gaussian TFA
learning and statistical tests for determination of factor number in
APT", Proceedings of International Joint Conference on Neural
Networks 2002 (IJCNN '02), Honolulu, Hawaii, USA, May 12-17,
2002, pp2243-2248.

APT extensions
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i 3. Arbitrage Pricing Theory

= Capital Asset Pricing Model vs. Arbitrage
Pricing Theory

= Temporal Factor Analysis (TFA) and APT
s TFA based APT for Prediction
= TFA based APT for Portfolio Management

Kai Chun Chiu, and Lei Xu, (2002) "Stock price and index forecasting by
arbitrage pricing theory-based gaussian TFA learning”, in H. Yin et al., eds.,
Lecture Notes in Computer Sciences, Vol.2412, pp366-371, Springer Verlag.
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1

Gaussian Alternative
Mixture-of-Experts Model

T 7

iy O @ e ()
A - -

s N-ENRBF Approach stock returns at time t-1

= The adaptive ENRBF algorithm in [Xu, 1998] is used. The
input vector consists of nonstationary raw index prices and
issetas  x, =[p,;, P,y P,s] 2t time ¢

= S-ENRBF Approach

= Quite similar to the previous approach, the adaptive ENRBF
algorithm is adopted. The input vector at time t is stationary

returns _rp T
xt - [Rt—l’ Rt—Z’Rt—3]




Gaussian Alternative
Mix ture-of-Experts Model
A A
hidden-factors—| return of the target
at time t-1 \ o » at time t-1

(TFA)
U Q)
- |CA_ENRBF Approach stock returns at time t-1

» Step 1: the inverse mapping y, = Wx, is effected on the stock price of index
constituents via the technique called Independent Component Analysis
(ICA) for higher order dependence reduction;

= Step 2: Then, the adaptive ENRBF algorithm is adopted for establishing the
relationship between 3 | x,(fl) and X,U)

» APT-Based TFA-ENRBF Approach

= Step 1: the Gaussian TFA algorithm instead of the LPM-ICA algorithm is
used to recover independent hidden factors;

= Step 2: Same as the previous approach.

By the N-EMREF Approach

i 17} By the S-ENRBF Appoach f

Hang Seng Index (HSI)
Hang Seng Index

I
0 20 A0 B0 80 100 19 n I A = {=ly] Amn Eheln}

171 o By the APT-based TFA-ENREF Approach
: By the ICA-ENREF Approach

120




i Experimental Results (RMSE)

N-Adaptive | 232.9625| 25.8021 9.9819| 0.7957
ENRBF

S-Adaptive 80.8164 8.7290 4.2516| 0.4347
ENRBF

ICA-ENRBF | 63.9681 6.0765 3.4340| 0.3147

APT-based 47.6031 4.5202 2.2187| 0.2346
TFA-ENRBF

Implementation of TFA

‘ input

(t=T)(t=T+1) (t=T+2)  (1=T+1)(t=T#2) (t=T+3)

X1 X1 X1 X1 X1 X1

s

Trained parameters

X1 (t=T+3)

Training




DSRBF

desired

output
1 VA

Yi
: *_y y
1 Time t'% Time t'E Time
: Delay Delay Delay
- Y1 Yio Yis |
ENRBF, ENRBF,
Xe = [ Xeqo X2 X3 1T Ye= [Ver Yeor Yea]”

Implementation of TFA

input (t=T) X1 X2 X3 X4 X5

111

\ A A /

TFA

(t=T+1) (t=T+2) (t=T+3)

X1 X1 X1

t=T) VY1

Independent

Training
factors |

Trained parameters

X1  (t=T+3)




HSBC Holdings

Neural Mean Square Error of
Network Testina Data

DSRBF 10.40589

DSRBF + TFA 8.268526

Comparsion between Performance of DSRBF and DSRBF + TFA

— Price Predicted by DSRBF
Price Predicted by DSRBF + TFA

— HSBC Holdings Source Data
o o o o o o o o o — — —
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Time

Cheung Kong Holdings

Neural Mean Square Error of
Network Testing Data

DSRBF 13.48662

DSRBF + TFA 5.100805

Comparsion between Performance of DSRBF and DSRBF + TFA

110
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i —— Price Predicted by DSRBF
o Price Predicted by DSRBF + TFA
6 —— Cheung Kong Holdings Source Data
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Heng Seng Bank

Neural Mean Square Error of
Network Testing Data

DSRBF 10.46414

DSRBF + TFA 2.95054

Comparsion between Performance of DSRBF and DSRBF + TFA

Price

— Price Predicted by DSRBF
Price Predicted by DSRBF + TFA
— Heng Seng Bank Source Data
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Sun Hung Kali Props

Neural Mean Square Error of
Network Testing Data

DSRBF 11.38626

DSRBF + TFA 5.948012

100 Comparsion between Performance of DSRBF and DSRBF + TFA

— Price Predicted by DSRBF
Price Predicted by DSRBF + TFA
— Sun Hung Kai Props Source Data
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Neural Mean Square Error of
Network Testina Data

DSRBF 10.03561
DSRBF + TFA 5.945724

i Hutchison Whamp

Comparsion between Performance of DSRBF and DSRBF + TFA
130

120 |
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100
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0 — Price Predicted by DSRBF VQ
Price Predicted by DSRBF + TFA \VJ

— Hutchison Whamp Source Data
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i 3. Arbitrage Pricing Theory

= Capital Asset Pricing Model vs. Arbitrage
Pricing Theory

= Temporal Factor Analysis (TFA) and APT
s TFA based APT for Prediction
= TFA based APT for Portfolio Management

Kai-Chun Chiu and Lei Xu, (2004) " Arbitrage Pricing Theory Based Gaussian
Temporal Factor Analysis for Adaptive Portfolio Management", Decision Support
Systems 37, pp 485- 500, 2004,




Observations Based

% changed
10
]
il
-5
-10
158
02-01-2002 08-03-2002 16-05-2002 22-07-2002 23-08-2002
— Your Portiolio
HANG SEMG INDEX
Mean Standard Deviation Max Min Sharpe Ratio
The Portfolio 1.0249 0.0260 1.0896 0.9520 39.4192
Hang Seng Index 0.9771 0.0727 1.1099 0.8211 13.4402
Hidden Factors Based
% changed
10
g
0
-5
-10
-18
02-01-2002 08-03-2002 16-05-2002 22-07-2002 23-08-2002
Your Portfolio
HANG SEMG INDEX
Mean Standard Deviation Max Min Sharpe Ratio
The Portfolio 1.0541 0.0235 1.1020 0.9910 44.8553
Hang Seng Index 0.9771 0.0727 1.1099 0.8211 13.4402




Attributes

Mean

Standard
Deviation

Maximum Minimum

Sharpe Ratio

Change

+2.8491%

-9.6154%

+1.1380% | +4.0966%

+13.7905%

» hidden factors based

- It generated a better return

- Lower risk

- Sharpe ratio increased by more than 13%

135

125

1.08

095
1]

-------- Return-based portfolio

— - APT-based portfolio (Shaort-selling allowed)
—— APT-based portfolio (Short-selling disallowed)

A\
“w'r J\\

140




Risk-Return Statistics

0.00148% 0.0018%
0.18% 1.48%
0.03% 2.51%
-0.20% 2.55%
0.08% 0.61% 0.13
0.19% 1.04% 0.18
0.33% 1.62% 0.20

4. Challenges and Advances of Statistical Learning

b

= Two types of Intelligent Ability: Learning
from Samples

= Key Ingredients of Statistical Learning

= Two Key Challenges and Advances on
Seeking Solutions

= A Unified Theory: Bayesian Ying-Yang
Harmony Learning




Fundamentals, Challenges, and Advances of
Statistical Learning for Knowledge Discovery and
Problem Solving: A BYY Harmony Perspective

T 160 ST LR e LS e )
* HARS., k. Mg Bib

Lei Xu
http://www.cse.cuhk.edu.hk/~Ixu/

Department of Computer Science and Engineering,
The Chinese University of Hong Kong

Outlines
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< * Two types of Intelligent Ability: Learning from Samples
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* Key Ingredients of Statistical Learning
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* Two Key Challenges and Advances on Seeking Solutions
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e A Unified Theory: Bayesian Ying-Yang Harmony Learning
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Two types of Intelligent Ability

TYPE I
Knowledge about
the world it survives
Why ?
(interpret what are
observed)

, n 9
0
B i P S
g
thinking communication collaboration

Two types of Intelligent Ability

-

TYPE II wich
skill of handling each 22V g
Issue encountered in . :1; [
the world

How to do ?
(problem solving)

n = 2 .'I ?" %
driving operation cooperation competition




How to get the abilities

TYPE 11
Obtain SKkills of Problem Solving via
* reasoning , inference,
optimization
elearning from samples
(fast implementation)

TYPE I
Obtain World Knowledge via
* loading from authorized
sources (e.g., textbooks)
elearning from samples (pieces of
uncertain evidences)

e

Two Types of Learning from Samples

TYPE 11 TYPE 1
Training SKkills of Problem Solving Discovering World Knowledge
via building up input-response via mining invariant dependence

type dependence per sample underlying a set of all samples




Statistical Learning
‘ Using statistical approach for removing uncertainties

from Sampling and observation noises

Learning theory
(software)

Sample
gathering
(world)

=AHEARER

Key Ingredients

4. Challenges and Advances of Statistical Learning

+

= Two types of Intelligent Ability: Learning
from Samples

= Key Ingredients of Statistical Learning

= Two Key Challenges and Advances on
Seeking Solutions

= A Unified Theory: Bayesian Ying-Yang
Harmony Learning




Key Challenge F-ZEHk/% |

Learner’s hardware appropriately represents
dependences among data
(matching structures of underlying world)

Regression

Sample
gathering
(world)

Memory based: individual &E/M24Z

Empirical density

RS 3 s B N N

Parzen window density

Blurred memory *,E"I“éﬁiﬁé[ S
K, (x.x)

Pe)= 5 2K ) NANALN

Dimension 22— __

Curse of dimension !




Feature based: RAKHFE

¢ Z X, =E(x,) )

- = Mean and covariance matrix

O-ij:E(xi_:ui)(xj_/uj) x

= higher order statistics
=« third-order: skewness
« fourth-order: kurtosis

B =E0G =) 0, —18)- - (X, — 14,,)

The number increases exponentially ! ..

Specific purpose: Parametric family

i LHEW: SH%

= Gaussian G(x|m,X)

Domain specific densities

e.g., exponential family

Case by case: too narrow for a general purpose !




Best: Seeking Structures that
Indirectly specify distribution families

A 1L 454 [R] B3R 7 70 A TR
« Start at typical structures L7} £t

Multi-point Regression

Two +
Previous G more
examples TR (to be introduced later)

« Aim at a general framework i JHHEZE to integrate
. existing studies
. investigating new structures

One-body world
Dependence structures among
samples from one-body world

VS

Multi-bodies world

Dependence structures among
samples from multi-body world




Dependence structures among
samples from one-body world °° o

Three Architectures = F{#5T

é
é

to be introduced one by one

Forward Architecture
Pair-wise structures

10outputunits [0[1[2[3]4]sTe[7]e]

Y=F(X) : IiE f(X)

ication | Network System s

. LyPEld Redundancy reduction
Training SKkills of Problem truct
Solving structures
via building up input-response Redundancy’s role for R
type dependence per sample understanding “*" uniform

perception (Attneave,
1954), sensory pathways
(Barlow 1959, 1989),

and pattern recognition -
0 (Watanabe, 1960)




The World
{xt}

Pair-wise structures

RBF & Kernel regression
(Xu & Yuille, 92&94)

Three layer net
Adaptive EM algorithm (98)

Mixture of Experts (ME)

4

e

PMlU“—,V Pyi(z]2,x) Py(z|3,x) Pyio(11x) | Pap(2]x) PM2(3|X)
Expert 1 Expert 2 Expert 3 Q Q Q
X1 X2 X3
T~ T _— Gating Network

Classifier combination (Xu, Krzyzak, & Suen, (90&92)

EM convergence study (Jordan & Xu, 95)
Alternative ME model (Xu, Jordan, &Hinton, 94& 95)

Less redundancy

TN T

gq(y)=nq(yw)g

i

y=fx)
p(y|x)

Maximum
Information
Transfer

The World

p(x)

Redundancy reduction structures

— PCA ICA CDF
Y2
o
cthn Y o 5% RS
o o
, “:JE- Y firs .. uniform -
' LR ooy s o3
.t%{:% i

A

X,
Py

X,
Oja PCA rule (82) t .
Oja PSA rule (89) Informax (Bell, 94) for superGaussian
Xu (91) PSA global MMI (Amari, 95) for subGaussian
convergence and FastICA (Oja, 96) for both (sequential)
PSA > k-PCA LPM-ICA(Xu, 96) for both (parallel)
One-bit-conjecture & proof (Xu, 98 &03)

(symmetry broken)




Backward Architecture How observations generated

Independence space
Independence subspace P P

(Linear Latent structures) LEXSTT

Dimensional *=Ay+e

change /
observation
space

Factor analysis
(FA)

X,
’T 1* Principal Component

for FA & BFA : adaptive algorithm & J(k) curve (Xu, 98) [0, x5, 24]
e ™.

For NFA: LMSER (Xu, 91&93), approximately
EM algorithm (France,96), much exactly .
BYY learning (fast !) and J(k) curve (Xu, 01&02)

For all the three: adaptive BYY learning algorithm with
k selected automatically during learning (Xu, 03&03).




x=Aye
T
N FA B NFA WIFA
4000 4
)
B 3000
e :
X =
NFA-O J
1 JETH A6
2 RIEEHN| D2 202 1000 1 646.4
3 ApAG 3G KIRILY]
; e . 36.6376.25 5355. T8.77
1 ANLsD D245 Ui” 0 | _
Mean gl D315 JIEGG s-factor model -factor modal a-factor 1l
(a) {b)

Fig. 7. Comparisons between NFA and IFA, (a) On the MSEs between the recovered factors and the original factors, (b) On time complexity,

Gaussian Mixture

i=1

ERNRENEN




A bi-directional perspective

Forward Backward

R
. o0 /!
_ \ ayesian
exist an inverse
implicitly I / P(x|y)
p(ylx) \I Computed how x

during generated

/ ©
\ / %ﬂ_ learning
\ /
The World \
I

A
|
|
|
|
|

\ Bayesian

| Inverse

AN q)=Y o Giu.z )

EM convergence and three advantages (Xu & Jordan, 92)

Hard-cut EM with automatic selection on k (Xu, 95&96)

J(K) curve for k (Xu, 96 &97)

RPCL with automatic selection on k (Xu, Krzyzak, Oja, 91&93)




6

Bi-directional structures C') & O
k

DN recognition ¢zf generative
: Afﬁ_\“}:@) we|ght weights
e \ @0 e o ® e
TYPEIL TYPE 1
Training Skills of Discovering World Helmholtz Machine (1995)
Problem Solvmg edge
/ Znh 22+ )2
Attentional Orienting
Gain Control Subsystem Subsystem
— j——————> | Dipole Field STM F,
+ + + STM Reset
+ + |LT™ Wave LMSER (XU, 1991)
O Others
Gain Control T *Kawato et al’s Forward-inverse optics
T " model
Grossberg’s ART ePattern Theory (Mumford, Grenander)
Input Pattern
(1977)

Z5 ) 20 )2

New adaptive algorithm other
than BP + selection of hidden

. A units (Xu, 02&03)
New adaptive algorithm +
selection of m (Xu, 02&03) , N~ . '

X3

.........

Xu(91) for nonlinear PCA or ICA

) (/)) LU 1) )
i pewo 0TI g b )T g} gﬁ

1 l 1 1

i x=dyre y=s() x= ke iy A EAN )
_ _ 1 _JA,  Auto-Associatio g=Ayre
=5 A=l Leen =Y da=do
| l | |
. x4&d]
Gaussian ' X real X real
noise
o =~ Y~ asry)f =L SN a4
Nt:]_ ! dNt:l

@) (b)




Motor Control

p(y|d)

qdly)

one-body world

(see Proceedings for details)

Dependence structures among

samples from one-body world

l

pair-wise
architectures
I |
[P
) =
s S S
=g (25| 2
S x|o L !
‘7 O == =
2 g |58 2
= S |le 2 2
B = o o <
Q < ? z =
=7 g o = g
A |© s
2

transform

architectures

—!

~

Principal component |

J
Y
J
Y

analysis (PCA)
analysis (ICA)

Independent component

-
-
-

CDF transform

A 4

}

factor
architectures

bi-directional

architectures

]._

Gaussian factor

|

1

Binary factor

Non-Gaussian factor }ﬁ

.
-

Positive factor

ART

gl
}._
L

LMSER

three layer net

Helmholtz machine




Multi-body world

‘-_qualitatively by the topology

within
0 each body

guantitatively by the
dependence structures
among variables within
and across objects

ACross

Difficult to learn topology from samples

three special cases studied in literature:

s Given topology: learn quantitative dependence
among variables, :

() 2D lattice

= Null topology: learn ID and quantitative
dependence among variables,

= Allocation on
lattice topology.




point
Beyond st ctures

1% principle
component

Mixture o fPC A 2" principle e,
(local PCA)
Xu (94,95,02)

component

comparent * MCA (Xu&Oja, 92)
->Local MCA (Xu, 94&01)
* Local NFA (Xu, 03)
Mixture of ICA S ’
(local ICA(Xu,01&02) P i Local LMSER (Xu, 03)
Mixture of BFA ~'\\ . . "
(local BFA) PV S
(Xu, 02&03) -

Mixture of independent state spaces

X e - State
y=Bya+é& = Space Mf\d\‘ State
] Y w=Byateé& Space
x,=Ay, +u+e, Y
\L X, =Ay,+u+te,
Observation Space X 2
XLyeuuy Xt yuuny XT Observation Space X
XLyouuy Xt yuuay XT
N e - State
w=Byaté Space
Y

X, = Ay, + u +e,

Observation Space X
HLo 0009 gooopgddl

Xu, L. " Temporal BYY Encoding, Markovian State Spaces, and Space Dimension
Determination™, IEEE Tr. Neural Networks, Vol. 15, No. 5, pp1276-1295.




Multi-body world

Dependence structures among
samples from multi-body world

5o 5 4 5 5o *
visible topology invisible topology
among among
L multi-bodies L multi-bodies
§ ! J— T § 7 . N S—
2 E = 2 @
> 2 v s = o o < 2 g £
= =< ] = =
Sl =% £ & S| 2| 8| 28¢g]| | 5 2
2. S 2 f % g X Ko o2 s & s 2
o = o s 2 ° = = - = 8 )
- N = = S ~— o M =R Q
o ~— on = 59 < = E
| = .C_Q - ‘: % i S o - )
° @ S S ) @® = =S @ g =
=9 o 0 S = - = = v = L o ©
= g > - 2 < = o = S =
@ & 3 Z — & = = - S =
= = £ @) = 2=
= s = S
- o J \ J (S

J/

(S

A general framework

7 Stochastic: randomly pick u by P(ulv)
maximum posteriori: u=argmax P(u|v)

p(y[x) L
‘{ssmn. U=EPuw)[U] q(xly)
The World
pP(x)
P(x,y)=P(y|x)P(x)  q(x,¥)=q(x|y)q(y)
YANG representation (Machine) YING representation (Machine)

T

Bayesian Ying Yang System




Integrated structures

(topology) x (time) x (inner-coding) x (observation) x (architecture)

one learner no no full vector x forward
multi-learner yes Gaussian  vector in two pairs  backward
learners in lattice real nonGaussian multi-parts  bi-directional
learner in tree binary

D
after update

free parametric
parametric free
parametric parametric

® Neighborhood

Key Challenge =2 Hk i 11

Complexity of Learner’s structure >matching the
size of samples
reliable structures of underlying world)

F-Space

Learner
(hardware

Sample
gathering
(world)

x=Ay+e

The number of hldden unlt Z ’5’\

[P




One piece of evidence, take it by 100%

Two pieces of evidence, take each by 50%

The large number law  More pieces of evidence
5(x—xl.)
1 T T T C. T
()= 23 5, .

P [p.(x107) = g, ()] > 2 f - [

ael

exp {— 26‘2]\7}— Zi (-=1)" exp {— 252t2N}
t=2

(Kolmogorov & Smirnov, 1930)

Chance of a failed retrieval of a memorized
item or getting a wrong memorized item
increases exponentially with dimension

Best parametric model matching #5745 4: IC

| o
5 optimizing a matching cost Flplx[0)X), X ={x},
= p(x|6(X))

e.g., Maximum Likelihood (ML) & {IJ9R

1 N
One piece of evidence, max, L(6),  L(6) =N;|np(xt | 9)

take it by 100%

Two pieces of evidence
take each by 50% subject
to the template

More pieces of evidence

The large number law
p(x|O—pl@) X4, as N—oo




We do not known structure of P-(x]-)
a family with same structure but in different scales

* p(x16(k)), k=12,...0

. x=Ayte

% Space /,’. | .\_._-
_/"Kf' ’ N -

At AR

~ The number of hidden unit

| XA KA AR AT
; '(i\‘f -_(\X\!"ff"“ﬁ/ Nrg S

B "I‘:I :'\rl

Provide that there is a A* and ¢"(¢") such that
plxle*(k)) isequalorclose tothe true (x| 4,)

We do not have N — «©

generalization error  Number of clusters=8
7o o\ = No error

! o
. © )
e,

error
-

fitting error




Existing Efforts

generalization error

VC Dimension based SRM
AIC

BIC, SIC

Cross Validation
MML/MDL

Bayesian Approach

error

k" =argmin [A(k)+ F(p(x|6(k)), X)]

The existing efforts usually lead to a rough estimate A(k)

Two Steps of Solving

Step 1 Enumerate & for a set of candidate

values, fixed at each candidate, make learning
A

0" (k) =argmin, F(p(x]0),X)

error

Estimated bound of
.. generalization error

Step 2 Select the best one £* by

fitting error

k" =argmin [A(k)+ F(p(x|0(k)), X)]

=~ V

Very computational extensive !!!




3. Challenges and Advances of Statistical Learning

+

= Two types of Intelligent Ability: Learning
from Samples

= Key Ingredients of Statistical Learning

= Two Key Challenges and Advances on
Seeking Solutions

= A Unified Theory: Bayesian Ying-Yang
Harmony Learning

Bayesian Ying-Yang Harmony Learning

Representation Space  q(y)

P(y|x) q(xly)

P(x) Input Pattern Space

Basic Learning Principle: Ying-Yang Harmony * 4%

(a) Best matching

Best matching
p(x, J’) = p( x)p(x) (Least difference) x‘y )‘7
(y\X)

(b) The simplest one in complexity or most firm.

Max H(H, k) = H(p”q) = Ip(y|x)p(x)In[q(x|y)q(y)]dxdy —Inz,




H(0,k)=H(plg)= [ p(y}x)p(x)Inlg(x]y Jg( )ldxdy - Inz,

- p(x) is fixed from “{x }" but p(xly) is at least not totally fixed.

Least complexity nature fix g, manH(PHQ):> p(y|x)=6(y-») vy, =f(x)

—pushes p(y[x) in the least complexity.
Matching nature fix p, m[?XH(qu) =4, =D,
— pushes q(x|y), q(y) in the least complexity also.

parameter learning

«Th h max H (0,k)= .
erefore, we have 0k ©.k) { model selection

Parameter Learning with Automated Model Selection

Q(y’l): Zf=1Q(y |l)al’ k ={{m }_,. k}
gy 1D)=1]"a(,11)
i |

p(y; 1x) | a(xly,l)

P(x){%Z’NlK(xhXIJ
Ly se-x) _trEtTEteLY

N

-Set some «, =0 isequivalent to reduce & = k-1

-Set the variance of ¢(y, |/) to be Oisequivalent to reduce m, = m,-1
H(®,k)

A

0=10,.6} 6, =0

k fixed at large value.
wanl) T




Parameter Learning Followed By Model Selection

‘ Step 1 Enumerate k, at each k, make parameter learning

max_H 6,k),
Step 2 k™ =arg min J (k) J(k):—H(g,k)
J(k)
: ;

Alternatively, parameter learning can also be made via mganL(qu)

KL(plg)= [ p(y[x)p(x)mn Zg“;gj((;))dxdy

X,y

Also act as a general scheme
that integrates:

+

Parameter Learning

Model selection

Regularization

Better performances in the cases of a small size of samples




Ying Yang Alternative Minimization

Max H (qu) can be further implemented alternatively by

eYangStep: Fix g(x,)

get p(x,y)=argmax,, H(qu)

eYingStep: Fix p(x,y)

get g(x,y)=argmax_,, , H(qu)

It will converge to a local maximum of H(p||q)

It also works when H(p||q) is replaced by KL(p||q)

The well know Expectation-Maximization (EM) is its special case

(e} result after 50 iterations

(d) final result

(@)

(b)
(€)

(d)

there are five
classes with
each class
consisting of
200 Gaussian
samples.

the initialize
value of kis 10.
after 50
iterations of
implementing the
best harmony
learning

a correct k=5 is
determined after
learning has
converged.




Ying-Yang in a local alternative perspective:
Rival Penalized Competition

W - ) i =1,

1 =4 1 = o, — ), i =1,
ue, otherwise
e O<n <<n,

Rival Penalized Competitive Learning
(Xu, Krzyak, Oja, 91&93)

Listed in the following table are the results of 100
experiments on a Gaussian mixture with k=5, in comparison
with three typical model selection criteria AIC, CAIC,
BIC/MDL. Experiments were made by considering the ball
shape 2x2 covariance matrix , the elliptic 2x2 covariance
matrix , and the ball shape 10x10 covariance matrix , in
different sizes n of samples. In this table, S denotes the rate
of successes, O denotes over-estimated values of k, and U
denotes under-estimated values of k. It can be clearly
observed that the above J(k) (i.e., BYY-HDS) outperforms
others considerably.

Table 1. Rates of underestimating (U7}, success (S), and overestimating (O) by each criteria on the simulation data
sets in 100 replications

Sample AlIC CAIC MDL BYY-HDS

Example sizz (U 5 O|U 5 O|U § O|U 8§ 0O
B0 0 26 74|69 31 0O [48 52 0|11 76 13

Spherical 200 0 48 52|16 79 5|12 8 3|6 384 10
400 0 43 57|12 87 1 8 90 2|5 388 7

100 0 21 79|87 13 0 |8 18 O |16 61 23

Elliptic 250 0 34 66|69 31 O (57 43 0|14 39 27
00 O 23 77141 59 0|37 & 1 12 69 19

High 100 [0 27 7339 48 13|25 51 24|23 55 22
Dimensional 500 0 45 55|32 57 11|27 60 13117 71 12
10010 O 47 53|10 76 14| 8 381 11 g 84 B
Average 0 39 651 41.7 534 49 338 602 60 124 719 157




h IRIS Data

L % on the well known IRIS real data
i set of 150 samples from three
iy P . o e o
- A classes (i.e., iris species setosa,
- | otk versicolor, virginica) and each
e ' sample having four dimensions
. s (i.e., sepal length, sepal width,
B petal length, and petal width).
) Again, the top figure shows the
- . projections of the data set on the
first three dimensions. The
4 bottom figure gives the results of
selection. It can be observed that
only the above J(k) (i.e., BYY-
£ ' HDS) has successfully
§ determined the correct k=5,
while AIC output a higher on
: k=5 but CAIC and both MDL
output the wrong one k=2.
- “_ 4 o
2
152 i-;:h-m ¢
: e )
: | Factor analysis
x I .
. (FA)
13 . ; k=3
B
E. 05 I
" - : ) 3 X 1% Principal Component
; \ X= Ay{-e
ol 15 2 25 ] s 1 is 5 “ zc':..l:;l':ei..ptal
niamnbar of componants
W [ x ]
2 ; i -
& \':é'f. X, d_lo
188, o BV HEC .
« 1 e Table 1
g " Eates of underestimating (L), success (§), and overestimating (0 by each
= * critefia on sinlation data sets with different sample sizes in 100
E 08 EXpETMEnts
= B
g . o Criteria =~ =120 n=40 =10
- - LS o0 oUvos o0 U5 P
® 45 w " . 3
§romm et AIC 2 6 3 0 8 1® 0 8 15
. CAIC w0731 W0 0 100
BIC 0 84 6 1 % 0 0 10 0
15 e BYY-HEC 6 74 20 0 9% 2 0 10 0
number of components BYYHDS 11 8 3 1 % 0 o 10 0
B} m= 100 FoldCV 3 71 2% 0 8T 13 0 AN

Fig. 1. The curves obtained by the criteria AIC, CAIC, BIC, 10fold CV,
BYY-HEC ard BYY-HIDS o the data sets of a 10-dimensional x (d = 10)
peneraied from a 3-dimersioral ¥ (=3} with differee! sample sizes. (a)
m =20 and {b) o= 100




Summary

* BYY system as a general framework that integrates
typical structures for statistical learning

* BYY system + Kullback divergence KL(p||q)
a unified perspective for maximum likelihood learning
on various structures

* BYY system + Best harmony H(p||q)
a new theory with a new mechanism for
automatic model selection during parameter learning
no need on two stage implementation

* BYY system + Best harmony + regularization
further improve performances in the cases of a small size of
samples.

* A natural perspective of alternative minimization algorithms

m Firstly proposed in 1995

Xu, L (1996), Advances in NIPS 8, 444-450 (1996). A part of its preliminary
version on Proc. ICONIP95-Peking, 977-988(1995).

» Developed in past years (see recent papers below)

¥ Xu, L. (2004), "Temporal BYY Encoding, Markovian State Spaces, and Space
Dimension Determination®“, IEEE Tr. Neural Networks, Vol. 15, No. 5,
pp1276-1295.

Xu, L (2004), *"Advances on BYY harmony learning: information theoretic
perspective, generalized projection geometry, and independent factor auto-
determination', IEEE Tr. Neural Networks, Vol. 15, No. 5, pp885-902 .

Xu, L (2003), "'Data smoothing regularization, multi-sets-learning, and problem
solving strategies', Neural Networks, Vol. 15, Nos. 5-6, 817-825.

Xu, L. (2003), " BYY learning, regularized implementation, and model selection on
modular networks with one hidden layer of binary units", Neurocomputing Vol.
51, 277-301.

Xu, L (2002), "BYY harmony learning, structural RPCL, and topological self-
organizing on mixture models', Neural Networks, Vol.15, Nos. 8-9, 1125-1151.

Xu, L (2001), "BYY harmony learning, independent state space and generalized
APT financial analyses ", IEEE Tr. on Neural Networks, 12 (4), 822-849.

Xu, L (2001), “"Best harmony, unified RPCL and automated model selection for
unsupervised and supervised learning on Gaussian mixtures, three-layer nets
and ME-RBF-SVM models", Intl J. of Neural Systems, 11(1), 43-69.

Xu, L (2000), ""Temporal BYY learning for state space approach, hidden Markov
model and blind source separation", IEEE Tr. on Signal Processing 48, 2132-
2144.




Relations to and Key differences from approaches below

eMaximum likelihood

eInformation geometry

eHelmholtz machines

e\/ariational approximation
eMinimum description length (MDL)
*Bit-back based MDL

eBayesian approach

eAkaike information criterion (AIC)
eBayesian information criterion (BIC)

Xu, L. (2004), "Advances on BYY harmony learning: information theoretic
perspective, generalized projection geometry, and independent factor auto-
determination", IEEE Tr. Neural Networks, Vol. 15, No. 5, pp885-902 ..

For more details, see:  http://www.cse.cuhk.edu.hk/~Ixu/
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According to SCI-EXPANDED, his papers got over 1400 citations, and his 10 most cited
papers scored near 850. Among them, one single his paper scored 275, each of the other
nine papers are scored between 43—96.

According to Google Scholar, his papers scored over 1800 citations. The 10 most cited
papers scored near 1200. Among them, one single paper scored 416, each of other nine

papers are scored between 55—131.

By CiteSeer, ranked at the 2061-th among 10,000 most cited authors of 773109authors.
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