Extending Genetic Programming with Recombinative Guidance

Hitoshi Iba and Hugo de Garis

- Motivation
- Recombinative Guidance for GP
- Experimental results
 - Performance-based Guidance
 - Correlation-based Guidance for Symbolic Regression
 - MDL-based Guidance for Numerical GP
- Discussion
- Related Works
- Future Works

Motivation

- In traditional GP, recombination causes disruption of beneficial building-blocks, and mutation causes abrupt changes in the semantics. Example.
- Propose a "recombinative guidance" mechanism for GP so as to realize an "adaptive recombination".
- In GA
- In GP

Exa

Example

In GA

- Schaffer(1987)
 - Use a string feature called "punctuation", which decides the crossover points of multi-point crossover.
- Back(1991, 1992, 1993)
 - Propose an adaptive control scheme for a mutation operator. Use a bit string to represent a mutation rate for each allele.

In GP

- Koza(1990, ch.4. 12.2)
 - Use a constrained crossover operator to evolve Neural Networks.
- D'haeseleer(1994)
 - The crossover operators attempt to preserve the context in which subtrees appeared in the parent tree.
- Haynes(1995)
 - Propose a strongly typed GP.
- Whigham(1995)
 - Use a context free grammar to control crossover and mutation operators for GP.

- S-values (subtree values)
 - Denote : SV(T), for a subtree T
 - Performance-based S-value
 - Correlation-based S-value
 - MDL-based S-value
- Use S-values to decide which subtree will be chosen.

S-value

- S-values are sorted in ascending order (SV)
 - The larger S-value, the better subtree
- S-values are sorted in descending order (SV)
 - The smaller S-value, the better subtree
- For subtrees T and T', T

 T'denoted that T' is a better building-block candidate than T.
- If the S-value of T' is better than that of T, then

$$T \preceq T' \Leftrightarrow \overline{SV}(T) \leq \overline{SV}(T')$$

or $T \rightarrow T' \rightarrow SV(T)$

$$T \preceq T' \Leftrightarrow \underline{SV}(T) \ge \underline{SV}(T')$$

- Apply a mutation operator to a subtree whose S-value is worse.
- Apply a crossover operator to a subtree whose S-value is worse, and get a subtree whose S-value is better from another parent.
- Example

Example

- Let W₁ and W₂ be the subtrees with the worst Svalues of P₁ and P₂.
- Let B₁ and B₂ be the subtrees with the best Svalues of P₁ and P₂.
- A new child C₁ is a copy of P₁, in which W₁ is replaced by B₂.
- A new child C₂ is a copy of P₂, in which W₂ is replaced by B₁.

Performance-based Guidance

- Experiment 1
 - The Lawnmower Problem
 - (Koza 1994, ch.8)
- Experiment 2
 - Artificial Ant on the San Mateo Trail
 - (Koza 1994, ch.12)

The Lawnmower Problem

- Goal: To find a program for controlling the movement of a lawnmower so that it cuts all the grass in the yard.
- Discrete 8x8 toroidal square area
- Fitness & Termination criterion
- Parameters
- S-value
- Result

LEFT

Turn the orientation of the lawnmower counterclockwise by 90 degrees.

MOW

Move the lawnmower in the direction it is currently facing and mows the grass.

Fitness & Termination criterion

- Fitness
 - Raw fitness: the amount of grass mowed
 - Standard fitness: 64—(Raw fitness)
- Termination criterion :

Either the lawnmower has executed a total of 100 LEFT turns or 100 MOVEs.

Parameters

Terminal Set	{MOW, LEFT}
Function Set	{PROG2, PROG3}
Population Size	120
Crossover Prob.	0.7
Mutation Prob.	0.033

S-value

$$\overline{SV_1}(T) = \frac{\text{raw fitness}(T)}{\text{raw fitness}(ROOT)}$$

- It is not defined for the root node.
- It does not reflect the complexity of the program.
- Complexity-based S-value

$$\overline{SV_2}(T) = \frac{\text{raw fitness}(T)}{\text{raw fitness}(ROOT)} + \frac{\# N(ROOT) - \# N(T)}{\# N(ROOT)}$$

Result

Method	Number of nodes	
	Average	Variance
Usual Crossover	603.00	95.76
SV ₁	655.53	120.27
SV ₂	496.27	50.99

Generation

Artificial Ant on the San Mateo Trail

Goal

- To find a program for controlling the movement of an artificial ant so as to find all of the food lying along an irregular trail on a two-dimensional toroidal grid.
- Area: 13x13 grid
- Raw fitness: the sum of food pieces eaten
- Parameters & Result

Parameters

Terminal Set	{RIGHT, LEFT, MOVE}
Function Set	{IF_FOOD_AHEAD, PROGN}
Population Size	1200
Crossover Prob.	0.7
Mutation Prob.	0.033

Result

Std. Fitness

Correlation-based Guidance for Symbolic Regression

- S-value
- Experiment 3
 - A simple symbolic regression
- Experiment 4
 - Discovery of trigonometric identities

S-value

$$\underline{SV_3}(T) = \frac{1}{N} \sum_{i=1}^{N} (y_i - t_i)^2$$

$$\overline{SV_4}(T) = |r(T)|$$

$$r(T) = \frac{S_{yT}}{\sqrt{S_{TT} \cdot S_{yy}}} \qquad S_{TT} = \frac{1}{N} \sum_{i=1}^{N} (t_i - \bar{t})^2$$

$$S_{yy} = \frac{1}{N} \sum_{i=1}^{N} (y_i - \overline{y})^2$$

$$S_{TT} = \frac{1}{N} \sum_{i=1}^{N} (t_i - \overline{t})^2$$

$$S_{yT} = \frac{1}{N} \sum_{i=1}^{N} (t_i - \overline{t})(y_i - \overline{y})$$

 A value of r(T) near zero indicates that the variable y_i and t_i are uncorrelated.

A simple symbolic regression

- $y=1/2 x^2$
- Parameters
- Standard fitness vs. Generation
- Average Number of Success Generations
 (the number of success for 20 runs
 within a maximum of 200 generations)

-

Parameters

# of Fitness Cases	20
Terminal Set	{X}
Function Set	{+,-,×,÷}
Population Size	40
Crossover Prob.	0.7
Mutation Prob.	0.033
Generation	200

Standard fitness vs. Generation

Average Number of Success Generations

Method	# of Success	Average Gen.
Usual Recombination	10	18.88
SV ₃	9	25.5
SV ₄	14	5.93

Discovery of trigonometric identities

- $cos^2x = 1 sin^2 x$
 - 20 pairs (x_i, y_i) , $x_i \in [0, 2\pi]$
- Parameters
- Std. Fitness vs. Gen.

Parameters

# of Fitness Cases	20
Terminal Set	{x, 1.0}
Function Set	{+, -, ×, ÷, sin}
Population Size	500
Crossover Prob.	0.7
Mutation Prob.	0.033

Std. Fitness vs. Gen.

- Advantages of STROGANOFF
- MDL fitness definition
- Chose the MDL value as the S-value for each subtree T : <u>SV_{MDL}(T)=MDL(T)</u>
- Predict the Mackey-Glass time series
- STROGANOFF parameters
- Results

- Analog(polynomial) expressions complemented the digital(symbolic) semantics. The representational problem of standard GP does not arise for STROGANOFF.
- MDL-based fitness evaluation works well for tree structures in STROGANOFF, which controls GP-based tree search.
- Multiple-regressions tuned the node coefficients so as to guide GP recombination effectively.

MDL fitness definition

- MDL= $0.5NlogS_N^2 + 0.5klogN$
 - N: the number of data pairs
 - S_N^2 : the mean square error
 - $S_N^2 = \frac{1}{N} \sum_{i=1}^N |\bar{y}_i y_i|^2$
 - k: the number of parameters of the tree

The Mackey-Glass time series

$$\frac{dx(t)}{dt} = \frac{ax(t-\tau)}{1+x^{10}(t-\tau)} - bx(t)$$

- \bullet a=0.2, b=0.1 and τ =17
- The trajectory is chaotic and lies on an approximately 2.1 dimensional strange attractor.

STROGANOFF parameters

Population Size	120
Prob. of Crossover	60%
Prob. of Mutation	3.3%
Selection Method	Tournament
Non-terminal Nodes	$\{a_0+a_1x_1+a_2x_2+a_3x_1x_2+a_4x_1^2+a_5x_2^2\}$
Terminal Nodes	{x(t), x(t-6), x(t-12), x(t-18)}
Target Variable	x(t+85)
# of Training Data	500
# of Testing Data	500

Following Hartman(1991)

Results (MDL-based)

- An Exemplar Tree
- Average Depths of Node of Best and Worst MDL values
- Prediction of Mackey-Glass Equation

An Exemplar Tree

Average Depths of Node of Best and Worst MDL values

Prediction of Mackey-Glass Equation

Discussion

Problem	Reference	Result
Lawnmower	Koza 1994, ch.8	$R \preceq \overline{SV_1} \preceq \overline{SV_2}$
Ant Trail	Koza 1994, ch.12	$R \preceq \overline{SV_1} \preceq \overline{SV_2}$
Regression 1	Koza 1992, p.163	$SV_3 \preceq R \preceq \overline{SV_4}$
Regression 2	Koza 1992, ch.10.1	$SV_3 \preceq R \preceq \overline{SV_4}$
Time Series Pred.	Iba 1993, 1994	$R \preceq SV_{MDL}$

The Success of methods

- Although there is no theoretical background for SV₂
 definition, SV₂ is similar to MDL-based evaluation.
 - We may regard the first term of SV₂ as the inverse of the Exception_Coding_Length and the second term as the inverse of the Tree_Coding_Length.
- SV₂ and <u>SV_{MDL}</u> evaluate the trade-off between performance and tree descriptions.

The Success of methods

- The MSE gives very little information as to whether a building-block will be useful.
- But, a correlation coefficient is a rather poor statistic for deciding whether an observed correlation is statistically significant.
- SV₄ is introduced as a way to evaluate the Svalue heuristically, not as an absolute index.

Related Works

- Rosca (1994)
 - Use Block fitness function to discover a useful building block by his system AR-GP.
- Angeline (1996)
 - Selective self-adaptive crossover and self-adaptive multi-crossover.
- Tackett (1995a)
 - Greedy Recombination operator.
- Teller (1996)
 - The co-evolution of intelligent recombination operators.
- Nordin (1996)
 - The introns regulate the crossover probabilities for subtrees.

Future Works

- Is it possible to design effective Svalues for various problems?
- The approach can be combined with ADF.
- Formalize S-values in more mathematical ways.
- Eliminate the constraint of the "linear order" for the S-values.

Formalize S-values

 A characteristic of S-values: if a subtree is a good building-block, it has a good Svalue. That is

$$T \leq T' \Leftrightarrow Prob(T) < Prob(T')$$

Where Prob(T) is the probability that a subtree T is part of a solution tree.

