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Abstract: In this paper, we show how to derive the spectra and cross-spectra of economic
times series from the dynamic structure of an underlying econometric model. This allows
us to conduct a proper frequency analysis of economic and financial variables on a limited
sample of data, without it being ruled out by the large sample requirements of direct
spectral estimation. We show, in particular, how this can be done for time-varying models
and time-varying spectra. To demonstrate our technique in action, we use it to analyse the
behaviour of British interest rates during and following the ERM crisis of 1992/3. 
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1. INTRODUCTION

A standard paradigm in economics is efficient markets.
However many markets have been found to be
inefficient. In financial markets this may happen
because of "informational inefficiencies", relating to the
cost of gathering information, the costs of adjusting to a
new equilibrium, or to uncertainty and the process of
learning. They may also reflect asymmetries in
information (Black, 1989; Easley and O'Hara, 1992).
Other markets - typically labour or certain goods
markets - may be inefficient because such informational
problems cause rigidities in behaviour (Akerlof, 1970).
The dynamics of any financial market should therefore
reflect within and between period adjustments to an
equilibrium path which is itself  adjusting to learning,
the resolution of uncertainty, and to information
gathering. That will imply different behaviour and
different adjustment characteristics at different
frequencies, for example in the short run behaviour vs.
the longer run convergence pattern of the market as a
whole, as agents adjust to eliminate disequilibria in
their current positions and adjust their understanding of
what their long run (equilibrium) positions should be.
The only way to analyse these different layers of
dynamic behaviour, and the relations between them, is
to use a spectral analysis in the frequency domain. It is
not possible to disentangle the different elements in a
time domain representation. Unfortunately, that route
has been closed to economists because of the long
sample of data required to estimate economic spectra
directly. As a rule of thumb, we should have seven to
eight times as much data as the longest cycle -

assuming the underlying structure to be constant. That
is ruled out if learning and information gathering lies at
the heart of the convergence process.
The purpose of this paper is to provide a technique for
calculating the necessary spectra indirectly. We show
how this can be done in the case where the parameters
of the underlying market relationships may be time
varying. (Laven and Shi, 1993; Nerlove et al., 1995;
and Wolters, 1980) have shown how a dynamic
regression equation can be used to derive an
autorgressive distributed lag model. We apply this
technique in a time-varying parameter framework in
order to take learning into account. That then allows us
to calculate a time-varying spectrum. There are
therefore two innovations in this paper: the
demonstration that the relevant components for a
spectral analysis of financial markets can be extracted
from the parameters of a simple dynamic econometric,
or VAR model - thereby avoiding the need for the very
large samples of data which are required for direct
spectral estimation. Second we demonstrate the value
of being able to perform spectral analysis on time-
varying relationships between financial variables.
This paper is structured as follows: we first describe
how results from the time domain an be transferred into
the frequency domain. We then present the components
from cross spectrum analysis which we need in our
analysis. As an example we apply these methods to an
equation from Richter (2001), and draw some policy
implications for the short-end of the British term
structure and how its behaviour has changed since the
ERM crisis of 1992.



2. THE RELATIONSHIP BETWEEN THE TIME
DOMAIN AND THE FREQUENCY DOMAIN

2.1. Spectra and Cross-Spectra 

In this paper, we are interested in the relationship
between two different variables{ }tY  and { }tX , which
are usually assumed to be stationary and related in the
following way: 

( ) ttt uXLAY += (1)
where A(L) is a filter and L is the lag operator, such
that LYt = Yt-1. In this case, we have to consider the
cross-covariance generating function. The cross-
covariance generating function is defined as 

(2) ( ) ( )∑
∞

−∞=τ

ττγ= zzg YXYX

where (z) is a complex scalar, such that
ω−ω== ω− sinicosez i  (3)

where i2 = -1, and ω represents the frequency in radians
per unit of time. Hence, corresponding to (2), ( )τγYX
is defined as:

( ) ( )τ−=τγ ttYX XYE  (4)
But, if { }tY  follows (1) we can substitute (1) in (4):

( ) ( )( ) ( )τ−τ− +=τγ ttttYX XuEXXLAE  (5)
And since { }tu  is i.i.d. (0, σ2) and ( ) 0XuE tt =τ− .
Hence, (2) simplifies to
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In (6) aj is a sequence of coefficients from A(L) and
( ) ( )jttXX XXEj −τ−=−τγ . Hence, the cross-

covariances depend on the coefficients aj from (6). If
we interpret (6) as an estimated equation, then the
cross-covariances all depend on the estimated
coefficients of our distributed lag model (6).
Consequently, if the estimates obtained for (6) are
efficient, then the estimated cross-covariance functions
will also be efficient (given knowledge of γXX). 
The innovation here is that, using estimated
coefficients from (6) vastly simplifies estimation of the
spectra. Indeed one of the biggest disadvantages of a
direct estimation approach is the large number of
observations that would be necessary to carry out the
necessary frequency analysis. We can get round that
disadvantage by starting from regression based
estimates as follows. We can write the cross spectral
density (gYX(z)) of the exogenous variable as being
proportional to the Fourier transform of the lag
coefficients (Nerlove et al. ,1995), i.e.
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where A(z) is the frequency response function, and
( ) 2zA  is the transfer function of A(L). But equation

(7) can also be written in terms of the spectra involved.
Using the fact that

( ) ( )zg
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and that 
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we get the cross spectrum 
( ) ( ) ( )ω=ω XXYX fzAf  (10)

where A(z) is the Fourier transform of the weights
{ }∞

−∞=jja . Rearranging (10) yields
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Hence equation (11) implies that

( ) ( )
( )ω
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where ( )zA  is called the gain. The gain is equivalent
to the regression coefficient for each frequency ω. It
measures the amplification of the frequency
components of the X-process to obtain the
corresponding components of the Y-process. The gain
is most easily calculated by rewriting (12) as

( ) ( ) ( ) ( )zAzAzAzA 2 ==      (13)

where z  is the conjugate complex of z, i.e. ω= iez .
Thus, in order to calculate the gain, all we have to
know is the sequence of the coefficients from (6).

2.2. Our Estimation Methodology

However, when estimating our spectra, the underlying
economic model would have the general form:

ttt X)L(UY)L(V ε+=  (14)
where
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Thus. as long as all eigenvalues of the characteristic
equation of V(L) are less than one, as they will be if Yt
is stationary, we can write

ttt )L(V
1X

)L(V
)L(UY ε+=  (15)

We are particularly interested in calculating the first
ratio of eq. (15) in order to derive the gain:
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to calculate the sequence (w0, w1, ..., wn, ...) in terms of
ur and vs, we use the following relationship (Hendry,
1995; Laven and Shi, 1993):
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Thus, given the lag structure in (17), we generate the
gain according to (13). This yields:
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 where z = e-iω. 

3. ECONOMETRIC IMPLEMENTATION: A
TIME-VARYING APPROACH TO THE

TERM STRUCTURE OF INTEREST RATES

So far, we have described the case of time-invariant
parameters only. We now look at the case where the
parameters are time-variant, i.e. (14) changes to

( ) ( ) ttttt XLUYLV ε+=                           (19)

As long as the parameters do not converge, the lag-
structure W(L) will be different for each point in time.
From there, we derive the gain according to (18). That
is our second innovation in this paper.
In what follows, we estimate (19) by Kalman filtering
techniques. We have used the Kalman filter because we
need to test certain hypotheses about the time-varying
nature of the underlying parameters. It is entirely
possible that the agents in the financial markets will
change their behaviour, and hence the way in which
interest rates are determined; depending on which
policy regime or policy environment they find
themselves. The Lucas critique in other words: if we
change the way in which monetary policy is set, the
way in which agents determine the relevant short and
long term interest rates (and risk premia) will change. 
We apply these techniques to analyse the frequency
response behaviour UK interest rates over the period
1982 - 1998. This period includes the soft (adjustable)
EMS, the "hard" EMS, the collapse of the ERM to wide
bands, and the introduction of inflation targeting. It is
important that we are able to take the consequences of
all these regime changes into account. The advantage of
the Kalman filter algorithm is that it assumes that
agents form one-period ahead forecasts. These forecasts
are then compared with the next observation. Then,
according to the Kalman gain, the coefficients are
updated in order to minimise the one period ahead
forecast error. That property makes the Kalman filter
particularly convenient for modelling behaviour in the

financial markets (see also Garratt and Hall, 1997): it
incorporates rational behaviour by market participants,
in terms of their short-run forecasts. This we formalise
in the following state space model:

t,1ttt ZDi ε+=  (20)
where (20) is the measurement equation and

t,21tt DD ε+= −  (21)
is the state (updating) equation. In (21), it is the British
two year interest rate, Zt is a set of significant variables
(including lags), such as the British base rate (as the
monetary instrument), the German two year interest
rate (to represent the ERM influences), the British ten
year interest rate, and the US two year interest rate (to
represent the influences of the world capital markets).
Dt is the matrix of estimated parameters, including a
"time-varying" constant to represent a time-varying
country specific risk premium.
To estimate our term structure model, (20) and (21), we
used monthly data from the Bank of England, Federal
Reserve, and the Bundesbank. The sample runs from
1982:1 to 1998:10. We tested the updating algorithm
(21), because it is clearly possible for agents to update
their coefficients after a shock has occurred. This
follows from the model of Lucas (1976). In this
specification, we have observations for eq. (20) for 190
months. In the following section, we analyse the effects
of one (significant) shock, namely the collapse of the
ERM in 1992. We investigate the parameter changes
before the shock, during the shock, after the shock; and
compare them with the parameters at the end of the
sample (1998:10). These different regression results
then allow us to infer the changes in the gain and in the
phase shift over different periods of time.

4. EMPIRICAL RESULTS

The measurement equation (20) has the following form
for all periods:
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−
(22)

where a
m,ti  is the interest rate of country "a" (Britain,

Germany, or the US) at time t, with a term to maturity
of m years. The derivation of the structural form and all
tests can be found in Richter (2001). In this paper, we
are particularly interested in the parameter values
during the ERM turmoil. The following table gives the
varying parameter values at different points in time -
these are the Kalman filter estimates obtained for (22).



Table 1 Parameter Values for Different Points in Time
Time α1 α2 α3 α4 α5 α6 α7 α8 α9

92:
08

.58 .43 .03 .44 .57 -.27 .67 -.34 -.26

92:
10

.57 .43 .03 .40 .59 -.27 .66 -.32 -.25

93:
01

.57 .44 .03 .39 .59 -.26 .66 -.32 -.26

98:
10

.48 .42 .03 .40 .59 -.29 .68 -.33 -.28

(Priestley, 1996) points out that interpreting a time-
dependent spectrum is not easy. For example, looking
at 1998:10, variations in the base rate will cause cycles
in the interest rates payable on bonds with two years
maturity. Although these cycles may not have died
down before some other shock or base rate change hits
the system, it is still interesting to know what cycles
have been caused in the short term. On the other hand,
if the parameters do eventually converge, then the end
of a cycle will be reached. In that case, the gain (and
the phase angle) can be interpreted as their steady state
or permanent values as usual. 

93:01

92:08

92:10

98:10

92:08

Fig. 1. Gains at Different Points in Time for the UK
Base Rate on the Interest Rate with a Maturity of
Two Years

The calculated gains reported in figure 1, show that
these cycles are stable (the gain "factor" is always less
than unity) - nevertheless, changes in the UK base rate
set up both long and short cycles in short term interest
rates which have amplitudes of nearly half the size of
the original movements in the base rate. However, the
short cycles (less than 6 months in length) are clearly
weaker than the long cycles which have a periodicity of
1 year and up. That shows that UK monetary policy has
long term consequences for monetary conditions, in
addition to any short run or immediate impact.
Of more interest perhaps are the results which show
how these long and short term cyclical consequences
changed in September 1992, around the ERM crisis.

Figure 1 demonstrates that the immediate effect was a
reduction of the long-term value of the gain. However,
the slope was also affected, i.e. shorter cycles gained
weight, relative to longer cycles. That would reflect
greater uncertainty or confusion. Hence, it can be
concluded that the ERM crisis resulted in higher
volatility. However, that effect did not last long: in
January 1993 the long-term gains were higher than ever
before. Nevertheless, short-term cycles were still
important since the gain does not die out at the short
end. Moreover, although a peak is still visible at the
beginning of the curve for 1998:10, it is not as
prominent as before. Monetary policy has therefore
gradually lost efficiency over time, in the sense that it
created greater short term volatility compared to a loss
in its longer term "systematic" effects.

5. CONCLUSION

The main result is therefore that learning affects the
volatility of observed time series. That reflects how
agents try to anticipate what is going on in the market.
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