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Abstract

Based on the algorithm for pattern matching in
a character string, a pattern description language
(PDL) is developed. The compilation of a regular
expression, that conforms to the PDL, creates a non-
deterministic pattern matching machine (PMM) that
can be used as a searching device for detecting se-
quential patterns or functional (statistical) relation-
ships in multidimensional data. As an example, a
chart pattern of ex ante unknown length is encoded
and its occurences are searched for in ..nancial data.

1. Introduction

”The explanation and the prediction of natural
phenomena, be it to forecast the future or to elicit the
hidden laws that underlie unknown dynamics, are the
ultimate aims of science” ([8], p. 267). A relatively
new research area concerned with revealing hidden
relationships and regularities in observed variables is
data mining, a host of methods that aim at extracting
previously unknown and potentially useful informa-
tion from large sets of data. Of particular importance
is the class of data mining problems concerned with
discovery of frequently occurring patterns in sequen-
tial data (time series). Many systems (e.g. ..nancial
markets) that generate sequential data can be seen as
feed-back driven, i.e. their past output is one of their
important inputs. Standard methods of complex sys-
tem forecasting, like kernel regression or neural net-
works, take it into account when trying to estimate
the current and future output values as function-
s” of a (.xed) number of past data. On the other
hand, the present approach does not restrict neither
the relevant past” nor the reaction of the system to
a time window of a ..xed length. It is only important
that the past state of the system and the system”s
reaction to that state frequently generate sequences
of data with some (ex ante unknown) characteristics.
Those characteristics can be encoded as patterns in
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a suitable language and searched for in a time series.
A concise and fexible pattern description language
could be a powerful tool for data mining and would
serve two purposes: on the one hand as a language
in which theories concerned with the underlying data
generating process can be formulated and tested, and,
on the other, as a forecasting instrument for practical
applications.

There is some literature on mining sequential pat-
terns in a database of customer transactions (e.g.
[1],[3]). The approach pursued there can be briety
stated as follows: Given a set of data sequences, the
problem is to discover subsequences that are frequent,
in the sense that the percentage of data sequences
containing them exceeds a user-speci..ed minimum
support. Perhaps the most closely related work to the
present one is Packard [5]. Packard develops a GA to
address the problem of predicting complex systems.
In the simplest form his approach can be stated as
follows (cp. [4]):

2 There is a series of  observations,
f(Xq;y1)::(XT;YT1)9, Wwhere X¢ is the independent
and y; the dependent variable, 1 - t - T. For
example in a stock market prediction task, the
independent variables, Xx;:::Xt, might be the
prices of a particular stock at successive days
and the dependent variables, y;::yt, might be
representing the prices of the same stock at
some time in the future, y¢ = X¢+k:

2 There is a population of conditions on the inde-
pendent variables that are expected to give good
predictions for the dependent variables. Con-
sider for example the following condition,

C =1[(20 - X)) (30 - Xt+1 - 40)™ (Xt+2 - 30)]

which represents all the sets of three successive
days in which C was met.

Packard uses GA to search for conditions that are
good predictors of something. In particular, he looks
for conditions that specify sequences of data points
whose dependent-variable values are close to being
uniform. The ..tness of a condition C is calculated
by running all the data points (x;y) in the training
set through C and collecting corresponding values of
y for each sequence in x that satis..es this condition.



If these values are all close to a particular value Y,
then C is a candidate for a good predictor. We refer
the interested reader to [5] and [4] for details of the
GA used for selection of the ..ttest conditions and for
discussion of the results obtained®. In this paper we
will extend Packard”s ideas and develop a language
for succinct encoding of quite general, nondetermin-
istic conditions or patterns that describe (fragments
of) a multidimensional time series.

2. String search in a time series

The problem of ..nding sequences of data points
of a time series satisfying certain class of conditions
can be recast as a problem of pattern matching in
a character string, commonly used in text editors.
To start with, suppose there is a (unidimensional)
time series X = (X1::XT), that will play the role of
a string, where patterns are searched for. We must
now represent the data points in X as a sequence of
letters of an alphabet. One obvious possibility is to
normalize the values in X, such that all observations
lie, for instance, in the interval [0;1]. This interval is
then divided in subintervals (of constant or variable
length) and to each subinterval a letter” is assigned.

Example 1. In a normalized time series x ten subin-
tervals, [0.0,0.1), [0.1,0.2),..,[0.9,1.0], are created and
the letters A..J are assigned to them. A condition
C = [(0:2 - X¢ < 0:3)™(0:3 - Xg+1 < 0:4)] can
now be expressed as a pattern P = "CD"; with the
meaning, that a match exists, whenever D follows C
in the string x (written in the alphabet composed
of the letters A..J). Searching for the condition C in
time series x is equivalent to looking for the corre-
sponding pattern P in the string X. This is obviously
an instance of a simple pattern matching problem.

It is often desirable to do searching with somewhat
more general description of the pattern. We will con-
sider, in what follows, pattern descriptions made up
of symbols (letters) tied together with the following
three fundamental operators:

-concatenation as used for instance in the pattern
P="CD". If two characters are adjacent in the pat-
tern, then there is a match ia the same two characters
are adjacent in the string.

-or (+) between two letters. There is a match in
either of the letters occurs in the string searched.

-Kleene closure operator (*). If we have the closure
of a symbol, then there is a match ia the symbol
occurs any number of times in the string.

Example 2. With these operators we are able to
do searching for more general, nondeterministic pat-
terns. P = (Ar) + (J=) looks e.g. for sequences (of

1In 1991 Packard left the University of lllinois to help form
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any length) of letters A or sequences (of any length)
of symbols J (sequences of extremely low or extremely
high values in the time series X, written in the alpha-
bet de..ned in example 1).

3. The pattern description
language (PDL)

In this section a de..nition of a language will be
given that allows for a quite general speci..cation of
patterns in multivariate time series?.

Be x a N £ T matrix composed of N vectors,
X1::XN, With T data points each vector. x will be the
space where patterns will be searched for. The nota-
tion Xijr;1 - t - T; means the t™ observation of the
time series Xj; 1 - i - N. For notational convenience
we will sometimes write X instead of x;¢. A pattern
description will consist of sequences of conditions, or-
and closure-operators and parentheses combined in
arbitrarily complicated way. A condition isde..ned as
any expression that involves arithmetical and logical
operators, constants and elements of vectors Xi::Xn
indexed by functions of time index t (user de..ned
functions and variables can also be used). The eval-
uation of an expression as function of t, and possibly
of any other variable, yields the boolean value true or
false. The conditions are veri..ed in the order, they
are found in the pattern description. After evaluat-
ing a condition and before passing to the next one,
the time index is increased by 1. This means, in par-
ticular, that two conditions adjacent in the pattern
description and both containing the term X, will re-
fer to adjacent observations in x. To delimit condi-
tions in a pattern description, they will be enclosed
in square brackets. A pattern encoded using these
rules will be called a regular expression.

Example 3. One of the most useful conditions is one
which encodes the rise or fall of a time series. It is
simply stated as [X¢ < X¢+1] OF [X¢ = X¢+1], respec-
tively. If we look for sequence of inde..nite length
with rising values (that ends when the values stop to
increase), we can use a regular expression of the form,
[Xt < Xe+1] 8 [NOT (Xt < Xe1)]-

To ..nd all pairs of adjacent data points, where the
plot of prices of stock A crosses from below the plot
of an indicator (for instance, the moving average of
prices of A), we write: [Xit < Xot][X1t = Xo¢], Where
X1 is the vector of prices of stock A and x, the vector
of indicator values.

In practical applications some enhancements of the
pattern description language proved useful. First, to
measure the number of occurrences of a condition,

2 At this stage we have to abandon the introductory analogy
to pattern de..nition and pattern searching in character strings.



followed by the closure operator *”, variables I;:l,
were de..ned. During the search for the pattern P in
X, l; contains the number of evaluations of the con-
dition followed by the it" asterisk that yielded true,
i.e. |j measures the length of the fragment of data
in which this condition was met. |;% are set to zero
every time a complete pattern match is found or the
search is started from the beginning of the pattern
(after possible match failure at some position).

Another extension makes possible the suppression
of the time index increase after evaluating an expres-
sion at position indicated by that index. To this end
the expression has to be enclosed in braces.

Finally, to keep track of the length of a match,
the variable ty, which points to the beginning of that
match, is de..ned.

Example 4. [X¢ < Xg+1]8Fly = 7g[X¢ > X¢aq]o flo =
3g searches for a week-long increase followed by a 3
days decrease in values of x. The braces are neces-
sary, because the use of [I; = 7] and [l, = 3] would
return a match of 12 data points instead of the correct
length of 10

The pattern description language represents a tool
for feature extraction of time series. For example the
classical technical trading methods based on indica-
tors like moving average, RSI or momentum indica-
tors can easily be expressed as a condition. Chartist
methods aimed at ..nding graphical patterns in price
plots (head & shoulders, spikes, tags etc.) require
more sophisticated pattern descriptions but, their
stylized shapes can also be described by regular ex-
pressions (a toy example of a simple pattern descrip-
tion of this type is given in Section 5). An inter-
esting characteristic of the PDL comes from the fact
that the length of a pattern has not to be speci..ed ex
ante. Perhaps the most commonly used tools for ex-
tracting information from time series work with data
vectors of ..xed length. Kernel regression, nearest-
neighbor estimators and neural networks are all ex-
amples of procedures that ”learn” output values from
features described by input data composed of ..xed
number of observations. On the other hand, a regu-
lar expression can identify patterns without knowing
at designing time the number of observations that
compose it. In this manner, the same regular ex-
pression can capture qualitatively identical phenom-
ena, which unfold on dicerent time scales (fractal pat-
terns) or stretch over time windows of variable length.
Furthermore, with regular expressions we can test
functional and/or statistical relationships in multi-
dimensional data. Consider e.g. the simple condition
[X3t = sin(X2t)aXy¢]. It recognizes fragments of a mul-
tivariate time series, in which the exact, functional
relation between X;;X, and x3 holds. On the other

hand, [j X¢ T @1 X1 i @Xez2 j< "], will match the
data from an AR(2) process, whenever no realization
of the innovations exceeds ".

4. The pattern matching machine

This section describes briety, how the algorithm
for patter recognition works. This algorithm is based
on a pattern matching machine for text search as de-
scribed for example in [7]. First a regular expression
that encodes a pattern is compiled to a nondetermin-
istic pattern matching machine (PMM). The latter
is implemented as a ..nite state automaton (FSA).
Essentially, every state of the FSA represents a con-
dition or an operator (+” or ”*”) that are found in
the pattern description. The machine has a unique
initial state and a unique ..nal state. When started
out in the initial state, the machine should be able to
recognize any fragment of the matrix X, satisfying the
pattern description, by reading values of x indexed
by functions of t and changing state according to its
rules, ending up in the ..nal state. What makes the
machine nondeterministic are some states which can
point to dicerent successor states (for example, the
state which corresponds to the ”or”-operator points
to 2 successor states that check the expressions in
the left and right operand, respectively). Intuitively,
the matching algorithm works as follows: the PMM
constructed moves forward along the time axis in dis-
crete time steps, verifying at each step the condition
encoded in its current internal state and changing this
state according to the result of the veri..cation. This
result depends on the position in the matrix x (in-
dicated by the time index t), where the veri..cation
takes place. The PMM can travel from a state A to
a state B, pointed to by state A, whenever the evalu-
ation of the state B yields the value true. If no such
state exists, the machine returns to the initial state.
If a state that points to the ..nal state is eventually
reached, a match has been found.

5. An application

The PDL developed in the previous sections can
be applied to a variety of areas. Here an example of
an application to technical analysis of price data will
be given. A wide variety of theoretical and empirical
models have been proposed to explain why technical
trading is widespread in ..nancial markets (cp. for
instance references in [9] and [2]). Without entering
the discussion between chartists and fundamentalists,
we will search for patterns that are supposed to show
up in plots of prices and are used by chartist commu-
nity to predict the future behavior of markets. Con-
sider, for instance, the well-known chartist technique
of calculation of price targets based on the golden
ratio” [6]. In ..gure 1 the price target P3 is given as



P3=P2j (P2 jP1l)o2618 (the c%rlstant 2.618 is
closely related to the “golden ratio” ==L 7, 1:618).

F3

Figure 1. The 2.618 calculation

With the pattern description P, de..ned below, we
will look for sequences (of inde..nite length) of obser-
vations from New Yorker Stock Exchange that verify
the stylized version of price targeting as shown in
Fig.1:

P = [X¢ < Xe+1] @ [Xe = Xea1] 2 [Xe < Xer1] @ FXe
X+ 19F((Xeg+1y +1, F Keg+1, T Xeg+1,+1,)92:618) ¥4 X )N
PRl PR ERl PYV

The ..rst part of this pattern de..nition, [x; <
Xe+1] B[Xe > Xer1] 0 [Xe < Xe1] 8 FXe . Xe+10, Stands
simply for “rising followed by falling followed by
longest, rising sequence of data points” (fx¢ > X¢+10
marks the end of the last rising sequence). The sec-
ond part (composed of the last expression in braces)
is decisive in selecting only those fragments of data
that satisfy the golden ratio rule”. Here, tg is the
time index of the ..rst, t, of the last observation in a
fragment of data matched, ”%” is a user de..ned op-
erator meaning “approximately equal” and Iq;l5; 13
contain the lengths of the three sequences de..ned
in the .rst part. Consequently, Xt,+i, stands for
P1, Xtg+1,+1, for P2 and X¢ (= Xgg+1,+1,+15) for P3.
Ktg+ly+1, + Keg+1, T Xg+ly+1,) 82:618) ¥4 X¢ checks,
if the price target has been (approximately) reached.
Conditions I; > I, and I3 > I, specify that the two
rising sequences have to be longer than the falling se-
quence between them and capture the typical shape
of a rising market.

Fig. 2 shows matches of the pattern P that have
been found in the data from NYSE between 15 Octo-
ber 1997 and 10 February 1998 (80 data points). The
two ..rst matches are 8 and the last match 7 observa-
tions long®

— o malches fownd

151

i r \- t
| '-.I et / ‘-.__‘. /J_ F
1 " W,
\..I
| [\/ |

6. Conclusions and further research

Based on the algorithm for pattern matching in a
character string, a pattern description language has
been developed. The compilation of a regular expres-
sion, that conforms to the PDL, creates a PMM that
can be used as a searching device for detecting pat-
terns or functional (statistical) relationships in mul-
tidimensional data .

This is just the ..rst step on the way to isolate
”niches of predictability” in data streams. It remains
the non trivial task of ..nding patterns that, at the
same time, can be formulated as a regular expres-
sion and are good predictors of something. The fur-
ther work will therefore concentrate on two issues:
First, on encoding of empirically observed patterns
(e.g. the patterns commonly used in technical analy-
sis) and verifying their predictive power. Secondly, it
is planned to use GA to build up regular expressions
and to run evolutionary selection in order to deter-
mine the ..ttest among them. Regular expressions
are just strings of symbols that conform to a simple
grammar. A GA, like the one used in [8], can build up
such expressions from building blocks and then break
up the strings again. The natural selection process
causes suitable blocks to survive and combine among
themselves while useless parts disappear. The "use-
fulness” or ..tness of a pattern can be assessed, for
instance, by the variance of a time series, calculated
in a suitable chosen time window after the occurrence
of that pattern.
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