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ABSTRACT

In this study, the performance of ordinal GA-based trading strategies is
evaluated under six classes of time series model, namely, thelinear ARMA
model, the bilinear model, the ARCH model, the GARCH model, the
threshold modeland thechaotic model. The performance criteria employed
are the winning probability, accumulated returns, Sharpe ratio and luck
coefficient. Asymptotic test statistics for these criteria are derived. The
hypothesis as to the superiority of GA over a benchmark, say, buy-and-hold,
can then be tested using Monte Carlo simulation. From this rigorously-
established evaluation process, we find that simple genetic algorithms
can work very well in linear stochastic environments, and that they also
work very well in nonlinear deterministic (chaotic) environments. However,
they may perform much worse in pure nonlinear stochastic cases. These
results shed light on the superior performance of GA when it is applied
to the two tick-by-tick time series of foreign exchange rates:EUR/USD
andUSD/JPY.
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2 SHU-HENG CHEN AND CHUEH-YUNG TSAO

1. INTRODUCTION

Genetic algorithms (GAs) have been developed byHolland (1975)to mimic
some of the processes observed in natural evolution. They are based on the
genetic processes of natural selection which have become widely known as
the “survival of the fittest” since Darwin’s celebrated work. In recent years, GAs
have been successfully applied to find good solutions to real-world problems whose
search space is complex, such as the traveling salesman problem, the knapsack
problem, large scheduling problems, graph partitioning problems, and engineering
problems, too.1

In finance,Bauer (1994)provides the first application of GAs to discover trading
strategies. Since then, GAs have gradually become a standard tool for enhancing
investment decisions.2 While many studies have supported the effectiveness of
GAs in investment decisions; however, the foundation of these applications has
not been well established. The thing that concerns us, therefore, is therobustness
of these empirical results. For example, if GAs are effective for the investment in
one market at one time, would the same result apply to the same market or different
markets at different times? It is for the purpose of pursuing this generality, that we
see the necessity of building a solid foundation upon which a rigorous evaluation
can be made.

In this paper, a statistical approach to testing the performance of GA-based
trading strategies is proposed. Instead of testing the performance of GAs in specific
markets as a number of conventional studies already have, we are interested in a
market-independence issue:whatmakesGAs successful andwhatmakes themnot?
Since the data to which GAs are applied consist of financial time series, the question
can be rephrased as follows: what are thestatistical propertieswhich distinguish
a successful application of GA from an unsuccessful one? One way to think of the
question is to consider two markets following different stochastic processes. One
market follows stochastic process A, and the other stochastic process B. If GAs
can work well with stochastic process A, but not B, then the successful experience
of GAs in the first market is certainly not anticipated in the second market.

Having said that, this paper follows the following research methodology.
First, some financially-related stochastic processes are singled out as the
standard scenarios (testbeds) to test the performance of GA. Second, appropriate
performance criteriaare used to evaluate the performance of the GA over
these testbeds. Third, the associatedasymptotic statistical testsare applied to
examine whether the GAs perform significantly differently as opposed to a familiar
benchmark. By this procedure, we may be able to distinguish the processes in
which the GA has competence from others in which it does not. Once the critical
properties are grasped, we can then apply the GA to the financial time series whose
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Statistical Analysis of Genetic 3

stochastic properties are well-known, and test whether the GA behaves consistently
with what we have learned from the previous statistical analysis.

By means of the procedure established in this paper, we hope to push forward the
current applications of GAs or, more generally, computational intelligence (CI),
toward a more mature status. After all, whether GA will work has been asked too
intensely in the literature. The very mixed results seem to suggest that we look at
the same question at a finer level and start to inquire why it works or why it doesn’t.
We believe that there are other ways to do something similar to what we propose
in this paper.3 We do not exclude these possibilities. In fact, little by little, these
efforts will eventually enable GA or CI tools to rid themselves of their notoriety
for beingblackboxes.

The rest of the paper is organized as follows.Section 2introduces a specific
version of GA, referred as to the ordinary GA (OGA), used in this paper.Section 3
will detail the classes of stochastic processes considered in this paper and the
reasons for this choice.Section 4reviews the four performance criteria and
establishes their associated asymptotic test.Section 5sets up the Monte Carlo
simulation procedure.Section 6summarizes and discusses the actual performance
of the GA over the artificial data, whereas the counterpart over the real data is
given inSection 7. Section 8concludes this paper.

2. TRADING WITH GAS

A trading strategy gcan be formally defined as a mapping:

g: � → {0,1}. (1)

In this paper, is assumed to be a collection offinite-length binary strings.
This simplification can be justified by thedata-preprocessing procedurewhich
transformsthe raw data intobinarystrings. Therangeof the mappingg is simplified
as a 0–1 action space. In terms of simplemarket-timingstrategy, “1” means to “act”
and “0” means to “wait.” Here, for simplicity, we are only interested inday trading.
So, “act” means to buy it at the opening time and sell it at the closing time.

Like all financial applications of GA, the start-off question is therepresentation
issue. In our case, it is about how to effectively characterize the mappingg by
a finite-length binary string, also known as achromosomein GA. Research on
this issue is very much motivated by the format of existing trading strategies, and
there are generally two approaches to this issue. The first approach, called the
decision treeapproach, was pioneered byBauer (1994). In this approach each
trading strategy is represented by a decision tree. Bauer used bit strings to encode
these decision tress, and generated and evolved them with genetic algorithms. The
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4 SHU-HENG CHEN AND CHUEH-YUNG TSAO

second approach, called thecombinatoricapproach, was first seen inPalmer et al.
(1994). The combinatoric approach treats each trading strategy as one realization
from

(
n
k

)
combinations, wherel ≤ k ≤ n, and n is the total number of given

trading rules. Using GAs, one can encode theinclusion or exclusionof a
specific trading rule as a bit and the whole trading strategy as a bit string
(chromosome).

Both approaches have very limited expression power. While various
enhancements are possible, they all lead to non-standard GAs in the sense that
their representations are not based on finite-length binary strings. Since the main
focus of this paper is to illustrate a statistical foundation of the GA, we try to
avoid all unnecessary complications, including the use of those non-standard
representations. In other words, at this initial stage, we only make the illustration
with the ordinary genetic algorithm (OGA), and, for that reason, Bauer’s simple
decision- tree representation is employed. However, it is clear that the statistical
foundation presented in this paper is also applicable to GAs with different
representations.

Bauer’s decision-tree representation corresponds to the following general form
of trading strategies

(IF (CONDS)
THEN (BUY AND SELL [DAY TRADING ])
ELSE (WAIT)).

The CONDS appearing in the trading strategy is apredicate. CONDS itself is a
logical composition of several primitive predicates. In this paper, all CONDSs
are composed of three primitive predicates. Each primitive predicate can be
represented as:

Cond(Z) =
{

1(True), if Z ⊕ a,

0(False), if Z ⊕ a
(2)

whereZ, in our application, can be considered as a time series of returns indexed
by t, e.g.rt−1, rt−2, etc., anda can be regarded as athresholdor critical value
(a∈ ℵ, a set of integers).⊕ ∈ {≥, <} and�= {≥,<}−⊕. An example of CONDS
with three primitive predicates is

CONDS(r t−1, r t−2, r t−3) = Cond(r t−1) ∨ (Cond(r t−2) ∧ Cond(r t−3)), (3)

where “∨” refers to the logic operator “OR,” and “∧” refers to “AND.”
Following Bauer, we use a 21-bit string to encode a trading strategy of this

kind. Details can be found in the Appendix (Section A.1). LetG be the collection
of all trading strategies encoded as above. Then the cardinality ofG is 221
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Statistical Analysis of Genetic 5

(#(G) = 221), which is more than 2 million. The search over the spaceG can be
interpreted as anumericalalgorithm as well as amachine learningalgorithm for
solving a mathematical optimization problem. Without losing generality, consider
the trading strategy with onlyoneprimitive predicate,

Cond(Z) =
{

1(True), if rt−1 ≥ a,

0(False), if rt−1 < a.
(4)

Suppose the stochastic process ofrt is strictly stationaryand denote the joint
density ofrt−1 and rt by f(rt−1, rt). In this simplest case, a trading strategy is
parameterized by a single parametera. Denote it byga. Then the optimal strategy
ga∗ can be regarded as a solution to the optimization problem

max
a

E (ln(πn)), (5)

where

�n =
n∏
t=1

(1 + r t ) (6)

is the accumulated returns ofga overn consecutive periods. It can be shown that
the solution to the problem (5) is

a∗ = F−1(0), if F−1(0) exists. (7)

where

F(a) =
∫ ∞

−∞
ln(1 + r t )f(a, r t ) drt (8)

To solveEq. (7), one has to know the density function off(rt−1, rt), which can
only be inferred from the historical data. In this case, GAs are used as amachine
learning tool to obtain an estimate of this joint density. Also, to arrive at a value
for a∗, we have to know the inverse function ofF(a), which in general can only be
solved numerically. In this case, GAs are used as anumerical techniqueto solve this
problem. Therefore, in the trading-strategy problem, GAs are used simultaneously
as anumericaltechnique and amachine learningtool to determine the critical
parametera∗. In the general case when CONDS has more than one predicate, the
mathematical formulation of the problem can become very complicated, but the
dual role of GAs remains unchanged. This interpretation justifies the mathematical
significance of using GAs to discover the trading strategies.

The GA employed in this paper is a very basic version, which we shall call
the ordinary genetic algorithm (OGA). In this study, we only focus on the OGA.
Nonetheless, in a further study, it will be interesting to see whether a better result
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6 SHU-HENG CHEN AND CHUEH-YUNG TSAO

can be expected from advanced versions of GAs. The technical details of the OGA
are given in the Appendix (Section A.2).

3. TESTBEDS

There are six stochastic processes used to evaluate the performance of GAs. They
are:

(1) the linear stationary time series (also known as the Auto-Regressive and
Moving-Average (ARMA) processes),

(2) the bilinear processes,
(3) the Auto-Regressive Conditional Heteroskedasticity (ARCH) processes,
(4) the Generalized ARCH (GARCH) processes,
(5) the threshold bilinear processes, and
(6) the chaotic processes.

All of the six classes have been frequently applied to modeling financial time
series. Linear ARMA processes are found to be quite useful inhigh-frequency
financial data(Campbell et al., 1997; Roll, 1984). Bilinear processes are often
used to model the nonlinear dependence in both low- and high-frequency data
(Drunat et al., 1998; Granger & Andersen, 1978). The ARCH processes are the
most popular econometric tools for capturing the nonlinear dependence in the form
of the second moment (Bollerslev et al., 1992). The threshold processes are good
for asymmetric series and bursts (Tong, 1990). Finally, chaotic time series have
been a topic of interest in finance over the last decade (Brock et al., 1991). Some
details of these classes of processes are briefly reviewed fromSections 3.1 to 3.6.

These six processes are general enough to cover three important classes
of dynamic processes, namely, linear stochastic processes, nonlinear stochastic
processes, and nonlinear deterministic processes. This enables us to analyze the
GA’s performance in terms of some generic properties. For example, would it be
easier for the GA to perform better with the linear (stochastic) process than with
the nonlinear (stochastic) process, and with the deterministic (nonlinear) processes
than with the stochastic (nonlinear) processes? The answers to these questions can
certainly help us to delineate the effectiveness of GAs.

3.1. Linear Time Series

The linear time series model, also known as theAuto-Regressive and Moving-
Average(ARMA(p,q)) model, was initiated byBox and Jenkings (1976). It has the
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Table 1. Data Generating Processes – ARMA

Code Model Parameters

�1 �2 �1 �2

L-1 ARMA(1,0) 0.3 0 0 0
L-2 ARMA(1,0) 0.6 0 0 0
L-3 ARMA(2,0) 0.3 −0.6 0 0
L-4 ARMA(2,0) 0.6 −0.3 0 0
L-5 ARMA(0,1) 0 0 0.3 0
L-6 ARMA(0,1) 0 0 0.6 0
L-7 ARMA(0,2) 0 0 0.3 −0.6
L-8 ARMA(0,2) 0 0 0.6 −0.3
L-9 ARMA(1,1) 0.3 0 −0.6 0
L-10 ARMA(1,1) 0.6 0 −0.3 0
L-11 ARMA(2,2) 0.4 −0.4 0.4 0.4
L-12 ARMA(2,2) 0.6 −0.3 −0.3 −0.6
L-13 White Noise Gaussian(0, 0.1)

following general form:

r t = � +
p∑
i=1

�i r t−i +
q∑

j=1

�j�t−j + �t , (9)

where�t
iid∼N(0,�2). In all Monte Carlo simulations conducted in this paper,�

is set to 0 and�2 is set to 0.01. Thirteen ARMA(p,q) models were tested. The
parameters of these thirteen ARMA(p,q) models are detailed inTable 1. Among
these thirteen models, there are four pure AR models (L1–L4), four pure MA
models (L5–L8), and four mixtures (L9–L12). The last one is simplyGaussian
white noise.

3.2. Bilinear Process

The second class of stochastic processes considered in this paper is thebilinear
process(BL), which was first studied byGranger and Anderson (1978), and
subsequently bySubba-Rao (1981)and Subba-Rao and Gabr (1980). The BL
process is constructed simply by adding the cross-product terms ofrt−i and�t−j

to a linear ARMA process so it can be regarded as a second-order nonlinear time
series model. In other words, if the parameters of all cross-product terms are zero,
then the BL process can be reduced to the ARMA process.
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8 SHU-HENG CHEN AND CHUEH-YUNG TSAO

Table 2. Data Generating Processes – Bilinear.

Code Model Parameters

�1 �1 �11 �12 �21 �22

BL-1 BL(0,0,1,1) 0 0 0.6 0 0 0
BL-2 BL(0,0,1,1) 0 0 0.3 0 0 0
BL-3 BL(0,1,1,2) 0 0.3 0 0.6 0 0
BL-4 BL(0,1,1,2) 0 0.6 0 0.3 0 0
BL-5 BL(1,0,2,1) 0.3 0 0 0 0.6 0
BL-6 BL(1,0,2,1) 0.6 0 0 0 0.3 0
BL-7 BL(1,1,2,2) 0.3 0.3 0 0 0 0.3
BL-8 BL(1,1,2,2) 0.3 0.3 0 0 0 0.6

The general form of a bilinear process, BL(p, q, u, v) is:

r t = � +
p∑
i=1

�i r t−i +
q∑

j=1

�j�t−j +
u∑

m=1

v∑
n=1

�mnr t−m�t−n + �t , (10)

where�t
iid∼N(0,�2). Eight specific bilinear processes are employed for our Monte-

Carlo simulation. In all of these processes,� = 0 and�2 = 0.01. Other parameters
are given inTable 2. Notice that the first two (BL-1, BL-2) do not have the linear
component, and only the nonlinear cross-product terms are presented.

3.3. ARCH Processes

The third class of models considered is theAuto-Regressive Conditional
Heteroskedasticity(ARCH)processintroduced byEngle (1982), which has played
a dominant role in the field of financial econometrics. The ARCH process is mainly
used to replicate the three stylized facts of financial time series, namely, the fat-
tailed marginal distribution of returns, the time-variant volatility of the returns,
and clustering outliers. Consequently, unlike the ARMA process, ARCH mainly
works only on the second moment, rather than the first moment. Nonetheless, by
combining the two, one can attach an ARMA(p, q) process with an ARCH (q′)
process, called the ARMA(p, q)-ARCH(q′) process. Its general form is

r t = � +
p∑
i=1

�i r t−i +
q∑

j=1

�j�t−j + �t (11)

�t |�t−1 ∼ N(0,�2
t ) (12)
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Table 3. Data Generating Processes – ARCH.

Code Model Parameters

ω �1 �2 �1 �1

AH-1 AR(0)-ARCH(1) 0.005 0.3 0 0 0
AH-2 AR(0)-ARCH(1) 0.005 0.6 0 0 0
AH-3 AR(0)-ARCH(2) 0.001 0.3 0.5 0 0
AH-4 AR(0)-ARCH(2) 0.001 0.5 0.3 0 0
AH-5 AR(1)-ARCH(1) 0.005 0.6 0 0.6 0
AH-6 AR(1)-ARCH(2) 0.001 0.5 0.3 0.6 0
AH-7 MA(1)-ARCH(1) 0.005 0.3 0 0 −0.6

�2
t = 	 +

q′∑
m=1

�m�2
t−m (13)

where	 > 0,�m ≥ 0,m = 1, . . . , q′ and�t denotes the information set available
at timet.

Seven ARCH processes are included in this study. They share a common value
of �, which is 0. Values of other parameters are detailed inTable 3. Notice that the
first four processes do not have linear signals (�1 = 0, �1 = 0), whereas the fifth
and the sixth processes are associated with an AR(1) linear signal (�1 = 0.6), and
the last process has a MA(1) linear signal (�1 = −0.6).

3.4. GARCH Processes

A generalized version of the ARCH process, known as thegeneralized ARCH
(GARCH) process, was introduced byBollerslev (1986). GARCH generalizes
Engle’s ARCH process by adding additional conditional autoregressive terms. An
ARMA(p, q) process with a GARCH error term of order(p′, q′), ARMA(p, q)-
GARCH(p′, q′), can be written as

r t = � +
p∑
i=1

�i r t−i +
q∑

j=1

�j�t−j + �t (14)

�t |�t−1 ∼ N(0,�2
t ) (15)

�2
t = 	 +

q′∑
m=1

�m�2
t−m +

p′∑
n=1


n�2
t−n (16)
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10 SHU-HENG CHEN AND CHUEH-YUNG TSAO

Table 4. Data Generating Processes – GARCH.

Code Model Parameters


1 
2 �1 �2 �1 �1

GH-1 AR(0)-GARCH(1,1) 0.3 0 0.5 0 0 0
GH-2 AR(0)-GARCH(1,1) 0.5 0 0.3 0 0 0
GH-3 AR(0)-GARCH(1,2) 0.2 0 0.2 0.4 0 0
GH-4 AR(0)-GARCH(1,2) 0.2 0 0.4 0.2 0 0
GH-5 AR(0)-GARCH(2,1) 0.2 0.4 0.2 0 0 0
GH-6 AR(0)-GARCH(2,1) 0.4 0.2 0.2 0 0 0
GH-7 AR(1)-GARCH(1,1) 0.5 0 0.3 0 0.6 0
GH-8 AR(1)-GARCH(1,2) 0.2 0 0.4 0.2 0.6 0
GH-9 AR(1)-GARCH(2,1) 0.4 0.2 0.2 0 0.6 0
GH-10 MA(1)-GARCH(1,1) 0.3 0 0.5 0 0 −0.6

with 	 > 0,�m = 0 and
n ≥ 0,m = 1, . . . ,q′,n = 1, . . . ,p′. Again,�t denotes
the information set available at timet.

Nine GARCH processes are attempted. In all cases,u = 0 and 	 = 0.001.
Specifications of other parameters are given inTable 4. The 7th, 8th and 9th models
(GH-7, GH-8, GH-9) are AR(1) processes combined with a GARCH error term,
whereas the last model (GH-10) is a MA(1) process plus a GARCH error term.
For the remaining six, there are no linear signals but just pure GARCH processes.

3.5. Threshold Processes

Tong (1983)proposed athreshold autoregressive(TAR) model which is of the
form,

r t = �(l ) +
p∑
i=1

�
(l )
i r t−i + �t (17)

if rt−d ∈ �1 (l = 1,2, . . . , k), where�i ∩ �j = ∅ (i , j = 1, . . . , k) if i · j and
∪k
l=1�l = R. The parameterk represents the number of thresholds andd is called

the threshold lag (or delay parameter). Producing various limit cycles is one of the
important features of the threshold models, and the TAR process can be applied to
the time series which has an asymmetric cyclical form.

The threshold idea can be used as a module to add and to extend other processes.
Here, we apply the threshold idea to the bilinear process (10), and extend it to a
threshold bilinear (TBL) process. Let us denote a bilinear process (BL(p, q, u, v))
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Table 5. Data Generating Processes – Threshold Processes.

Code Model Parameters

�
(1)
1 �

(2)
1 �

(1)
2 �

(2)
2 �

(1)
1 �

(2)
1 �

(1)
11 �

(2)
11 �

(1)
12 �

(2)
12 �

(1)
21 �

(2)
21 �

(1)
22 �

(2)
22

TH-1 TBL(2;1,0,0,0) 0.3 0 0 0 0 0 0
0.6 0 0 0 0 0 0

TH-2 TBL(2;1,1,0,0) 0.3 0 0.6 0 0 0 0
0.6 0 0.3 0 0 0 0

TH-3 TBL(2;0,0,1,1) 0 0 0 0.3 0 0 0
0 0 0 0.6 0 0 0

TH-4 TBL(2;1,1,2,2) 0.3 0 0 0 0 0.6 0
0 0 0.3 0 0.6 0 0

TH-5 TBL(2;2,0,2,2) 0 0 0 0.3 0 0 −0.6
0.3 –0.6 0 0 0 0 0

Note: The lag periodd is set to 1 andµ(1) = µ(2) = 0 in all of the models. In addition,
�1 ≡ {r t−d |r t−d ≥ 0} and�2 ≡ {r t−d |r t−d < 0}.

with k-thresholds by TBL(k, p, q, u, v), which can be written as

r t = �(l ) +
p∑
i=1

�
(l )
i r t−i +

q∑
j=1

�
(l )
j �t−j +

u∑
m=1

v∑
n=1

�(l )
mnr t−m�t−n + �t (18)

It is trivial to show that TBL can be reduced to a threshold ARMA if�
(l )
mm = 0

for all m, n and l. Table 5lists the five TBL processes considered in this paper.
The motives for choosing these five series will become clear when we come to
Section 6.4.

3.6. Chaotic Processes

All of the above-mentioned processes are stochastic. However, the time series
that appear to be random does not necessary imply that they are generated from
a stochastic process. Chaotic time series as an alternative description of this
seemingly random phenomenon was a popular econometrics topic in the 1990s.
While it is hard to believe that a financial time series is just a deterministic chaotic
time series, the chaotic process can still be an important module for the working
of a nonlinear time series. Five chaotic processes are employed in this study.

C-1: Logistic Map

r t = 4r t−1(1 − r t−1), r t ∈ [0,1] ∀t (19)
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C-2: Henon Map

r t = 1 + 0.3r t−2 − 1.4r2
t−1, r−1, r0 ∈ [−1,1] (20)

C-3: Tent Map {
rt = 2rt−1, if 0 ≤ rt−1 < 0.5,
rt = 2(1− rt−1), if 0.5 ≤ rt−1 ≤ 1.

(21)

C-4: Poly. 3

r t = 4r3
t−1 − 3r t−1, r t ∈ [−1,1] ∀t (22)

C-5: Poly. 4

r t = 8r4
t−1 − 8r2

t−1 + 1, r t ∈ [−1,1] ∀t (23)

The series generated by all these stochastic processes (fromSections 3.1 to 3.6)
may have a range which does not fit the range of the normal return series. For
example, the process (19) is always positive. As a result, a contracting or a
dilating map is needed. We, therefore, contract or dilate all series linearly and
monotonically into an acceptable range, which is (−0.3, 0.3) in this paper.

4. PERFORMANCE CRITERIA
AND STATISTICAL TESTS

Basic performance metrics to evaluate the performance of trading strategies have
long existed in the literature. FollowingRefenes (1995), we consider the following
four main criteria:returns, thewinning probability, theSharpe ratioand theluck
coefficient. In this paper, the performance of the trading strategies generated by
the ordinal genetic algorithm (OGA) is compared with that using a benchmark
based on these four criteria. To make the evaluation process rigorous, performance
differences between the OGA-based trading strategies and the benchmark are
testedstatistically. Tests for returns and winning probability are straightforward.
Tests for the Sharpe ratio are available in the literature (see, for example,Jobson
and Korkie (1981)andArnold (1990)). However, tests for the luck coefficient are
more demanding, and it has not been derived in the literature. In this paper, we
develop asymptotic tests for the luck coefficient.

4.1. Returns

Let X andY be the accumulated returns of an one-dollar investment by applying
OGA-based trading strategies and the benchmark strategy, say, the buy-and-hold
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(B&H) strategy, respectively. Assume thatE(X) = � andE(Y) = ν. Let us estimate
the � andν by the respectivesample averagē�2 and �̄1 via the Monte Carlo
simulation. Then one can test the null

H0: �−n ≤ 0, (24)

with the following test statistic

Z� =
√
n(�̄2 − �̄1)

(�̂2 + �̂2 − 2�̂�̂�̂)1/2
, (25)

where�̂2 and�̂2 are the sample variances ofX andY, �̂ is the sample correlation
coefficient ofXandY, andn is the sample size (the number of ensembles generated
during the Monte Carlo simulation). By using the central limit theorem, it is
straightforward to show thatZ� is an asymptotically standard normal test.

While testing the difference between ¯�2 and�̄1 can tell us the performance of
the GA as opposed to a benchmark, it provides us with nothing more than a point
evaluation. In some cases, we may also wish to know whether the superiority, if
shown, can extend to a large class of trading strategies. A common way to address
this question is to introduce anomniscienttrader. Let us denote the respective
accumulated returns earned by this omniscient trader as ¯�∗.4 Now, subtracting ¯�1

from �̄∗ gives us the total unrealized gain, if we only know the benchmark. Then,
the ratio, also called theexploitation ratio,

�̃ ≡ �̄2 − �̄1

�̄∗ − �̄1
(26)

is a measure of the size of those unrealized gains which can be exploited by using
a GA. Based on its formulation, ˜� may be positive, negative or zero, but has one as
its maximum. If�̃ is not only positive, but is also close to one, then its superiority
is not just restricted to the benchmark, but may also have global significance.

In addition to the accumulated gross returns, one can also base the comparison on
the excess return by simply subtracting one from the accumulated gross returns. A
relative superiority measure of the GA as opposed to the benchmark can be defined
accordingly as

�̇ ≡ (�̄2 − 1) − (�̄1 − 1)

|�̄1 − 1| = �̄2 − �̄1

|�̄1 − 1| . (27)

4.2. Winning Probability

The mean return can sometimes be sensitive to outliers. Therefore, it is also
desirable to base our performance criterion on some robust statistics, and the
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winning probabilityis one of this kind. The winning probability basically tells us,
by randomly picking up an ensemble from one stochastic process, the probability
that the GA will win. Formally, let (X,Y) be a random vector with the joint density
functionh(x, y). Thenpw, defined as follows, is called thewinning probability.

pw = Pr(X > Y) =
∫ ∫

x>y

h(x, y) dxdy (28)

Based on the winning probability, we can say thatX is superiorto Y if pw > 0.5,
andinferior toY if pw < 0.5, andequivalenttoY if pw = 0.5. The null hypothesis
to test is

H0: pw ≤ 0.5 (29)

The rejection of (29) shows the superiority of the GA over the benchmark. An
asymptotic standard normal test of (29) can be derived as

Zw =
√
n(p̂w − 0.5)√
p̂w(1 − p̂w)

(30)

wherep̂w is the sample counterpart ofpw.

4.3. Sharpe Ratio

One criterion which has been frequently ignored by machine learning people in
finance is therisk associated with a trading rule. Normally, a higher profit known
as therisk premiumis expected when the associated risk is higher. Without taking
the risk into account, we might exaggerate the profit performance of a highly risky
trading rule. Therefore, to evaluate the performance of our GA-based trading rule
on a risk-adjusted basis, we have employed the well-knownSharpe ratioas the
third performance criterion (Sharpe, 1966). The Sharpe ratios is defined as the
excess return divided by a risk measure. The higher the Sharpe ratio, the higher
the risk-adjusted return.

Formally, letX ∼ f(x) with E(X) = � and Var(X) = �2. Then the value

s = �−c

�
(31)

is called theSharpe ratioof Xwherec is one plus a risk-free rate. Furthermore, to
compare the performance of two trading strategies in the Sharpe ratio, letX ∼ f(x)
andY ∼ g(y) with E(X) = µ, E(Y) = ν, Var(X) = �2 and Var(Y) = �2. Then the
difference

d = �−c

�
− ν − c

�
(32)
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is called theSharpe-ratio differentialbetweenX andY. Accordingly,X is said to
have ahigher(lower) Sharpe ratio relative toY if d > 0 (d < 0). Otherwise,Xand
Yare said to beidentical in terms of the Sharpe ratio.

Jobson and Korkie (1981)derive an asymptotic standard normal test for the
Sharpe-ratio differential. However, we do not follow their Taylor expansion
formulation. Instead, by applyingSlutzky’s theorem, theCramer theorem, and
themultivariate central limit theorem, a standard normal test for the null

H0: d ≤ 0 (33)

can be derived as follows:

Zd =
√
n(d̂ − d)

	̂1
, (34)

where

d̂ = �̄2 − c

�̂
− �̄1 − c

�̂
, (35)

and

	̂2
1 = 2(1− �̂) + (�̄2 − c)

��
(�̄ − ̂) + (�̄1 − c)

�̂
(�̂ − �̂)

− (�̄2 − c)(π̄1 − c)

�̂�̂

(�̂ − 1)

2
+ (�̄2 − c)2

�̂2

(�̂ − 1)

4
+ (�̄1 − c)2

�̂

(�̂ − 1)

4

(36)

̂, �̂, �̂ and�̂ are the corresponding sample third and fourth moments ofX andY,
whereas ˆ�, �̂, �̂, �̂ are the corresponding sample mixed moments betweenX and
Y (also expressed asEq. (37)).
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4.4. Luck Coefficient

The largest positive trade can be very important if it makes a significant contribution
towards skewing the average profit dramatically. When this happens, people can
be severely misled by the sample mean. As a solution to this problem, thetrimmed
meanis often used in statistics. A similar idea in finance is known as theluck
coefficient. The luck coefficientlε is defined as the sum of the largest 100% returns,
� ∈ (0,1), divided by the sum of total returns. In a sense, the larger the luck
coefficient, the weaker the reliability of the performance. The luck coefficient, as
a performance statistic, is formally described below.

Let {X1, X2, . . . , Xm} be a random sample fromf(x) with E(X) = �. The order
statistic of this random sample can be enumerated asX(1), X(2), . . . , X(m), where
X(1) ≤ X(2) ≤ . . .≤ X(m). Then, from theorder statistics, it is well known that

X(m) ∼ g(x(m)) = m[F(x(m))]
m−1f(x(m)) (38)

whereF is thedistribution functionof X. Furthermore, letXi
iid∼f(x), i = 1, 2,. . . ,

mandX(m) ∼ g(x(m)) as described above withE(X(m)) = �. Then the ratio

l� = ���

�
(39)

is called theluck coefficientofXwhere� = 1
m . In this study, is set to 0.05. Here we

want to see how much of the contribution to mean returns comes from the largest
5% of trades.

For making a comparison between strategies, theluck-coefficient ratiois defined
as follows. LetXi

iid∼fx(x) with E(X) = �, Yi
iid∼fy(y) with E(Y) = ν, i = 1, 2,. . . ,

mandX(m) ∼ gx(x(m)) with E(X(m)) = �,Y(m) ∼ gy(y(m)) with E(Y(m)) = ν. Then
the ratio

r� = �ν�/ν

���/�
= �ν�

ν��

(40)

is called theluck-coefficient ratioof X relative toYwhere� = 1
m . Based on this

definition,X is said to have alower (higher) luck coefficient relative toY if r > 1
(r < 1). Otherwise,XandYare said to beidenticalin terms of the luck coefficient.
However, to the best of our knowledge, the respective asymptotic standard normal
test for the null

H0: r ≤ 1 (41)

is not available in the literature. Nevertheless, similar to the derivation of the test
of the Sharpe ratio (34), it is not hard to cook up such a test by usingSlutzky’s
theorem, theCramer theorem, and themultivariate central limit theorem, which



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Statistical Analysis of Genetic 17

is given inEq. (42)

Zr =
√
n(r̂� − r�)

	̂2
, (42)

where

r̂� = �̄2�̄1
m

�̄1�̄2
m
, (43)

and

	̂2
2 = ε(�̄1

m)2

(�̄1)2(�̄2
m)2

(
�̂2 + (�̄2)2�̂2

(�̄2)2

)
+ (�̄2)2

(�̄1)2(�̄2
m)2

(
�̂2

� + (�̄1
m)2�̂2

�

(π̄2
m)2

)

− 2�̄2�̄1
m�̂

(�̄1)3(�̄2
m)2

(ε�̄1
m�̂�̂ + �̄2�̂�̂�) − 2�̄2�̄1

m�̂�

(�̄1)2(�̄2
m)3

(�̄1
m�̂ι̂+ �̄2�̂��̂)

+ 2�̄2�̄1
m

(�̄1)2(�̄2
m)2

(
�̂�̂�̂� + �̄2�̄1

m�̂εô�̂

�̄1�̄2
m

)
. (44)

�̄1
m and�̄2

m are the corresponding sample means ofY(m) andX(m). �̂2
� and�̂2

� are
the corresponding sample variances ofY(m) andX(m), and�̂, �̂, �̂, ι̂, �̂, andô are
the corresponding sample correlation coefficients as indicated inEq. (45).

corr(Xi, Yi)
corr(X(m), Y(m))
corr(Xi, Y(m))


 =


 �

�
�


 ,


corr(Xi,X(m))

corr(Yi, Y(m))
corr(Yi,X(m))


 =


 ι

�
o


 (45)

5. MONTE CARLO SIMULATION

Since it is hard to obtain analytical results of the performance of the GA in relation
to various stochastic processes, Monte Carlo simulation methodology is used in
this study. Each stochastic process listed inTables 1–5andEqs (19) to (23)is used
to generate 1000independenttime series, each with 105 observations ({r t}105

t=1).5

For each series, the first 70 observations ({r t}70
t=1) are taken as the training sample,

and the last 35 observations ({r t}105
t=76) are used as the testing sample. The OGA

are then employed to extract trading strategies from these training samples. These
strategies are further tested by the testing samples, and the resulting accumulated
returns (p) are calculated, i.e.

� =
105∏
t=76

(1 + r t ) (46)
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In the meantime, the accumulated returns of the benchmark are also calculated.
In following convention, our choice of the benchmark is simply the buy-and-hold
(B&H) strategy.

Let �1
i (i = 1, 2,. . . , 1000) be the accumulated returns of the B&H strategy

when tested on theith ensemble of a stochastic process, andπ2
i be the accumulated

returns of the OGA when tested on the same ensemble. The issue which we shall
address, given the set of observationsS(≡ {�1

i ,�2
i }1000

i=1 ), is to decidewhether the
OGA-based trading strategies can statistically significantly outperform the B&H
strategy under the stochastic process in question. The answers are given in the
next section.

6. TEST RESULTS

6.1. ARMA Processes

We start our analysis from the linear stochastic processes.Table 6summarizes the
statistics defined inSection 4. Several interesting features stand out. First, from the
statisticsp̂w andzw, it can be inferred that, in accumulated returns, the probability
that the OGA-based trading strategies can beat the B&H strategyis significantly
greater than 0.5. For the stochastic processes with linear signals (L-1–L-12), the
winning probabilityp̂w ranges from 0.713 (L-5) to 0.991 (L-12). What, however,
seems a little puzzling is that, even in the case ofwhite noise(L-13), the GA can also
beat B&H statistically significantly, while with much lower winning probabilities
pw (0.606). This seemingly puzzling finding may be due to the fact that a pseudo-
random generator can actually generate a series with signalswhen the sample size
is small. For example,Chen and Tan (1999)show that, when the sample size is
50, the probability of having signals in a series generated from a pseudo-random
generator is about 5%, while that probability can go to zero when the sample size
is 1000. Therefore, by supposing that the OGA-based trading strategies can win in
all these atypical ensembles and get even with the B&H strategy in other normal
ensembles, then ˆpw can still be significantly greater than 0.5.

Second, by directly comparing ¯�1 with �̄2, we can see that, except for the
case of white noise, the OGA-based trading strategies unanimously outperform
the B&H strategynumericallyin all linear ARMA(p, q) processes. From the ˙�
statistic (27), we see that the triumph of GA over B&H extends from a low of
19% (L-10) to a high of 916% (L-3). Thezp statistic, ranging from 2.12 to 47.39,
signifies the statistical significance of these differences. Third, to see how the GA
effectively exploited the excess potential returns earned by the omniscient trader,
�̃ is also included inTable 6. There it is observed that the GA exploited 2–31%
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Table 6. Performance Statistics of the OGA and B&H – ARMA.

Code Model �̄1 �̄2 �̄∗ z� �̃ (%) �̇ (%) p̂w zw

L-1 ARMA(1,0) 1.198 1.355 4.388 6.33 4 20 0.732 16.56
L-2 ARMA(1,0) 1.992 2.868 6.658 13.67 19 88 0.859 32.62
L-3 ARMA(2,0) 0.845 2.265 5.480 42.98 31 916 0.976 98.35
L-4 ARMA(2,0) 1.123 1.185 5.170 27.08 2 50 0.896 41.02
L-5 ARMA(0,1) 1.103 1.269 4.241 7.63 5 161 0.713 14.89
L-6 ARMA(0,1) 1.199 1.775 5.166 20.61 15 289 0.861 32.99
L-7 ARMA(0,2) 0.853 1.633 5.104 39.97 18 531 0.926 51.46
L-8 ARMA(0,2) 1.065 1.522 5.285 21.58 11 703 0.848 30.65
L-9 ARMA(1,1) 0.898 1.229 4.128 24.55 10 325 0.812 25.25
L-10 ARMA(1,1) 1.452 1.538 4.783 2.12 3 19 0.721 15.58
L-11 ARMA(2,2) 1.306 2.588 6.957 30.43 23 419 0.927 51.90
L-12 ARMA(2,2) 0.721 2.167 6.189 47.39 26 518 0.991 164.40
L-13 ARMA(0,0) 0.983 0.993 3.881 0.67 0 59 0.606 6.85

Code Model ŝ1 ŝ2 d̂ zd l̂10.05 l̂20.05 r̂0.05 zr

L-1 ARMA(1,0) 0.166 0.438 0.272 11.74 0.179 0.126 1.416 3.32
L-2 ARMA(1,0) 0.236 0.526 0.290 8.40 0.310 0.214 1.450 1.75
L-3 ARMA(2,0) −0.342 1.181 1.523 32.14 0.115 0.106 1.087 1.68
L-4 ARMA(2,0) 0.111 0.877 0.767 24.53 0.182 0.114 1.594 4.45
L-5 ARMA(0,1) 0.110 0.419 0.309 13.40 0.169 0.117 1.449 4.23
L-6 ARMA(0,1) 0.135 0.602 0.467 5.02 0.216 0.138 1.563 2.48
L-7 ARMA(0,2) −0.353 0.948 1.301 27.67 0.108 0.099 1.092 1.68
L-8 ARMA(0,2) 0.065 0.624 0.559 18.18 0.181 0.120 1.509 4.18
L-9 ARMA(1,1) −0.307 0.524 0.831 22.43 0.093 0.092 1.007 0.16
L-10 ARMA(1,1) 0.214 0.392 0.177 5.39 0.263 0.171 1.534 2.50
L-11 ARMA(2,2) 0.170 0.854 0.684 11.19 0.240 0.141 1.708 3.34
L-12 ARMA(2,2) −1.363 1.224 2.587 36.46 0.083 0.105 0.795 −6.21
L-13 ARMA(0,0) −0.025 −0.016 0.010 0.37 0.130 0.096 1.353 3.90

Note: �̄1, �̄2 and�̄∗ are the respective sample mean return of OGA, B&H and the omniscient trader.
�̃ is the exploitation ratio (Eq. 26), anḋπ is the relative superiority index (Eq. 27). ˆpw is the
sample winning probability of OGA over B&H (Eq. 28).ŝ1 andŝ2 are the corresponding sample
Sharpe ratio of OGA and B&H (Eq. (31)). Their sample difference iŝd (Eq. (32)). l̂10.05 and
l̂20.05 are the sample luck coefficient of OGA and B&H (Eq. (39)), andr̂0.05 is the sample luck
coefficient ratio between the two (Eq. (40)). Thez�, zw, zd andzr are the test statistics of the
mean return difference, winning probability, Sharpe ratio differential, and luck coefficient ratio,
respectively. The critical value of them is 1.28 at the 10% significance level, and is 1.64 at the
5% significance level.

of the potential excess returns. However, as we expect, it was to no avail when the
scenario changed to white noise.

As mentioned earlier, we should not judge the performance of the GA solely
by the profitability criterion. The risk is a major concern in business practice.
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We, therefore, have also calculated the Sharpe ratio, a risk-adjusted profitability
criterion. It is interesting to notice that in all cases the Sharpe-ratio differential (d̂)
is positive. In other words, the GA still outperforms B&H even after taking into
account the risk. The test of this differential also lends support to its statistical
significance.

Finally, we examine whether the GA wins just byluck in the sense that its return
performance depends heavily on its best 5% trades. Based on the statistic of luck
coefficientr̂0.05, it is found that in only one of the 13 cases, i.e. the case L-12, dose
the GA have a higher luck coefficient; in the other 12 cases, the luck-coefficient
ratios are larger than 1, meaning that the dominance of the GA over B&H cannot
be attributed to the presence of a few abnormally large returns. From the testzr, this
result is again significant except for the case L-9. All in all, we can conclude that if
the return follows a simple linear ARMA process, then the superior performance
of the GA compared to B&H is expected.

6.2. Bilinear Processes

By moving into the bilinear processes, we are testing the effectiveness of the GA
when the return series isnonlinear. Table 7summarizes all the key statistics.
Obviously, the performance of the GA is not as glamorous as before. Out of the
eight battles, it loses twice (cases BL-1 and BL-2) to B&H (seezp andzw). Taking
the risk into account would not help reverse the situation (seezd). It is, however,
interesting to notice a unique feature shared by BL-1 and BL-2. As mentioned in
Section 3.2, the two stochastic processes do not have any linear component (all
�i and�j in Eq. (10)or Table 2are zero). In other words, these two cases are
pure nonlinear(pure bilinear). If some linear components are added back to the
series, then the significant dominance of the GA does come back. This is exactly
what happens in the other six cases (BL-3 to BL-8), which all have the ARMA
component as a part (Table 2).

Even for the six cases where the GA wins, we can still observe some adverse
impacts of nonlinearity on the GA. Roughly speaking,Table 7shows that the
distribution of both�̇ and�̃ becomes lower as opposed to those items observed in
the linear stochastic processes. So, not only does the advantage of the GA relative
to B&H shrink, but its disadvantage relative to the omniscient also becomes
larger.

However, nonlinearity does not change many of the results in relation to the
luck coefficients. The luck-coefficient ratios are all higher than 1, and most
of the results are statistically significant, indicating the relative stability of
the GA.
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Table 7. Performance Statistics of the OGA and B&H – Bilinear.

Code Model �̄1 �̄2 �̄∗ z� �̃ (%) �̇ (%) p̂w zw

BL-1 BL(0,0,1,1) 1.253 1.126 4.398 −6.78 −4 −50 0.491 –0.57
BL-2 BL(0,0,1,1) 1.151 1.064 4.228 −4.66 −3 −58 0.517 1.08
BL-3 BL(0,1,1,2) 1.302 1.830 5.341 11.50 13 175 0.861 17.78
BL-4 BL(0,1,1,2) 1.186 1.356 4.449 6.95 5 91 0.745 17.78
BL-5 BL(1,0,2,1) 1.260 1.419 4.539 5.07 5 61 0.747 17.97
BL-6 BL(1,0,2,1) 2.292 3.143 7.226 9.89 17 66 0.877 36.30
BL-7 BL(1,1,2,2) 1.841 2.471 6.448 8.83 14 75 0.848 30.65
BL-8 BL(1,1,2,2) 1.602 2.287 5.894 19.57 16 114 0.870 34.79

Code Model ŝ1 ŝ2 d̂ zd l̂10.05 l̂20.05 r̂0.05 zr

BL-1 BL(0,0,1,1) 0.316 0.251 –0.065 –3.29 0.132 0.105 1.256 3.30
BL-2 BL(0,0,1,1) 0.190 0.144 –0.046 –2.21 0.144 0.101 1.427 4.14
BL-3 BL(0,1,1,2) 0.167 0.425 0.259 7.31 0.182 0.124 1.793 3.08
BL-4 BL(0,1,1,2) 0.162 0.724 0.562 16.32 0.232 0.129 1.465 3.22
BL-5 BL(1,0,2,1) 0.178 0.465 0.287 13.53 0.211 0.138 1.531 3.54
BL-6 BL(1,0,2,1) 0.251 0.539 0.289 10.38 0.346 0.226 1.534 2.05
BL-7 BL(1,1,2,2) 0.285 0.711 0.426 9.29 0.270 0.168 1.603 2.67
BL-8 BL(1,1,2,2) 0.179 0.386 0.207 2.52 0.272 0.182 1.494 1.14

Note: �̄1, �̄2 and�̄∗ are the respective sample mean return of OGA, B&H and the omniscient trader.
�̃ is the exploitation ratio (Eq. (26)), and�̇ is the relative superiority index (Eq. (27)). p̂w is
the sample winning probability of OGA over B&H (Eq. (28)). ŝ1 andŝ2 are the corresponding
sample Sharpe ratio of OGA and B&H (Eq. (31)). Their sample difference iŝd (Eq. (32)). l̂10.05
and l̂20.05 are the sample luck coefficient of OGA and B&H (Eq. (39)), andr̂0.05 is the sample
luck coefficient ratio between the two (Eq. (40)). Thez�, zw, zd andzr are the test statistics of
the mean return difference, winning probability, Sharpe ratio differential, and luck coefficient
ratio, respectively. The critical value of them is 1.28 at the 10% significance level, and is 1.64
at the 5% significance level.

6.3. ARCH and GARCH Processes

As we have already seen from the bilinear processes, nonlinearity can have some
adverse effects on the performance of the GA. It would be imperative to know
whether this finding is just restricted to a specific class of nonlinear processes or
can be generalized to other nonlinear processes. In this and the next two sections,
we shall focus on this question, and briefly mention other details when we see the
necessity.

Let us first take a look at the results of the other two nonlinear stochastic
processes, namely, ARCH and GARCH. Just like what we saw in the bilinear
processes, these two classes of processes can become pure nonlinear stochastic
if some specific coefficient values are set to zero. This is basically what we do
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Table 8. Performance Statistics of the OGA and B&H – ARCH.

Code Model �̄1 �̄2 �̄∗ zπ �̃ (%) �̇ (%) p̂w zw

AH-1 AR(0)-ARCH(1) 1.038 1.013 3.195 −1.99 −1 −66 0.546 2.92
AH-2 AR(0)-ARCH(1) 1.001 1.005 4.251 0.19 0 400 0.592 5.92
AH-3 AR(0)-ARCH(2) 0.985 0.991 2.307 0.67 0 40 0.562 3.95
AH-4 AR(0)-ARCH(2) 1.007 0.997 2.268 −1.09 −1 −143 0.529 1.84
AH-5 AR(1)-ARCH(1) 1.175 1.509 2.187 22.88 33 191 0.862 33.19
AH-6 AR(1)-ARCH(2) 1.300 1.705 3.061 17.64 23 135 0.838 29.01
AH-7 MA(1)-ARCH(1) 0.869 1.551 3.602 44.12 25 521 0.959 73.20

Code Model ŝ1 ŝ2 d̂ zd l̂10.05 l̂20.05 r̂0.05 zr

AH-1 AR(0)-ARCH(1) 0.170 0.038 –0.032−1.33 0.117 0.091 1.285 4.53
AH-2 AR(0)-ARCH(1) 0.001 0.010 0.009 0.34 0.149 0.105 1.411 3.19
AH-3 AR(0)-ARCH(2) −0.038 −0.035 0.002 0.09 0.100 0.079 1.269 4.03
AH-4 AR(0)-ARCH(2) 0.017 −0.012 −0.030 −1.22 0.099 0.080 1.246 3.24
AH-5 AR(1)-ARCH(1) 0.211 0.774 0.563 15.42 0.145 0.109 1.331 3.43
AH-6 AR(1)-ARCH(2) 0.221 0.605 0.384 10.79 0.187 0.140 1.332 2.15
AH-7 MA(1)-ARCH(1) −0.641 1.126 1.766 35.75 0.076 0.086 0.889−3.44

Note: �̄1, �̄2 and�̄∗ are the respective sample mean return of OGA, B&H and the omniscient trader.
�̃ is the exploitation ratio (Eq. (26)), and �̇ is the relative superiority index (Eq. 27). ˆpw is
the sample winning probability of OGA over B&H (Eq. (28)). ŝ1 andŝ2 are the corresponding
sample Sharpe ratio of OGA and B&H (Eq. (31)). Their sample difference iŝd (Eq. (32)). l̂10.05
and l̂20.05 are the sample luck coefficient of OGA and B&H (Eq. (39)), andr̂0.05 is the sample
luck coefficient ratio between the two (Eq. (40)). Thez�, zw, zd andzr are the test statistics of
the mean return difference, winning probability, Sharpe ratio differential, and luck coefficient
ratio, respectively. The critical value of them is 1.28 at the 10% significance level, and is 1.64
at the 5% significance level.

in Tables 3 and 4. Notice that, based on these settings, AH-1 to AH-4 (ARCH)
and GH-1 to GH-6 (GARCH) are all pure nonlinear stochastic processes, i.e. pure
ARCH or pure GARCH without linear ARMA components. For the rest, they are
a mixture of pure ARCH (GARCH) and linear ARMA processes.Tables 8 and 9
summarize the results of the two stochastic processes. A striking feature is that,
in contrast to its performance in mixed processes, the GA performed dramatically
worse in pure nonlinear ARCH and GARCH scenarios.

Let us take the ARCH processes as an illustration. In the mixed processes AH-5,
AH-6 and AH-7, the GA has a probability of up to 80% or higher of beating B&H,
and earned 135–521% more than B&H. The fact that these excess returns are not
compensation for risk is further confirmed by the Sharpe-ratio differentials which
are significantly positive. In addition, the GA exploited 23% to 33% of the potential
returns earned by the omniscient trader. However, when coming to the pure
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Table 9. Performance Statistics of the OGA and B&H – GARCH.

Code Model �̄1 �̄2 �̄∗ zπ �̃ (%) �̇ (%) p̂w zw

GH-1 AR(0)-GARCH(1,1) 0.987 0.983 2.457 −0.42 0 −31 0.539 2.47
GH-2 AR(0)-GARCH(1,1) 0.968 0.979 2.580 1.19 1 34 0.554 3.44
GH-3 AR(0)-GARCH(1,2) 1.008 1.007 2.474 −0.04 0 −13 0.544 2.79
GH-4 AR(0)-GARCH(1,2) 0.998 1.007 2.434 0.90 1 450 0.572 4.60
GH-5 AR(0)-GARCH(2,1) 0.978 1.001 2.637 2.24 1 105 0.584 5.39
GH-6 AR(0)-GARCH(2,1) 0.982 0.997 2.595 1.50 1 83 0.563 4.02
GH-7 AR(1)-GARCH(1,1) 1.428 1.926 3.511 18.40 24 116 0.856 32.07
GH-8 AR(1)-GARCH(1,2) 1.356 1.747 3.298 12.58 20 110 0.841 29.49
GH-9 AR(1)-GARCH(2,1) 1.378 1.934 3.616 19.20 25 147 0.872 35.21
GH-10 MA(1)-GARCH(1,1) 0.911 1.376 2.769 36.44 25 521 0.949 64.54

Code Model ŝ1 ŝ2 d̂ zd l̂10.05 l̂20.05 r̂0.05 zr

GH-1 AR(0)-GARCH(1,1) −0.030 −0.652 −0.035 −1.19 0.101 0.079 1.282 4.30
GH-2 AR(0)-GARCH(1,1) −0.080 −0.076 0.004 0.17 0.098 0.081 1.202 4.08
GH-3 AR(0)-GARCH(1,2) −0.005 0.020 0.024 1.05 0.094 0.081 1.166 3.32
GH-4 AR(0)-GARCH(1,2) 0.020 0.026 0.007 0.27 0.108 0.093 1.151 1.68
GH-5 AR(0)-GARCH(2,1) −0.051 0.005 0.056 2.04 0.103 0.083 1.233 4.10
GH-6 AR(0)-GARCH(2,1) −0.044 −0.012 0.032 1.23 0.097 0.083 1.178 3.50
GH-7 AR(1)-GARCH(1,1) 0.244 0.620 0.375 11.06 0.225 0.158 1.426 2.72
GH-8 AR(1)-GARCH(1,2) 0.231 0.614 0.383 14.52 0.201 0.143 1.405 2.59
GH-9 AR(1)-GARCH(2,1) 0.703 0.239 0.465 13.47 0.213 0.147 1.454 3.13
GH-10 MA(1)-GARCH(1,1) −0.476 1.034 1.509 29.43 0.070 0.081 0.867 −3.90

Note: �̄1, �̄2 and�̄∗ are the respective sample mean return of OGA, B&H and the omniscient trader. ˜� is the exploitation ratio (Eq. (26)), and�̇ is
the relative superiority index (Eq. (27)). p̂w is the sample winning probability of OGA over B&H (Eq. (28)). ŝ1 andŝ2 are the corresponding
sample Sharpe ratio of OGA and B&H (Eq. (31)). Their sample difference iŝd (Eq. (32)). l̂10.05 andl̂20.05 are the sample luck coefficient of OGA
and B&H (Eq. (39)), andr̂0.05 is the sample luck coefficient ratio between the two (Eq. (40)). Thez�, zw, zd andzr are the test statistics of the
mean return difference, winning probability, Sharpe ratio differential, and luck coefficient ratio, respectively. The critical value of them is 1.28
at the 10% significance level, and is 1.64 at the 5% significance level.
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nonlinear processes AH-1 to AH-4, this dominance either disappears or becomes
weaker. This can be easily shown by the sharp decline in the statisticszp, zw andzd
in Table 8with an almost 0% exploitation ( ˜�) of the maximum potential returns.

This discernible pattern also extends toTable 9. The double-digitzp,zw, andzd of
the mixed processes (GH-7 to GH-10) distinguish themselves from the low, or even
negative, single-digit ones of the pure nonlinear processes (GH-1 to GH-6). For
the former, the GA has 84–95% chance of beating B&H and earned 110–521%
more than B&H. Again, fromzd , we know that the high returns are more than
compensation for risk. Very similar to the case of ARCH, 20–25% of the maximum
potential returns can be exploited by the GA, but that value ˜� drops near to 0%
when the underlying processes change to pure GARCH.

Despite the fact that pure nonlinear processes continue to deal the GA a hard
blow, as far as the winning probability is concerned, its relative performance to
B&H is overwhelmingly good. This can be reflected by thezw statistics which
are consistently significantly positive in all cases. A similar property holds for the
luck coefficient (seezr). The only two exceptions are the cases AH-7 and GH-10,
which, however, are not pure nonlinear. In fact, they both have MA(1) as their
linear component.

6.4. Threshold Processes

The threshold process leads to a different kind of nonlinear process. While its
global behavior is nonlinear, within each local territory, characterized by�i , it can
be linear. TH-1 and TH-2 inTable 5are exactly processes of this kind. The former
is switching between two AR(1) processes, whereas the latter is switching between
two ARMA(1,1) processes. Since the GA can work well with linear processes, it
would be interesting to know whether its effectiveness will extend to these local
linear processes. Our results are shown inTable 10. The four statisticsz�, zw, zd ,
andzr all give positive results. The GA is seen to exploit 20–30% of the maximum
potential returns, and the winning probabilities are greater than 90%.

TH-4 and TH-5 are another kind of complication. TH-4 switches between two
mixed processes, while TH-5 switches between a pure nonlinear process and a
linear process. From previous experiences, we already knew that the GA can work
well with the mixed process. Now, fromTable 10, it seems clear that it can survive
these two complications as well.

Finally, we come to the most difficult one TH-5, i.e the one which switches
between two pure nonlinear (bilinear) processes. Since the GA did not show its
competence in the pure nonlinear process, at least from the perspective of the
return criteria, one may conjecture that TH-5 will deal another hard blow to the
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Table 10. Performance Statistics of the OGA and B&H – Threshold.

Code Model �̄1 �̄2 �̄∗ zπ �̃ (%) �̇ (%) p̂w zw

TH-1 TBL(2;1,0,0,0) 0.612 1.233 3.372 24.89 23 160 0.910 45.30
TH-2 TBL(2;1,1,0,0) 1.262 2.743 6.361 21.15 29 565 0.931 53.77
TH-3 TBL(2;0,0,1,1) 1.161 1.074 4.207 –4.38 –3 –54 0.502 0.13
TH-4 TBL(2;1,1,2,2) 1.271 1.406 4.497 5.41 4 50 0.717 15.23
TH-5 TBL(2;2,0,2,2) 0.654 1.236 3.890 37.38 18 168 0.919 48.56

Code Model ŝ1 ŝ2 d̂ zd l̂10.05 l̂20.05 r̂0.05 zr

TH-1 TBL(2;1,0,0,0) –0.398 0.374 0.772 9.33 0.267 0.119 2.252 4.30
TH-2 TBL(2;1,1,0,0) 0.093 0.727 0.634 11.86 0.329 0.163 2.012 2.95
TH-3 TBL(2;0,0,1,1) 0.208 0.176 –0.032 –1.42 0.136 0.098 1.394 3.72
TH-4 TBL(2;1,1,2,2) 0.208 0.426 0.219 10.41 0.192 0.140 1.379 2.97
TH-5 TBL(2;2,0,2,2) –0.813 0.484 1.297 16.88 0.130 0.097 1.343 3.54

Note: �̄1, �̄2 and�̄∗ are the respective sample mean return of OGA, B&H and the omniscient trader.
�̃ is the exploitation ratio (Eq. (26)), and�̇ is the relative superiority index (Eq. (27)). p̂w is
the sample winning probability of OGA over B&H (Eq. (28)). ŝ1 andŝ2 are the corresponding
sample Sharpe ratio of OGA and B&H (Eq. (31)). Their sample difference iŝd (Eq. (32)). l̂10.05
and l̂20.05 are the sample luck coefficient of OGA and B&H (Eq. (39)), andr̂0.05 is the sample
luck coefficient ratio between the two (Eq. (40)). Thez�, zw, zd andzr are the test statistics of
the mean return difference, winning probability, Sharpe ratio differential, and luck coefficient
ratio, respectively. The critical value of them is 1.28 at the 10% significance level, and is 1.64
at the 5% significance level.

GA. Bothzp andzd in Table 10confirm this conjecture. Not just the returns, but
zw shows that the winning probability is also not good, which is similar to what
we experienced in BL-1 and BL-2. The only criterion that remains unaffected by
this complication is the luck coefficient. Furthermore, it turns out thatzr seems to
give the most stable performance across all kinds of processes considered so far,
except the MA process.

6.5. Chaotic Processes

Chaotic processes are also nonlinear, but they differ from the previous four
nonlinear processes in that they aredeterministicrather thanstochastic. These
processes can behave quite erratically without any discernible pattern. Can the GA
survive well with this type of nonlinear process? The answer is a resoundingyes.
All the statistics inTable 11are sending us this message.

The winning probabilities are all higher than 85%. In the case of the Henon
map (C-2), the GA even beats B&H in all of the 1000 trials. In addition, in this
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Table 11. Performance Statistics of the OGA and B&H – Chaos.

Code �̄1 �̄2 �̄∗ zπ �̃ (%) �̇ (%) p̂w zw

C-1 1.019 5.664 21.876 31.15 22 24447 0.993 186.99
C-2 5.387 23.235 33.452 85.62 64 407 1.000 ∗
C-3 0.937 4.124 11.374 44.65 31 5059 0.990 352.49
C-4 1.188 3.066 25.563 22.91 8 999 0.950 65.29
C-5 0.928 1.790 23.172 17.18 4 1197 0.876 36.08

Code ŝ1 ŝ2 d̂ zd l̂10.05 l̂20.05 r̂0.05 zr

C-1 0.009 0.832 0.824 16.59 0.297 0.184 1.615 2.28
C-2 1.600 2.502 0.901 23.56 0.112 0.090 1.252 4.39
C-3 −0.075 1.160 1.235 28.92 0.153 0.127 1.207 2.75
C-4 0.074 0.627 0.554 10.39 0.348 0.200 1.739 2.66
C-5 −0.045 0.518 0.563 14.45 0.279 0.169 1.649 2.88

Note: �̄1, �̄2 and�̄∗ are the respective sample mean return of OGA, B&H and the omniscient trader.
�̃ is the exploitation ratio (Eq. (26)), and�̇ is the relative superiority index (Eq. (27)). p̂w is
the sample winning probability of OGA over B&H (Eq. (28)). ŝ1 andŝ2 are the corresponding
sample Sharpe ratio of OGA and B&H (Eq. (31)). Their sample difference iŝd (Eq. (32)). l̂10.05
and l̂20.05 are the sample luck coefficient of OGA and B&H (Eq. (39)), andr̂0.05 is the sample
luck coefficient ratio between the two (Eq. (40)). Thez�, zw, zd andzr are the test statistics of
the mean return difference, winning probability, Sharpe ratio differential, and luck coefficient
ratio, respectively. The critical value of them is 1.28 at the 10% significance level, and is 1.64
at the 5% significance level.

map, the GA is seen to exploited 64% of the potential excess returns earned by
the omniscient trader, which is the highest of all the processes tested in this paper.
One of the possible reasons why the GA can work well with these nonlinear
deterministic processes is that they are not pure nonlinear. C-1, C-2 and C-4 have
linear AR(1) or AR(2) components. C-3, like the threshold processes, switches
between two linear processes. As already evidenced inSection 6.4, the GA
can handle these types of processes effectively. So, the success is not totally
unanticipated.

However, the explanation above does not apply to C-5, which has no linear
component. Nonetheless, statistics such asz�, �̃ and p̂w all indicate that this
process is not as easy as the other four. For example, only 4% of the potential
excess returns are exploited in this process. Regardless of these weaknesses, the
fact that the GA can dominate B&H in this case motivates us to ask the following
question:Can the GA work better for the pure nonlinear deterministic processes
than the respective stochastic ones, and hence can it help distinguish the chaotic
processes from the stochastic processes? This is a question to pursue in the
future.
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6.6. Summary

The Monte Carlo simulation analysis conducted above provides us with an
underpinning of the practical financial applications of the GA. It pinpoints the
kinds of stochastic processes which we may like to see fruitful results. We have
found that the GA can perform well with all kinds of stochastic processes which
have a linear process (signal) as a part of them. Preliminary studies also suggest
that it may also work well with chaotic processes. However, the class of nonlinear
stochastic processes presents a severe limitation for the GA. In the next section, we
shall see the empirical relevance of these results by actually applying OGA-based
trading strategies to financial data.

7. EMPIRICAL ANALYSIS

7.1. Data Description and Analysis

The empirical counterpart of this paper is based on two sets of high-frequency
time series data regarding foreign exchange rates, namely, the Euro dollar vs. the
U.S. dollarEUR/USDand the U.S. dollar vs. the Japanese yenUSD/JPY.6 The
data is from January 11, 1999 to April 17, 1999. Data within this period are further
divided into 12 sub-periods with roughly equal numbers of observations.Table 12
gives the details.

LetPU
i ,t (P

P
i ,t ) denote thet-th (t = 1, 2,. . . , ni) observation of theith sub-period

(i = A, B, . . . , L) of the EUR/USD (USD/JPY) forex series. The price series is
transformed into the return series by the usual logarithmic formulation,

r ji ,t = ln(Pj
i ,t ) − ln(Pj

i ,t−1) (47)

wherej = U, P. Tables 13 and 14give some basic statistics of the returns of each
sub-period.

Both return series share some common features. FromTables 13 and 14, the
mean, median and skewness of these two return series are all close to zero.
The kurtosis is much higher than 3, featuring the well-knownfat-tail property. The
Jarque-Bera (1980)test further confirms that these forex returns do not follow the
normal distribution, and that is true for each sub-period. In addition, the series
is not independent due to its significant negative first-order serial correlationρ1.
However, there is no evidence of serial correlation in higher orders.7

To apply what we learned from the Monte Carlo simulation to predict the
effectiveness of the GA over these series, we must first gauge their likely stochastic
processes. Here we follow a standard procedure frequently used in econometrics
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Table 12. Data Quotations – EUR/USD and USD/JPY.

Sub-Period A B C D E F

EUR/USD
Number 12000 12000 12000 12000 12000 12000
From (GMT) 2/25 7:59 3/1 0:59 3/3 15:36 3/8 6:43 3/10 6:53 3/12 7:26
To (GMT) 2/26 8:22 3/2 7:17 3/5 3:04 3/9 1:08 3/11 7:12 3/15 1:16

Sub-Period G H I J K L

Number 12000 12000 12000 12000 12000 12000
From (GMT) 3/17 7:36 3/19 0:19 3/24 15:06 3/26 15:46 3/31 7:32 4/15 6:14
To (GMT) 3/18 6:12 3/22 2:01 3/26 2:12 3/30 6:23 4/02 1:14 4/17 0:37

Sub-Period A B C D E F

USD/JPY
Number 12000 12000 12000 12000 12000 10808
From (GMT) 1/11 6:11 1/15 0:00 1/27 15:14 2/04 8:47 2/17 7:20 2/23 6:10
To (GMT) 1/14 8:11 1/21 0:00 2/03 3:24 2/11 2:43 2/23 6:09 2/26 21:48

Sub-Period G H I J K L

Number 12000 12000 11026 12000 12000 12000
From (GMT) 2/28 18:15 3/04 10:02 3/09 21:52 3/15 5:25 3/18 6:07 3/24 13:00
To (GMT) 3/04 10:01 3/09 21:52 3/15 1:21 3/18 6:06 3/24 13:00 3/30 10:41

Note: GMT: Greenwich Mean Time.

(Chen & Lu, 1999). First, notice that all series used in our Monte Carlo simulation
arestationary. To make sure that the forex returns are stationary, theAugmented
Dickey-Fuller(ADF) test is applied (Dickey & Fuller, 1979). FromTable 15, the
null hypothesis thatr ji ,t contains a unit root is rejected at the 1% significance level,
meaning that ther ji ,t are stationary.

Second, since our Monte Carlo simulations demonstrate the effectiveness of
the GA over the linear stochastic processes, it is important to know whether
the forex returns have a linear component. To do so, the famous Rissanen’s
predictive stochastic complexity (PSC) as a linear filter is taken.8 Table 15gives the
ARMA(p,q) process extracted from the forex return series. A MA(1) linear process
is founded for both forex returns in each sub-period. In fact, it re-confirms the early
finding that the high-frequency forex returns follow a MA(1) process (Moody &
Wu, 1997; Zhou, 1996).

Third, it should be not surprising if none of these series is just linear. To see
whether nonlinear dependence exists, one of the most frequently used statistics,
the BDS test, is applied to the residuals filtered through the PSC filter.9 There
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Table 13. Basic Statistics of the Return Series – EUR/USD.

Sub-Period A B C D E F

Mean −2.56E−07 −8.13E−07 −7.37E−07 5.39E−07 5.63E−07 −7.49E−07
Median 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Std. Dev. 0.000252 0.000252 0.000213 0.000191 0.000238 0.000264
Skewness −0.015831 0.007214 −0.034436 0.002017 −0.001071 −0.009908
Kurtosis 5.606484 5.558600 5.636056 5.976148 6.136196 5.757020
Jarque-Bera 3397.10 3273.05 3476.48 4428.37 4917.45 3800.46
P-value 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
�1 −0.513935 −0.503725 −0.494695 −0.504014 −0.486925 −0.509612

Sub-Period G H I J K L

Mean 3.81E−07 −8.00E−07 −7.48E−07 −5.64E−08 2.37E−07 −1.13E−06
Median 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Std. Dev. 0.000225 0.000217 0.000184 0.000241 0.000292 0.000219
Skewness 0.011155 −0.050369 −0.119412 0.007646 −0.021431 −0.203838
Kurtosis 6.512019 5.435495 6.226714 5.337107 8.780986 10.97326
Jarque-Bera 6166.88 2970.40 5233.92 2730.92 16708.03 31861.55
P-value 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
�1 −0.493223 −0.505528 −0.480500 −0.498232 −0.475452 −0.464571

Note: �1 is the first-order autocorrelation coefficient. Jarque-Bera statistic converges to a chi-square distribution with two degrees of freedom under
the normality assumption.
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Table 14. Basic Statistics of the Return Series – USD/JPY.

Sub-Period A B C D E F

Mean 3.97E−07 −5.16E−07 −2.01E−06 2.54E−07 1.69E−06 −1.44E−06
Median 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Std. Dev. 0.000413 0.002108 0.001853 0.000332 0.000311 0.000363
Skewness 0.008135 0.080038 −0.018340 −0.057694 0.022959 −0.003358
Kurtosis 6.769064 6.711594 6.854310 7.170642 6.757800 6.374525
Jarque-Bera 7091.806 6898.478 7426.049 8700.883 7059.230 5123.885
P-value 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
�1 −0.343317 −0.338790 −0.370748 −0.362052 −0.360786 −0.335953

Sub-Period G H I J K L

Mean 2.53E−06 −1.09E−06 −2.54E−06 −2.75E−07 −7.87E−07 1.90E−06
Median 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Std. Dev. 0.000301 0.000279 0.000322 0.000287 0.000265 0.000247
Skewness 0.080100 0.019734 0.079313 0.002414 −0.019244 0.213584
Kurtosis 5.597214 6.763973 6.747828 8.198238 7.650768 6.701801
Jarque-Bera 3385.029 7083.936 6459.934 13508.60 10811.96 6941.746
P-value 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
�1 −0.436860 −0.396329 −0.344660 −0.348622 −0.361993 −0.364189

Note: �1 is the first-order autocorrelation coefficient. Jarque-Bera statistic converges to a chi-square distribution with two degrees of freedom under
the normality assumption.
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Table 15. Basic Econometric Properties of the Return Series – EUR/USD and
USD/JPY.

Sub-Period A B C D E F

EUR/USD
ADF −74.9502 −76.4264 −74.0755 −76.6226 −77.4292 −79.1714
Critical Value −3.4341 −3.4341 −3.4341 −3.4341 −3.4341 −3.4341
PSC (0,1) (0,1) (0,1) (0,1) (0,1) (0,1)

G H I J K L

ADF −74.7427 −74.7053 −68.8254 −73.4958 −72.3726 −67.6148
Critical Value −3.4341 −3.4341 −3.4341 −3.4341 −3.4341 −3.4341
PSC (0,1) (0,1) (0,1) (0,1) (0,1) (0.1)

A B C D E F

USD/JPY
ADF −57.1573 −55.2394 −56.0518 −56.8433 −55.0202 −51.1507
Critical Value −2.5660 −2.5660 −2.5660 −3.4341 −3.4341 −3.4342
PSC (0,1) (0,1) (0,1) (0,1) (0,1) (0,1)

G H I J K L

ADF −59.3422 −57.4123 −55.5809 −58.0822 −57.5485 −59.5623
Critical Value −3.4341 −3.4341 −3.4341 −3.4341 −3.4341 −3.4341
PSC (0,1) (0,1) (0,1) (0,1) (0,1) (0.1)

Note: The “Critical Value” indicates the critical value of the ADF test that is taken from the table
provided by Dickey and Fuller at the 1% significance level.

are two parameters used to conduct the BDS test. One is the distance measure
(standard deviations), and the other is the embedding dimension. The parameter
“�” considered here is equal to one standard deviation. (In fact, other are also tried,
but the results are not sensitive to the choice of�.) The embedding dimensions
considered range from 2 to 5. FollowingBarnett et al. (1997), if the absolute values
of all BDS statistics under various embedding dimensions are greater than 1.96,
the null hypothesis of an identical independent distribution (IID) is rejected. From
Table 16, the BDS statistics for the EUR/USD and USD/JPY are all large enough
to reject the null hypothesis, i.e. nonlinear dependence is detected.

Fourth, given the existence of the nonlinear dependence, the next step is to
identify its possible form, i.e. by modeling nonlinearity. While there is no standard
answer as to how this can be done, the voluminous (G)ARCH literature over the past
two decades has proposed a second-moment connection (Bollerslev et al., 1992).
In order to see whether (G)ARCH can successfully capture nonlinear signals, we
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Table 16. The BDS Test of the PSC-filtered Return Series – EUR/USD and
USD/JPY.

Sub-Period A B C D E F

Part I II I II I II I II I II I II

EUR/USD
DIM = 2 20.47 26.82 22.58 26.56 13.60 20.25 17.15 14.66 18.23 18.09 18.03 19.37
DIM = 3 27.57 34.17 30.61 34.72 19.44 26.84 22.50 20.12 22.78 23.48 24.63 26.43
DIM = 4 33.60 40.03 37.25 40.81 23.80 31.27 26.80 24.22 25.68 27.63 30.21 32.09
DIM = 5 38.50 45.80 43.40 46.75 27.43 35.23 30.38 27.40 28.54 31.23 35.26 37.94

G H I J K L

I II I II I II I II I II I II

DIM = 2 12.04 16.97 23.90 19.45 13.06 12.40 20.13 13.41 35.69 19.74 8.18 22.23
DIM = 3 17.84 22.20 30.02 25.59 17.30 17.31 26.84 18.79 46.83 24.39 10.98 27.08
DIM = 4 21.09 26.34 34.39 30.41 20.35 20.57 31.24 22.98 56.42 27.22 12.97 30.22
DIM = 5 24.08 30.18 39.31 35.47 23.29 23.40 35.39 26.48 66.58 29.79 14.20 33.13

A B C D E F

I II I II I II I II I II I II

USD/JPY
DIM = 2 15.36 23.15 15.68 13.41 12.00 16.63 14.76 20.44 12.98 17.84 17.88 16.61
DIM = 3 17.89 28.38 18.83 16.04 14.54 20.02 17.11 23.15 16.08 20.87 21.35 18.94
DIM = 4 20.03 31.37 20.17 17.89 15.32 22.24 18.72 24.27 17.49 22.82 23.35 20.44
DIM = 5 22.30 34.58 21.57 19.13 16.07 24.42 20.28 25.43 18.52 24.56 24.43 22.16

G H I J K L

I II I II I II I II I II I II

DIM = 2 15.65 11.34 15.56 16.84 16.44 15.51 20.98 17.79 19.41 15.51 15.28 15.61
DIM = 3 17.64 13.92 18.57 18.91 18.50 18.68 25.07 21.84 21.94 16.84 16.32 17.87
DIM = 4 19.30 15.35 20.86 19.45 19.78 21.02 27.72 24.43 23.23 17.52 17.21 19.34
DIM = 5 20.82 16.49 23.10 19.73 20.95 22.76 30.10 26.45 24.15 18.56 18.14 20.62

Note: Due to the size of the data which is beyond the affordable limit of the software computing the BDS statistics,
each sub-period was divided into two parts before the BDS test was applied. The BDS statistic follows an
asymptotically standard normal distribution.

carry out theLagrangeMultiplier(LM) test for the presence of ARCH effects. The
LM test for ARCH effects is a test based on the following model:

�2
t = h(�0 + �1�2

t−1 + . . .+ �p�2
t−p), (48)

whereh is a differential function. The null hypothesis that the ARCH effect does
not exist is

�1 = . . . = �p = 0. (49)

By takingp = 1, 2,. . . , 4, the LM test results are given inTable 17. It is found
that the ARCH effect does exist in both return series.
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Table 17. The LM Test of the ARCH Effect in the Return Series – EUR/USD
and USD/JPY.

Sub-Period A B C D E F

EUR/USD
p= 1 1029.94 821.665 681.92 560.27 463.98 401.08
p= 2 1572.34 1191.26 998.22 1094.72 960.83 585.88
p= 3 2030.32 1501.74 1202.15 1320.58 1052.54 705.17
p= 4 2169.98 1731.33 1295.77 1471.40 1195.93 871.73

Sub-Period G H I J K L

p= 1 275.07 797.26 411.61 390.94 1584.30 1571.04
p= 2 423.33 1168.19 689.02 553.11 1668.88 1587.53
p= 3 493.11 1262.87 1001.22 678.90 1714.39 1640.60
p= 4 551.99 1354.28 1050.53 715.68 2036.42 1641.41

Sub-Period A B C D E F

USD/JPY
p= 1 533.15 411.35 479.80 769.49 550.15 685.34
p= 2 639.75 490.58 6018.02 849.31 604.18 752.71
p= 3 677.49 531.78 667.50 854.11 614.26 821.85
p= 4 709.00 559.97 687.09 923.01 636.99 854.71

Sub-Period G H I J K L

p= 1 600.528 545.791 696.185 749.650 883.107 795.762
p= 2 648.101 656.653 758.918 1094.82 926.127 929.618
p= 3 695.639 727.043 811.000 1101.78 939.221 1059.00
p= 4 726.942 764.836 844.766 1103.08 951.489 1109.23

Note: The LM test is asymptotically distributed asχ2 with p degrees of freedom when the null
hypothesis is true. There is no need to report the p values here because they are all 0.0000.

After these series of statistical tests, we may conclude that basically boththe
EUR/USD and the USD/JPY return series have MA(1) as a linear component and
ARCH as a part of its nonlinear components. In Section 6.3, the Monte Carlo
simulation analysis already indicated that the GA can work well with MA(1) plus
(G)ARCH processes. To see the empirical relevance of the simulation study, in the
next sections, the GA is applied to the two return series.

7.2. Experimental Design

In order to compare the empirical results with our earlier simulation analysis, the
experiments are designed in a similar fashion to the one which our Monte Carlo
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simulation follows. Specifically, many “ensembles” are generated from the original
series to evaluate the performance of the GA. Of course, rigorously speaking, they
are not the “ensembles” defined in the stochastic process. They are just subseries
taken from the original return series. Each subseries has 105 observations. The
first 70 observations are treated as the training sample, and the last 35 observations
are used as the testing sample.

Nonetheless, to make the tests we developed inSection 4applicable, we cannot
just continuously chop the return series into subseries, because doing so will not
make the sampling process independent, and hence will violate the fundamental
assumption required for the central limit theorem. One solution to this problem
is to leave an interval between any two consecutive subseries so that they are
not immediately connected. The purpose in doing this is hopefully to make them
independent of each other as if they were sampled independently. However, how
large an interval would suffice? To answer this question, we take a subsequence
with a fixed number of lags, say,{r ji ,t , r ji ,t+k, r

j
i ,t+2k, . . .} from the original return

series, wherek varies from 40, 60,. . . , to 300. We then apply the BDS test to each
of these subsequences.

Table 18 summarizes the BDS test results. For the EUR/USD case, it is
found that whenk is greater than 100, the null hypothesis that the subsequence
{r ji ,t , r ji ,t+k, r

j
i ,t+2k, . . .} is IID is not rejected. In other words, leaving an interval

of 100 observations between each of two consecutive subseries would suffice. For
the EUR/USD case,k can even be smaller than 60. To ensure the quality of the
sampling process, we, however, take an even larger number of lags, i.e.k = 200.
This choice leaves us with a total of 720 subseries from the EUR/USD and 709
subseries from the USD/JPY.

The GA is then employed to extract trading strategies from the training samples
of these subseries, and the strategies extracted are further applied to the respective
testing samples. The resulting accumulated returns (p) are then compared with
that of the B&H strategy.

7.3. Results of the Experiments

Since the analysis of the data shows that the two forex returns are mixtures of
MA(1) and (G)ARCH processes, our previous results of Monte Carlo simulations
may provide a good reference for what one can expect from such empirical
applications. BothTables 8 and 9indicate the superior performance of the GA
over B&H, except in relation to the criterion for the luck coefficient, when the
underlying stochastic processes are MA plus (G)ARCH. Will the dominance carry
over?
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Table 18. The BDS Test of the Lag Period in the Return Series – EUR/USD and
USD/JPY.

Lag DIM = 2 DIM = 3 DIM = 4 DIM = 5

EUR/USD
40 2.94 3.45 3.86 4.18
60 0.72 1.20 1.27 1.38
80 1.11 1.21 1.38 1.50
100 0.66 0.66 0.69 0.69
120 0.61 0.66 0.79 0.88
140 0.45 0.52 0.54 0.58
160 0.30 0.43 0.46 0.54
180 0.21 0.30 0.42 0.49
200 −0.01 0.08 0.12 0.11
220 0.11 0.14 0.13 0.13
240 0.25 0.24 0.27 0.24
260 −0.02 −0.04 −0.04 −0.01
280 0.10 0.11 0.14 0.14
300 0.06 0.07 0.05 0.01

USD/JPY
40 1.39 1.50 1.50 1.57
60 0.53 0.69 0.75 0.89
80 0.56 0.63 0.72 0.80
100 −0.08 −0.12 −0.12 −0.16
120 0.13 0.22 0.19 0.20
140 0.01 −0.13 −0.14 −0.09
160 0.05 0.09 0.09 0.12
180 −0.01 −0.07 0.01 0.06
200 −0.04 −0.08 −0.08 −0.06
220 0.21 0.29 0.30 0.32
240 0.15 0.13 0.11 0.12
260 0.05 0.12 0.09 0.07
280 −0.14 −0.09 −0.11 −0.10
300 0.06 0.02 0.05 0.04

Note: The BDS statistic follows an asymptotically standard normal distribution.

Table 19is the kind of table which we have presented many times inSection 6.
All the key statisticszp, zw, andzd are consistent with those of AH-7 (Table 8) and
GH-10 (Table 9). So, in both forex return series, the dominance of the GA over
B&H is statistically significant. The consistency continues even to a finer level of
the results: ¯�1 < 1 and�̄2 > 1. As already seen, B&H earned negative profits in
both of the cases AH-7 and GH-10, while the GA earned positive profits in both
cases. In addition, both the winning probability and the exploitation ratio are also
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Table 19. Performance Statistics of the OGA and B&H – EUR/USD and
USD/JPY.

�̄1 �̄2 �̄∗ zπ �̃ (%) �̇ (%) p̂w zw

EUR/USD 0.9999 1.0012 1.0028 38.58 43 9257 0.972 77.10
USD/JPY 0.9999 1.0010 1.0039 23.70 27 11462 0.850 26.17

ŝ1 ŝ2 d̂ zd l̂10.05 l̂20.05 r̂0.05 zr

EUR/USD −0.0338 1.4193 1.4532 18.32 0.0812 0.0933 0.8710−1.69
USD/JPY −0.0086 0.8786 0.8873 20.64 0.0826 0.0948 0.8713−1.66

Note: �̄1, �̄2 and�̄∗ are the respective sample mean return of OGA, B&H and the omniscient trader.
�̃ is the exploitation ratio (Eq. (26)), and�̇ is the relative superiority index (Eq. (27)). p̂w is
the sample winning probability of OGA over B&H (Eq. (28)). ŝ1 andŝ2 are the corresponding
sample Sharpe ratio of OGA and B&H (Eq. (31)). Their sample difference iŝd (Eq. (32)). l̂10.05
and l̂20.05 are the sample luck coefficient of OGA and B&H (Eq. (39)), andr̂0.05 is the sample
luck coefficient ratio between the two (Eq. (40)). Thez�, zw, zd andzr are the test statistics of
the mean return difference, winning probability, Sharpe ratio differential, and luck coefficient
ratio, respectively. The critical value of them is 1.28 at the 10% significance level, and is 1.64
at the 5% significance level.

comparable. ˆpw is around 95% for both AH-7 and GH-10, and ˜� is about 25%.
The value of ˆpw remains as high for the EUR/USD series, while it drops a little
to 85% for the USD/JPY series. As to ˜�, it is also about 25% for the USD/JPY
series, but is greater than 40% for the EUR/USD series.

Notice that our earlier simulation result already indicated that, for some reason
unknown to us, the MA component when combined with the ARCH or GARCH
component may bring a negative impact to the luck coefficient. This has been
already shown in the cases AH-7 and GH-10. What interests us here is that this
observation repeats itself in our empirical results. The statisticzr is statistically
negative in both return series. As a result, to a large extent, what we have found from
the early Monte Carlo simulations applies quite well to the real data. Hence, the GA
can be useful in extracting information to develop trading strategies involving these
high-frequency financial data because the underlying stochastic process, based on
the Monte Carlo simulation analysis, is not a hard one for the GA.

8. CONCLUDING REMARKS

The literature on financial data mining, driven by the rapid development and
applications of computational intelligence tools, are frequently clothed with a
“magic house” notoriety. Unlike in mainstream econometrics, users are usually
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not well informed of the stochastic properties of these tools, which in turn makes
it difficult to grasp the significance of the result obtained from one specific
application, be it positive or negative. An essential question is how we can know
that what happens in one specific application can or cannot extend to the other one.
Will we still be so “lucky” next time?

By using the Monte Carlo simulation methodology, a statistical foundation for
using the GA in market-timing strategies isinitiated. This foundation would allow
us to evaluate how likely the GA will work given a time series whose underlying
stochastic process is known. This helps us to distinguish theluck from normal
expectations. We believe that this is a major step toward lightening the black box.
We emphasize that this work providesa statistical foundation, notthestatistical
foundation, because there are many other ways of enriching the current framework
and of making it more empirically relevant.

First, different benchmarks may replace the B&H strategy. This is particularly
so given a series of articles showing that simple technical analysis can beat B&H.
However, since we can never run out of interesting benchmarks, the exploitation
ratio �̃ introduced in this paper will always be a good reference. For example,
in this paper, we can hardly have a ˜� of 30% or higher. Consequently, the 70%
left there may motivate us to try more advanced version of the GA or different
computational intelligence algorithms.

Second, financial time series are not just restricted to the six stochastic processes
considered in this paper, but introducing new stochastic processes causes no
problems for the current framework. Third, different motivations may define
different evaluation criteria. The four criteria used in this paper are by no means
exhausted. For example, the downside risk or VaR (Value at Risk) frequently
used in current risk management can be another interesting criterion. However,
again, it is straightforward to add more criteria to the current framework as long
as one is not bothered by deriving the corresponding statistical tests. Fourth, the
focus of this paper is to initiate a statistical foundation. Little has been addressed
regarding the practical trading behavior or constraints. Things like transaction
costs, non-synchronous trading, etc., can be introduced to this framework quite
easily. Fifth, our framework is also not restricted to just the ordinary GA, for the
general methodology applies to other machine learning tools, including the more
advanced versions of the GA.

Finally, while, in this paper, we are only interested in the statistical foundation,
we do not exclude the possibilities of having other foundations. As a matter of fact,
we believe that a firm statistical foundation can show us where to ask the crucial
questions, and that will help build a more general mathematical foundation. For
example, in this paper, we have been already well motivated by the question as to
why the GA performed quite poorly in the pure nonlinear stochastic processes, but
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performed well in the chaotic processes. Of course, this statistical finding alone
may need more work before coming to its maturity. However, the point here is
that theoretical questions regarding the GA’s performance cannot be meaningfully
answered unless we have firmly grasped their behavior in a statistical way.

NOTES

1. The interested reader can obtain more spread applications in the fields of research
from Goldberg (1989).

2. A bibliographic list of financial applications of genetic algorithms and genetic
programming can be found inChen and Kuo (2002)and Chen and Kuo (2003). For a
general coverage of this subject, interested readers are referred toChen (1998a), Chen
(2002)andChen and Wang (2003). As opposed to the conventional technical analysis, the
advantages of using GAs and GP are well discussed inAllen and Karjalainen (1999), and
is also briefly reviewed in another paper of this special issue. (Yu et al., 2004).

3. For example,Chen (1998b)sorted out threestochastic propertieswhich may impinge
upon the performance of GAs in financial data mining. These are theno-free-lunch property,
thewell-ordered propertyand theexistence of temporal correlation. Several tests of these
properties are then proposed and an apriori evaluation of the potential of GAs can be made
based on these proposed tests.

4. �̄∗ is a sample average ofπ∗
i , which is the accumulated return earned by the omniscient

trader in theith ensemble of the Monte Carlo simulation.
5. Doing this enables us to apply the central limit theorem to derive the asymptotic

distribution of the various test statistics mentioned inSection 4.
6. The main source of this dataset is the interbank spot prices published by Dow Jones

in a multiple contributors page (the TELERATE page). This covers markets worldwide
24 hours a day. These prices are quotations of the average prices of bid and ask and not
actual trading prices. Furthermore, they are irregularly sampled and therefore termed as
tick-by-tickprices.

7. The clear cut-off pattern appearing at the first lag suggests that these series involve
a MA(1) process. Later on, from more rigorous statistics, we will see that indeed it is the
case.

8. The detailed description can be found inChen and Tan (1996).
9. Once the linear signals are filtered out, any signals left in the residual series must be

nonlinear. “BDS” stands for “Brock, Dechert and Scheinkman” seeBrock et al. (1996).
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APPENDIX A

A.1. Coding Trading Strategies

Based on the trading formulation (3), to encode a trading strategy, we only need
to encode the CONDS with three primitive predicates, which means the following
three parts:

� �a = (a1,a2,a3),
� �⊕ = (⊕1,⊕2,⊕3),
� the logical combination of the three predicates Cond(rt−i) (i = 1, 2, 3).

To encode�a, we first transform the range of the variableZ [Zmin,Zmax] into a fixed
interval, say [0, 31].

Z∗ = Z − Zmin

Zmax − Zmin
× 32 (A.1)

ThenZ∗ will be further transformed byEq. (A.2).

Z∗∗ =
{
n, if n ≤ Z∗ < n+ 1
31 ifZ∗ = 32

(A.2)

Since there are only 32 cutoff values, eachai can be encoded by a 5-bit string. Hence
the vector�a can be encoded by a 15-bit binary string. To encode�⊕, notice that each
⊕ has only two possibilities:≥ or <. Therefore, a�⊕ can be encoded by a 3-bit
binary string (Table A.1). Finally, there are a total of totally 8 logical combinations
for three predicates and they can be encoded by 3-bit strings (Table A.2).

In sum, a CONDS can be encoded by a 21-bit string (3 for logical combinations,
3 for inequalities, and 15 for the three thresholds). Therefore, each trading strategy
can be represented by a 21-bit string.

Table A.1. Binary Codes for Inequality Relation.

Code ⊕1 ⊕2 ⊕3

0(000) ≥ ≥ ≥
1(001) < ≥ ≥
2(010) ≥ < ≥
3(011) ≥ ≥ <

4(100) < < ≥
5(101) < ≥ <

6(110) ≥ < <

7(111) < < <
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Table A.2. Binary Codes for Logical Combinations.

Logic Code Logical Combination of Predicates

0(000) Cond 1 OR (Cond 2 AND Cond 3)
1(001) Cond 1 AND (Cond 2 OR Cond 3)
2(010) (Cond 1 OR Cond 2) AND Cond 3
3(011) (Cond 1 AND Cond 2) OR Cond 3
4(100) (Cond 1 OR Cond 3) AND Cond 2
5(101) (Cond 1 AND Cond 3) OR Cond 2
6(110) Cond 1 OR Cond 2 OR Cond 3
7(111) Cond 1 AND Cond 2 AND Cond 3

A.2. Ordinary Genetic Algorithms

The GA described below is a very basic version of a GA, and is referred to as the
ordinary genetic algorithm (OGA). More precisely, it is very similar to the GA
employed inBauer (1994).

� The genetic algorithm maintainsa population of individuals,

Pi = {gi1, . . . ,gin} (A.3)

for iteration i, wheren is population size. Usually,n is treated as fixed during
the whole evolution. Clearly,Pi ⊂ G.

� Evaluation step:Each individualgij represents a trading strategy at theith
iteration (population). It can be implemented with thehistorical data rt−1, rt−2,
andrt−3 by means of Eq. (2). A specific example is given inEq. (3). Each trading
strategygij is evaluated by afitnessfunction, sayEq. (6).

� Selection step:Then, a new generation of population (iterationi + 1) is formed
by randomly selecting individuals fromPi in accordance with aselection scheme,
which, in this paper, is theroulette-wheel selection scheme.

Mi = Ps(Pi ) = (s1(Pi ), s2(Pi ), . . . , sn(Pi )) (A.4)

where

sk :

{(
G

n

)}
→ G, (A.5)

k = 1, 2,. . ., n, and

{(
G

n

)}
is the set of all populations whose population size

is n. The setMi is also called themating pool.
� Alteration step:Some members of the new population undergo transformations

by means ofgenetic operatorsto form new solutions.
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� Crossover:We usetwo-point crossover ck, which create new individuals by
combining parts from two individuals.

Oi = Pc(Mi ) = (c1(Mi ), c2(Mi ), . . . , cn/2(Mi )) (A.6)

where

ck:

{(
G

n

)}
→ G × G, (A.7)

k = 1, 2,. . ., n/2.Oi is known as the set ofoffspringin the GA.
� Mutation: We usebit-by-bit mutation mk, which creates new individuals by

flipping, with a small probability, each bit of each individual ofOi.

Pi+1 = Pm(Oi ) = (m1(Oi ),m2(Oi ), . . . ,mn(Oi )) (A.8)

where

mk:

{(
G

n

)}
→ G (A.9)

k= 1, 2,. . ., n.
� After the evaluation, selection and alteration steps, the new populationPi+1 is

generated. Then we proceed with the three steps withPi+1, and the loop goes
over and over again until a termination criterion is met. The control parameters
employed to run the OGA are given inTable A.3.

Table A.3. Control Parameters of OGA.

Number of generations 100
Population size (n) 100
Selection scheme Roulette-wheel
Fitness function Accumulated returns
Elitist strategy Yes
Rank min 0.75
Crossover style Two-Point
Crossover rate 0.6
Mutation rate 0.001
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