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Abstract. In this paper, we review the development of artificial adaptive economic agents in evolutionary
economics. The review starts from a 1986 paper by Robert Lucas, a Nobel Prize laureate in economics.
From there, we shall see how the idea of economic adaptive agents was enriched and implemented by
Holland’s two books on genetic algorithms (Holland 1975) and on classifier systems (Holland, et al. 1986).
We then examine the impact of Holland’s artificial adaptive agents on two different groups of economists.
One was led by Thomas Sargent, representing New Classical Economics, and the other by Brian Arthur,
standing for Santa Fe Institute Economics. A moot point brought here is that the spirit of the genetic
algorithm (GA) (John Holland’s legacy) is lost in mainstream economics, but is reserved in SFI economics.
We then shift to Koza’s genetic programming, and show how John Holland’s legacy was further expanded
in evolutionary economics.
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1 Motivation

While genetic programming has been applied to economic modeling for more than
half a decade, its relevance to the nature of economics has not been fully acknowl-
edged. In the most sympathetic situations, it is regarded as nothing but alchemy.
In unsympathetic situation, it is notorious for its black-box operation. Sometimes,
the process and results are so complicated that economists can hardly consider it
relevant and interesting. This chapter is not an attempt to make economists em-
brace genetic programming, but from a scientific viewpoint, we would like to avoid
prejudice due to a lack of solid understanding. This chapter is intended to deliver a
simple but strong message: genetic programming is not just another fancy technique
exploited by the unorthodox, but could be a faithful language to express the essence
of economics. In particular, it provides evolutionary economists with a way to sub-
stantiate some features which distinguish them from the mainstream economists.

To achieve this goal, the paper will address a list of questions as follows.

• Why is genetic programming relevant to economics?
• Are genetic operators relevant to economics?

� This paper is published in K. Aruka (ed.), Evolutionary Controversy in Economics towards a New Method
in Preference of Trans Discipline, Springer-Verlag, Tokyo.
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• Technically speaking, what makes economists like or dislike genetic program-
ming?

2 An Evolving Population of Decision Rules

Let’s start from the most fundamental issue: why is genetic programming relevant?
Lucas (1986) provided a notion of an economic agent. “In general terms, we view or
model an individual as a collection of decision rules (rules that dictate the action
to be taken in given situations) and a set of preferences used to evaluate the out-
comes arising from particular situation-action combinations.” (Lucas, 1986; p.217.
Italics Added.) Immediately after the static description of the economic agent, Lu-
cas continued to add an adaptive (evolutionary ) version of it. “These decision rules
are continuously under review and revision: new decision rules are tried and tested
against experience, and rules that produce desirable outcomes supplant those that
do not. (Ibid; p.217). So, according to Lucas, the essence of an economic agent is a
collection of decision rules which are adapting (evolving) based on a set of prefer-
ences. In brief, it is an idea of an evolving population.

Suppose that an evolving population is the essence of the economic agent, then it
seems important to know whether we economists know any operational procedure to
substantiate this essence. Back in 1986, the answer was absolutely no. That certainly
does not mean that we did not know anything about evolving one decision rule. On
the contrary, since the late 1970s, the literature known as the bounded rationality in
macroeconomics has introduced a number of techniques to evolve a single decision
rule (a single equation or a single system of equations): recursive regression, Kalman
filtering, and Bayesian updating, to name a few. Sargent (1993) made an extensive
survey of this subject. However, these techniques shed little light on how to build a
Lucasian agent, especially since what we wanted to evolve was not a single decision
rule but a population of decision rules.

In fact, it may sound a little surprising that economists in those days rarely
considered an individual as a population of decision rules, not to mention attending
to the details of its evolution. Therefore, all the basic issues pertaining to models of
the evolving population received little, if any, attention. For example, how does the
agent initialize a population of decision rules? Once the agent has a population of
decision rules, which one should they follow? Furthermore, in what ways should this
population of decision rules “be continuously under review and revision”? Should
we review and revise them one by one because they are independent, or modify
them together because they may correlate with each other? Moreover, if there are
some “new decision rules to be tried”, how do we generate (or find) these new rules?
What are the relations between these new rules and the old ones? Finally, it is also
not clear how “ rules that produce desirable outcomes should supplant those that
do not.”

There is one way to explain why economists are not interested in, and hence not
good at, dealing with a population of decision rules: economists used to derive the
decision rule for the agent deductively, and the deductive approach usually leads to
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only one solution (decision rule), which is the optimal one. There was simply no
need for a population of decision rules.

3 Genetic Algorithms and Classifier Systems

We do not know exactly when or how the idea of the evolving population of deci-
sion rules began to attract economists, but John Holland’s contribution to genetic
algorithms definitely exerted a great influence. Genetic algorithms simulate the bio-
logical evolution of a society of computer programs, each of which is represented by a
chromosome or, normally, a string of binary ones and zeros. Each of these computer
programs can be matched to a solution to a problem. This structure provides us
with an operational procedure of the Lucasian agent. First, a collection of decision
rules are now represented by a society of computer programs (a society of strings of
binary ones and zeros). Second, the review and revision process is implemented as
a process of natural selection. Table 1 shows how close the relation is between the
Lcuasian agent and the genetic algorithm.

Table 1. The Lucasian Agent and the Genetic Algorithm

Lucasian Agents Genetic Algorithms

Decision rule A string of binary ones and zeros

A collection of decision rules A collection of binary strings

Decision rule review Fitness evaluation

Good rules supplanting bad rules Selection

Generation of new rules Crossover and mutation

No equivalent Schema

While Holland’s genetic algorithms have had a great impact on computer science,
mathematics, and engineering since the early 1980s, their implications for social
sciences were not acknowledged until the late 1980s. In 1987, Robert Axelrod, a
political scientist at the University of Michigan, published the first application of
the GA to the social sciences. A year later, the first Ph.D dissertation that applied
the GA to social sciences was completed by John Miller from, not surprisingly, the
University of Michigan. The issue addressed by Axelrod and Miller is the well-known
repeated prisoner’s dilemma. In addition to these two early publications, perhaps
the most notable event that brought GAs into economics was the invited speech by
Holland at an economic conference at the Santa Fe Institute in the autumn of 1987.
Among the audience were some of the most prestigious contemporary economists,
including Kenneth Arrow, Thomas Sargent, Hollis Chenery, Jose Scheinkman, and
Brian Arthur. In his lecture entitled “The global economy as an adaptive process”,
Holland introduced to the economics circle the essence of genetic algorithms: building
blocks.

A building block refers to the specific pattern of a chromosome, i.e., an essential
characteristic of a decision rule. There is a formal word for this in the genetic algo-
rithm; it is called a schema. In the genetic algorithm, a schema is regarded as the
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basic unit of learning, evolution, and adaptation. Each decision rule can be defined
as a combination of some schemata. The review and revision process of decision rules
is nothing more than a search for the right combination of those, possibly infinite,
schemata. To rephrase Lucas’s description in Holland’s words, economic agents are
constantly revising and rearranging their building blocks as they gain experience. Not
only do genetic algorithms make the Lucasian economic agent implementable, but
they also enrich its details.

After a gradual spread and accumulation of knowledge about GA among economists,
modeling economic agents with an evolving population of decision rules finally be-
gan to increase in the 1990s. To the best of my knowledge, the first referred journal
article is Marimon et al. (1990). This paper is a follow-up research of research by
Kiyotaki and Wright (1989). In a simple barter economy, Kiyotaki and Wright found
that low storage costs are not the only reason why individuals use money. The other
one is that money makes it easier to find a suitable partner. Replacing the rational
agents in the Kiyotaki-Wright environment with artificially intelligent agents, Ma-
rimon et al., however, found that goods with low storage costs play the dominating
role as a medium of exchange.

The population of decision rules used to model each agent is a classifier sys-
tem, another contribution made by Holland in the late 1970s. A classifier system is
similar to the Newell-Simon type expert system, which is a population of if-then or
condition-action rules. However, the classical expert system is not adaptive. What
Holland did with the classifier system was to apply the idea of competition in the
market economy to a society of if-then rules. To implement market-like competition,
a formal algorithm known as the bucket-brigade algorithm, credits rules generating
good outcomes and debits rules generating bad outcomes. This accounting system is
further used to resolve conflicts among rules. The shortcoming of the classifier sys-
tem is that it cannot automatically generate or delete rules. Nonetheless, by adding
the genetic algorithm on top of the bucket brigade and the rule-based system, one
can come up with something similar to the Lucasian agent, who not only learns from
experience, but can be spontaneous and creative.

While Holland’s version of the adaptive agent is much richer and more imple-
mentable than the Lucasian economic agent, and the work was already completed
before the publication of Holland’s second book (Holland et al., 1986), its formal
introduction to economists came 5 years after the publication of Lucas (1986). In
1991, Holland and Miller published a sketch of the artificial adaptive agent in the
highly influential journal American Economic Review. The first technique to imple-
ment the Lucasian economic agent was finally “registered” in the economic science,
and genetic algorithms and classifier systems were formally added to the toolkit of
economic analysis. Is 5 years too long? Maybe not, given that “Economic analysis
has largely avoided questions about the way in which economic agents make choices
when confronted by a perpetually novel and evolving world” (Holland and Miller,
1991; p.365).

What is next? If the Lucasian economic agent is a desirable incarnation of the
economic agent in economic theory, and if Holland’s artificial adaptive agent is in-
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deed an effective implementation of it, then the follow-up research can proceed in
three directions: first, the novel applications of this new technology, second, the the-
oretical justifications of the new technology, and finally, the technical improvement
of it. That is exactly what we experienced during the 1990s.

For the first line of research, Jasmina Arifovic, a student of Sargent’s, finished
the first PhD dissertation that applied GAs to macroeconomics in 1991. It was not
until 1994, however, that she published her work as a journal article. Arifovic (1994)
replaced the rational representative firm in the cobweb model with Holland’s adap-
tive firms, and demonstrated how the adaptation of firms, driven by market forces
(natural selection), collectively make the market price converge to the rational-
expectations equilibrium price. Since then, a series of her papers has been published
in various journals with a range of new application areas, including inflation (Ari-
fovic, 1995), exchange rates (Arifovic, 1996) and coordination games (Arifovic and
Eaton, 1995).

4 The SFI Economics

Although Holland introduced this powerful toolkit to economists, he did not conduct
any economic research with this toolkit himself except for a joint work with Brian
Arthur. Holland and Arthur met in September 1987 at a physics and economics
Workshop hosted by the Santa Fe Institute. They had a great conversation on the
nature of economics. The chess analogy proposed by Arthur led Holland to believe
that the real problem with economics is “how do we make a science out of imperfectly
smart agents exploring their way into an essentially infinite space of possibilities?”
(Waldrop 1992, p.151). On the other hand, Arthur was impressed by Holland’s
approach to complex adaptive systems. Holland’s ideas of adaptation, emergence,
and perpetual novelty, along with other notions, offered illuminating revelations
to Arthur, insights he could never have had gained if he had confined himself to
theorizing on equilibria.

This new vision of economics turned out to be the approach of the Santa Fe
Institute when it established its economics program in 1988. The essence of the
SFI economics was well documented by Arthur (1992). Instead of explaining genetic
algorithms and classifier systems, which Holland and Miller (1991) had already done,
this paper put a great emphasis on motivation. Arthur eloquently argued why the
deductive approach should give way to the inductive approach when we are dealing
with a model of heterogeneous agents. His paper thus built the microfoundation
of economics upon agents’ cognitive processes such as pattern recognition, concept
formation, and hypothesis formulation and refutation. Arthur then showed how the
dynamics of these cognitive processes can be amenable to analysis with Holland’s
toolkit.

Maybe the best project to exemplify the SFI approach to economics is the ar-
tificial stock market. This research project started in 1988. Despite progress made
in 1989, journal articles documenting this research were not available until 1994.
Palmer et al. (1994) first built their stock market from a standard asset pricing
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model (Grossman and Stiglitz 1980). They then replaced the rational representative
agent in the model with Holland’s artificial adaptive agents, and then simulated the
market. The three steps they took, i.e.,

• choosing a benchmark,
• replacing the rational representative agent with artificial adaptive agents, and
• simulating the economy,

are the same as those in procedure followed by Marimon et al. (1990) and Arifovic
(1994), but unlike these two papers, the SFI has quite a different motive behind
using the idea of artificial adaptive agents.

First of all, for new-classical Economists, using artificial adaptive agents is mainly
a way of understanding how the economy will converge to the rational-expectations
equilibrium (REE) even when agents are not perfectly rational. Second, in a case
where there are multiple equilibria, this device can be further used to select one of
them. Third, when the situations get so complicated that the REE is not analytically
available, this device can be used to compute the REE. Sargent (1993), in the first
economics textbook to introduce genetic algorithms and classifier systems, gave a
clear account of all these three advantages.

The SFI economists, in contrast, find these advantages rather minor. As Arthur
(1992) stated:

Yet it is hard to find much justification for why economics should concern itself
deeply with learning and adaptive behavior. The new literature convinces us
that learning models are useful in spelling out processes of adjustment to
the standard equilibria of economic theory; and it raises fascinating questions
about what it means to recursively incorporate new information into decision
behavior. But it also leaves us with a vague feeling that learning is somehow
ancillary to economics–an add-on adjustment dynamics to the core theory,
not fully necessary perhaps to theorizing in the field though interesting in its
own right. (Ibid., p.1)

There is little doubt that adaptive behavior can lead to the REE, but to the SFI
economists, this can happen only if the problem is simple enough. For Arthur, the
relevance of genetic algorithms to economics is much more than just strengthening
the rational expectations equilibrium. He would like to see how one can use this tool
to simulate the evolution of a real economy, such as the emergence of barter trading,
money, a central bank, labor unions, and even Communists. However, he understood
that one should start with a more modest problem than building a whole artificial
economy, and this led to the artificial stock market.

Given this different motive, it is also interesting to see how the new classical and
the SFI economists programmed agents in their models, and, given their coding or
programming, how complex their agents can evolve to be. Arifovic (1994) simply
coded a decision made by firms, namely, the quantity supplied, which is just a num-
ber. She did not code the decision rules of firms. Thus, generation after generation,
firms were just crunching numbers. Nothing more complex or sophisticated can be
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expected from these firms no matter how long last. Marimon et al. (1990) was a lit-
tle different. They coded the decision rules of traders as exchange and consumption
classifiers. The condition-action space is rather simple: there are only 72 possible
classifiers in total; one can simply enumerate all of them. With such a limited vari-
ation, one can hardly expect any interesting complex behavior to evolve from this
style of application.

Palmer et al. (1994) also used the standard trinary string to code different types
of trading rules frequently used by financial market traders. Each bit of a string was
randomly drawn from the trinary alphabet {0, 1, ∗}. Each bit corresponds to the
condition part of a single trading rule. For example, the condition part of a double
moving average rule could be “The 20-period moving average of price is above the
100-period moving average.” The appropriate bit is 1 if the condition is true, and 0 if
it is false. They typically used strings of 70-80 symbols, i.e., the same as the number
of trading rules. This defines a search space with 370 to 380 possible non-redundant
classifiers. However, each artificial trader has “only” 60 classifiers in her own their
classifier system. Consider a case with 100 computerized traders: there are at most
6000 different rules being evaluated in one single trading run. Compared with the
size of the search space, the number of rules is infinitesimal. This rather large search
space is certainly beyond what Arthur (1992) called the problem complex boundary,
a boundary beyond which arriving at the deductive solution and calculating it are
unlikely or impossible for human agents, and this is where the SFI stock market
comes into play. It provides the right place to use genetic algorithms and a great
opportunity to watch evolution. As depicted by Arthur (1992):

We find no evidence that market behavior ever settles down; the population
of predictors continually coevolves. One way to test this is to take agents
out of the system and inject them in again later on. If market behavior is
stationary they should be able to do as well in the future as they are doing
today. But we find that when we “freeze” a successful agent’s predictors early
on and inject the agent into the system much later, the formerly successful
agent is now a dinosaur. His predictions are unadapted and perform poorly.
The system has changed. From our vantage point looking in, the market–the
“only game in town” on our computer–looks much the same. But internally
it coevolves and changes and transforms. It never settles. (p.24)

Maybe the real issue is not whether GA are used to strengthen the idea of REE,
or to simulate artificial life, but how we program adaptive agents. This is crucial
because different programming schemes may lead to different results. As Frank Hahn
pointed out, while there is only one way to be perfectly rational, there are an infinite
number of ways to be partially rational (Waldrop 1992 pp. 250-251). This unlimited
“degree of freedom” of programming adaptive agents was also noticed by Sargent
(1993): “This area is wilderness because the researcher faces so many choices after
he decides to forgo the discipline provided by equilibrium theorizing.” (p.2) Arthur
would consider letting the agents start off perfectly stupid, and get smarter and
smarter as they learn from experience. Now, comes the core of the issue: how to
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program agents so that they can be initialized as perfectly stupid individuals, but can
potentially get very smart. To answer this question, let us go back to the origin of
genetic algorithms.

5 Genetic Programming

It is interesting to note that the binary strings initiated by Holland were originally
motivated by an analogy to machine codes. After decoding, they can be computer
programs written in a specific language, say, LISP or FORTRAN. Therefore, when
a GA is used to evolve a population of binary strings, it behaves as if it is used to
evolve a population of computer programs. If a decision rule is explicit enough not
to cause any confusion in implementation, then one should be able to write it in
a computer program. It is the population of computer programs (or their machine
codes) which provides the most general representation of the population of decision
rules. However, the equivalence between computer programs and machine codes
breaks down when what is coded is the parameters of decision rules rather than
decision rules (programs) themselves, as we often see in economic applications with
GAs. The original meaning of evolving binary strings as evolving computer programs
is lost.

The gradual loss of the original function of GAs has finally been noticed by John
Koza. In 1987, when John Koza was on a London stopover after attending an AI
conference in Italy, a friend handed him the proceedings of a conference on genetic
algorithms. Impressed with the variety of applications, he nonetheless noticed a
glaring omission: there was a lack of ways to generate programs. He then began to
work on a system to breed computer programs genetically. He chose the language
LISP as the medium for the programs created by genetic programming (GP) because
the syntax of LISP allows computer programs to be manipulated easily like the
bitstrings in GAs, so that the same genetic operations used on bitstrings in GAs can
also be applied to GP. His breakthrough, however, “ was deciding to identify the
units of crossover not as single characters, or even as lines in a computer program,
but as symbolic expressions (S-expressions) written in the LISP syntax.” (Levy 1992
pp 176-177; italics added.)

5.1 LISP S-expression

LISP S–expressions consist of either atoms or lists. Atoms are either members of
a terminal set, that comprise the data (e.g., constants and variables) to be used
in the computer programs, or they are members of a function set that consists of
a number of prespecified functions or operators that are capable of processing any
data value from the terminal set and any data value that results from the application
of any function or operator in the function set. Lists are collections of atoms or
lists, grouped within parentheses. In the LISP language, everything is expressed
in terms of operators operating on some operands. The operator appears as the
left-most element in the parentheses and is followed by its operands and a closing
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(right) parenthesis. For example, the S-expression ( + X 3 ) consists of three atoms:
from the left-most to right-most they are the function “+”, the variable X and the
constant 3. As another example, ( × X ( − Y 3 ) ) consists of two atoms and a list.
The two atoms are the function “×” and the variable “X,” which is then followed
by the list ( − Y 3 ).

LISP was invented in the late 1950s by John McCarthy at MIT as a formalism
for reasoning about the use of certain kinds of logical expressions, called recur-
sion equations. LISP possesses unique features that make it an excellent medium
for complex compositions of functions of various types, handling hierarchies, recur-
sion, logical functions, self-modifying computer programs, self-executing computer
programs, iterations, and structures whose size and shapes are dynamically deter-
mined. The most significant of these features is the fact that LISP descriptions of
processes (routines) can themselves be represented and manipulated as LISP data
(subroutines). As Koza (1992a) demonstrated, LISP’s flexibility in handling proce-
dures as data makes it one of the most convenient language in existence for exploring
the idea of evolving computer programs genetically, however, Koza and others have
noted that the use of LISP is not necessary for genetic programming; what is im-
portant for genetic programming is the implementation of a LISP–like environment,
where individual expressions can be manipulated like data, and are immediately
executable.

5.2 Symbolic Regression

The distinguishing feature of GP is manifested by its first type of application in
economics, known as symbolic regression. In symbolic regression, GP is used to
discover the underlying data-generation process of a series of observations. While
this type of application is well known to econometricians, the perspective from GP
is novel. As Koza (1992b) stated,

An important problem in economics is finding the mathematical relation-
ship between the empirically observed variables measuring a system. In many
conventional modeling techniques, one necessarily begins by selecting the size
and shape of the model. After making this choice, one usually then tries to
find the values of certain coefficients required by the particular model so as to
achieve the best fit between the observed data and the model. But, in many
cases, the most important issue is the size and shape of the model itself. (p.57;
italics added.)

Econometricians offer no general solution to the determination of size and shape
(the functional form), but for Koza, finding the functional form of the model can
be viewed as searching a space of possible computer programs for the particular
computer program which produces the desired output for given inputs.

Koza employed GP to rediscover some basic physical laws from experimental
data, for example, Kepler’s third law and Ohm’s law (Koza 1992a). He then also
applied it to eliciting a very fundamental economic law, namely, the quantity the-
ory of money or the exchange equation (Koza 1992b). Genetic programming was
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thus formally demonstrated as a knowledge discovery tool. This was probably the
closest step ever made toward the original motivation of John Holland’s invention:
“Instead of trying to write your programs to perform a task you don’t quite know
how to do, evolve them.” Indeed, Koza did not evolve the parameters of an arbitrary
chosen equation; instead, he evolved the whole equation from scratch. This style of
application provides an evolutionary determination of bounded rationality.

Koza (1992b) motivated a series of economic applications of genetic programming
in the mid-1990s. Chen and Yeh (1996a) applied genetic programming to rediscover-
ing the efficient market hypothesis in a financial time series. Chen and Yeh (1997a)
then moved one step forward to propose an alternative formulation of the efficient
market hypothesis in the spirit of the Kolmogorov complexity of algorithms for pat-
tern extraction from asset price data. Chen and Yeh (1997a) and Szpiro (1997a)
employed GP to discover the underlying chaotic laws of motion of time series data.
Neely et al. (1997) and Allen and Karjalainen (1999) also adopted a GP approach
to discover profitable technical trading rules for the foreign exchange market and
the stock market, respectively. Another area in which GP was actively applied is
option pricing. Chen et al. (1999) used GP for hedging derivative securities. Keber
(1999) showed that genetically determined formulas outperformed most frequently
quoted analytical approximations in calculating the implied volatility based on the
Black-Scholes model. Chidambaran et al. (2000a) and Keber (2000) derived approx-
imations for calculating option prices and showed that GP-models outperformed
various other models presented in the literature.

Needless to say, in the future, one can expect many more applications of GP
to the automatic discovery of economic and financial knowledge (automatic gener-
ation of economic and financial knowledge in terms of their computer-programmed
representations). However, its significant contribution to economics should not be
mistaken for a perfect solution to knowledge discovery, data mining, or, more gen-
erally, function optimization. In a nutshell, genetic programming should be used to
grow evolving hierarchies of building blocks (subroutines), the basic units of learn-
ing and information, from an immense space of subroutines. All evolution can do
is look for improvements, not perfection. John Holland believed that these evolv-
ing hierarchies are generic in adaptation, and can play a key role in understanding
human learning and adaptive processes. Hence, the value of GP to economists can
best be seen as a model of human learning. From this standpoint, one may ask how
GP, as a model of human learning, can enrich our understanding of that particular
subject. This is how we approach the issue. Considering GP as a connection between
adaptive agents and their surroundings, from the agent’s viewpoint, we shall first
show that GP can give us a “subjective” measure of the complexity of the agent’s
surroundings, and being a model builder, we will then argue that the “subjective”
measure can be “objectively” determined by the culture of the society where the
agent is situated.
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6 Genetic Programming and Human Learning

6.1 Program Complexity of an Agent’s Surroundings: A Subjective
Measure

We shall exemplify the first assertion based on Chen and Yeh (1997a). They em-
ployed GP to discover the underlying law of motion for some simple chaotic time
series. They considered the following three chaotic laws of motion.

xt+1 = 4xt(1− xt), xt ∈ [0, 1] ∀t (1)

xt+1 = 4x3
t − 3xt, xt ∈ [−1, 1] ∀t (2)

xt+1 = 8x4
t − 8x2

t + 1, xt ∈ [−1, 1] ∀t (3)

These three laws of motion are different in their algorithmic size, i.e., the length of
their symbolic expression. To see this, we rewrite each of the equations above into
the corresponding LISP S-expression.

( ∗ ( 4 ∗ ( xt ( − 1 xt ) ) ) ) (4)

( − ( ∗ 4 ( ∗ xt ( ∗ xt xt ) ) ) ( ∗ 3 xt ) ) (5)

( + ( − ( ∗ 8 ( ∗ xt ( ∗ xt ( ∗ xt xt ) ) ) )

( ∗ 8 ( ∗ xt xt ) ) ) 1 ) (6)

The length of a LISP S–expression is determined by counting the number of elements
(atoms) in the string that makes up the S–expression from the left-most to the right-
most position. From Eqs. 4 to 6, the lengths of the LISP S-expressions are 7, 11, and
16 respectively. Therefore, in terms of algorithmic complexity, Eq. 1 is the simplest,
while Eq. 3 is the most complex. Chen and Yeh then examined how this difference
might affect the performance of GP.

By setting the initial value x0=0.213, a time series composed of 50 observations
is generated for Eqs. (1)-(3) respectively. Call them time series 1, 2, and 3. These
time series serve as the training data for GP. Four experiments were implemented for
each series. For each experiment, they let GP run for 1000 generations. For series 1
and 2, GP was able to discover the underlying law of motion in all four experiments.
However, the number of generations required for this discovery was different. For
series 1, it took 7, 12, 14, and 19 generations, whereas for Series 2, it took 29, 37,
37, and 70 generations. As for series 3, GP failed to discover the law of motion in
three out of the four simulations, and for the only success the law of motion was
discovered at the 151th generation. These experiments show the effect of the length
of the LISP S-expression (the algorithmic complexity of the program) on discovery.
A simple hypothesis was then proposed in their paper: The chance of discovering
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simple (short) programs in a small number of generations is relatively higher than
that of discovering long (complex) programs.

While this hypothesis sounds intuitive, a formal test of it is not that straight-
forward. One of the technical reasons is that the complexity of a program is not
independent of the terminal set or the function set initially given by the user. To see
this, let us go back to the chaos experiment discussed above. The function set orig-
inally employed by Chen and Yeh (1997a) is {+,−,×,%}, and the terminal set is
{xt,R}, where R is the ephemeral random constant.1 If we add the function “cubic”
to the function set, then the minimal description of Eq. 2 is

( − ( ∗ 4 ( cubic xt ) ) ( ∗ 3 xt ) ) (7)

and the program length is only eight. Alternatively, if we add x3
t to the terminal set,

then the minimal description becomes

( − ( ∗ 4 x3
t ) ( ∗ 3 xt ) ) (8)

In this case, the program length of Eq. 2 is even shorter and is seven, which is the
same as that of Eq. 1. It is therefore likely to discover the hidden law of series 2
as fast as to discover that of series 1. So depending on the user-supplied function
set and terminal set, a mathematical function can have different program lengths.
Therefore, a refinement of the hypothesis proposed above is given as follows. Let us
define the program complexity of a mathematical function with respect to a given
function set and terminal set as the length of its minimal description. Then the
chance of discovering the mathematical function with the given function set and
terminal set in a finite number of generations is an inverse function of its program
complexity.

6.2 Complex or Simple: An Objective Measure Based on Culture

While the omission of relevant functions and terminals can make the description of
a hidden law (a mathematical function) extraordinarily complex and hence difficult
to learn, this does not suggest that one should start with a sizeable function set and
terminal set. Indeed, the inclusion of irrelevant functions or terminals can enlarge
the search space, which may make a target more difficult to reach. Therefore, while
large function and terminal sets are more likely to reduce the program complexity of
a mathematical function and make it easier to find, the larger search space induced
may have the net effect of making the chance of discovering it uncertain. Perhaps
there is no need for users to worry about whether their choice of function sets and
terminal sets is “optimal”. As we have already mentioned, GP is better regarded as
a simulator which simulates human thinking and discovery processes. If humans can
make mistakes and learn very slowly in some situations, there is no point in asking
GP to be a panacea. As a simulator, what GP can do is to spell out the factors
affecting discovery, such as the program complexity discussed above. In addition,
1 See Koza (1992a) for details of the ephemeral random constant.
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Szpiro (2000) gave a thorough discussion of a list of factors some of which were
found to be of importance in his two earlier studies (Szpiro 1997a,b). These factors
are the size of the function set, the terminal set, the initial population, the mutation
rate, and the hold of the best-so-far program.

Let us review the first two factors on this list, namely, the function set and the
terminal set. A function in the function set can be regarded as a subroutine, and
a terminal in the terminal set can be treated as a concept. Those subroutines and
concepts together represent the culture of a society. An advanced society may have
accumulated a large number of well-structured subroutines with highly constructive
concepts. To model an artificial adaptive agent in this society, one need not start
with a primitive function and terminal set. For example, to model an artificial adap-
tive agent in modern financial markets, one can assume the availability of advanced
pricing formulas, and start from there. In their study of option pricing formulas,
Chidambaran et al. (2000b) included the Black-Scholes model, as an existing sub-
routine, into their function set. The formulas generated by GP for the equity options
were then adaptations of the Black-Scholes model.

Since sizeable function set and terminal sets induces a huge search space for the
agent, it is desirable to have a large number of programs in the initial population. The
combined effect of a large population size and large function and terminal sets is just
a corollary of an advanced civilization: to tackle a problem, citizens of an advanced
civilization tend to come up with a lot more ideas (alternatives) than citizens in a less
developed society. Nonetheless, after a few generations the population of programs
generally becomes very homogeneous, and hence the effective population size is
largely reduced. In terms of human behavior, this is not unexpected. If an agent is
put down in a stable situation, they will evolve to rely on a few fixed rules, usually
called routines, without much diversity.

However, a problem technically known as premature convergence or trapping into
a local optimum can be another consequence of the reduction in diversity. While this
is also not inconsistent with human behavior, considering that humans are frequently
deceived by their eyes and intuitions, it is important to introduce novelties into
human cognition. In GP, novelties are introduced into an agent’s cognition via the
crossover operator and the mutation operator. In most applications in economics
and finance, the crossover rate and mutation rate are set as constants. While genetic
programmers from an engineering background has evidenced the significance of not
setting these as constants and Szpiro (2000) also made a similar suggestion, how
those flexible designs can meaningfully be interpreted as a real human reasoning
process is an issue yet to be addressed.

6.3 Features of Ideas-Generation Processes

While by varying the size of the initial population, the terminal set, and the function
set one is able to capture artificial agents initially endowed with different civiliza-
tions, the capacity of GP to simulate human behavior has to be judged by the process
of ideas being generated. Note that we are interested not only in the final outcome
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(the discovery), but also in the process converging to the outcome. The quotation
below may help explain what this criterion means.

Not only did the genetic programming system manage to “rediscover” Ke-
pler’s famous third law,..., but also, as the system climbed up the fitness
scale, one of its interim solutions corresponds to an earlier conjecture by Ke-
pler, published ten years before the great mathematician finally perfected the
equation! (Levy 1992 p.179; italics added.)

Here, not only did GP discover Kepler’s third law in its mathematically perfected
version, but along the way it also discovered the conjecture, i.e., the version before
the perfection. Of course, there is no point in expecting GP always to be so precise
in replicating a discovery process, since the discovery process itself may be highly
random, and hence not unique. Instead, as a first approximation, it would be crucial
to see whether the ideas-generation process driven by GP is similar in spirit to the
human reasoning process. For this purpose, it would be useful to summarize certain
general features of human reasoning.

Generally speaking, the human reasoning process can be characterized as a pro-
cess from the simple to the complex, from the major to the minor (from the heavy to
the light), and from the linear to the nonlinear. If the words “simple” and “complex”
can be formally defined in terms of program complexity, then the ideas-generation
process driven by GP is indeed a process from the simple to the complex. It is mainly
due to the trees-generation mechanism, which implicitly follows a Possion-like pro-
cess; therefore, the search process is initially biased toward simple programs. Unless
simple programs fail to work, complex programs would find it difficult to become
popular in the initial stage. The feature of “simple-to-complex” can be found quite
extensively in the videotape accompanying the book by Koza (1992a) (Koza and
Rice 1992).

Secondly, if the meanings of “major” and “minor” are consistent with the fitness,
i.e., the major part corresponds to a much larger fitness than the minor part, then
the ideas-generation process driven by GP should present the second feature, from
the major to the minor. In a practical application, it may get stuck in the major part
and be unable to move further, but it is unlikely to be locked in the minor part.2

While the second feature has not been well acknowledged or studied by genetic
programmers, it has motivated a few performance boosters for GP, such as the two-
stage symbolic regression, cross breeding, etc. (Szpiro 2000).

Maybe the most difficult part for GP to satisfy is the third property, “from linear
to nonlinear.” As mentioned above, GP tends to start with simple functions, and
then gradually moves toward complex functions if necessary. Nonetheless, GP is
unable to distinguish a simple linear function from a simple nonlinear function. For
example, the function ex is as simple as β1x, even though the latter is linear and the
former is not. As a result, the chances of having ex or β1x are basically the same in

2 For example, using the Rossler attractor with a regular fitness function, Szpiro (2000) showed that GP
could “discard” 90% of observations simply because they are minor. By doing that, GP could keep track
of the remaining 10% even though they were sometimes described as outliers.
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the initial generation of ideas. However, if this is the case, then given the density of
linear functions, the probability of generating a linear function in the initial stage
is rather small. In other words, just as it is biased toward simple functions, GP is
also biased toward nonlinear functions.

The bias toward nonlinearity has created a lot of difficulties in the modeling
of human learning and adaptation. For example, regular GP often leads to overly
complex nonlinear functions. Such nonlinear functions, comprised of complex combi-
nations of functions and indicators, are often difficult to understand and interpret.
In many applications, deciphering the winning programs is an almost impossible
task. As a result, it might be futile to use these programs (rules) to understand the
processes by which humans behave. The usefulness of the GP method for modeling
human learning and adaptation thus seems quite restricted a priori.

One way to fix this problem is to make the terminal set and the function set
adaptive also. One may start with a primitive function and terminal set at the
beginning of learning, and may enlarge it later when obliged to do so. In this way,
we are able to choose a convincing sequence of function sets and terminal sets so
that the sequence of rules generated can mimic human learning more closely. For
example, if one considers that humans generally start their search from a space of
linear functions, not just simple functions, then one can first include only “+” and
“×” into their function set. By further restricting the generation rules appropriately,
only functions in the form of Eq. (9) will appear, and other complex and nonlinear
functions will not show up at this stage.

a0 +
n∑

i

aixi (9)

7 Concluding Remarks

This paper considers an important contribution initiated by John Holland and fur-
ther extended by John Koza. Based on a biological foundation, an artificial adaptive
agent is introduced to economic modeling. This agent is characterized by its capacity
for autonomous discovery (autonomous programming ability). This idea has been
extensively applied to economics and finance, and we have reviewed a few of these
cases. Owing to limitations of space, what has not been covered in this paper is
the study of the behavior of a collection of GP-based agents in a market-like en-
vironment. Studies in this area can be found in Andrews and Prager (1994), Chen
and Yeh (1996b, 1997b, 1999, 2000a,b), and Lensberg (1999). This subject will be
covered in the near future.
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