
Toward an Effective Implementation of Genetic
Algorithms in Financial Data Mining:

Retraining plus Validating �

Shu-Heng Chen1, Chien-Fu Chen2 and Ching-Wei Tan3

1 National Chengchi University, Taipei, Taiwan 11623
2 National Chengchi University, Taipei, Taiwan 11623
3 National Chengchi University, Taipei, Taiwan 11623

Abstract. Given the evidence of dynamic landscapes shown in Chen
and Chen (1998), this paper evaluates the contribution of the retrain-
ing scheme and the validation scheme to financial data mining. While
experimental results show that these two schemes can be helpful, knowl-
edge about the effective implementation of these schemes, the setting of
parameter values in particular, remains to be discovered.

1 Motivation and Introduction

Chen (1998a) highlighted several key underlying features which may contribute
to successful financial data mining. Two of these features were actually tested
in Chen and Chen (1998). They found that, while the NFL property fails to
hold (good news for financial data mining), the landscape is dynamic in a highly
complex manner (bad news, unfortunately!). The implications of these mixed
results are two-fold. First, GAs can be potentially helpful. Second, due to the
complex dynamics of landscapes, the design of an effective GA is far from trivial.
In the literature, there are at least two approaches to coping with dynamic

landscapes. The first one is to make GAs adaptive. The second is to prevent GAs
from overfitting the data or to enhance the generalization capability of GAs. We
consider both approaches correct directions to follow when the landscape is time-
variant. In particular, when the pattern of the landscape dynamics are complex
or stochastic, then the second approach, well accepted in the area of machine
learning, may be more promising. Techniques such as the early stopping valida-
tion method (Nelson and Illingworth, 1991) and v-fold cross validation (Hjorth,
1994) are frequently used to tackle the issue of overfitting.
In this paper, we run a competition among three different styles of GAs,

namely,

– the ordinary genetic algorithm (OGA),
– the recursive genetic algorithm (RGA),
– the validated recursive genetic algorithm (VGA).

� Research support from MasterLink Securities Corporation is gratefully
acknowledged.

The purpose of this competition is two-fold. First, from the OGA to RGA, we
would like to see whether there is any advantage of using the retraining scheme to
cope with the dynamic landscape. The word “Recursive” used here has exactly
the same meaning as the “recursive” used in the recursive estimators. Second,
from the OGA to VGA, we would like to see the significance of hybridizing a
retraining scheme with a validation scheme. In sum, given the statistical features
found in Chen and Chen (1998), this paper attempts to give an empirical test
for the effectiveness of using the retraining scheme and the validation scheme to
cope with the dynamic landscape.

2 The Ordinary Genetic Algorithm (OGA)

The main idea of using GAs to evolve trading strategies is to encode the variable
one wants to optimize, e.g., the trading strategy, as a binary string and to work
with this string. In Chen and Chen (1998), we have already shown how a trading
strategy can be parameterized, and how this parameterized trading strategy can
be encoded by a binary string. Specifically, each trading strategy in Chen and
Chen (1998) is a 42-bit string. The size of their population space D is hence 242.
Given this structure, genetic algorithms can be briefly described as follows.

– The genetic algorithm maintains a population of individuals,

Pi = {di
1, ..., d

i
n} (1)

for iteration i, where n is population size. Usually, n is treated as fixed during
the whole evolution. Clearly, Pi ⊂ D.

– Each individual di
j represents a trading strategy at hand, and is implemented

with the data structure Z described in Chen and Chen (1998), Equation 1.
– Each trading strategy di

j is evaluated by the fitness given by Equations (4)-
(7) in Chen and Chen (1998).

– (Selection Step):
Then, a new generation of population (iteration i+1) is formed by randomly
selecting individuals from Pi in accordance with a selection scheme.

Ps(Pi) = (s1(Pi), s2(Pi), ..., sn(Pi)) (2)

where

sk : {
(D

n

)
→ D}, (3)

k = 1, 2, ..., n, and
(D

n

)
is the set of all populations whose population size is

n.
– (Alteration Step):
Some members of the new population undergo transformations by means of
genetic operators to form new solutions.

Table 1. Tableau of OGA

Number of Generation 1000

Population Size 100

Selection Scheme Rank-Based Selection

Rank Minimum 0.75

Crossover Style One-Point

Crossover Rate 0.6

Mutation Rate 0.001

• (Crossover:) We use one-point crossover ck, which creates new individ-
uals by combining parts from two individuals.

Pc(Pi) = (c1(Pi), c2(Pi), ..., cn
2
(Pi)) (4)

where
ck : D ×D → D ×D, (5)

k = 1, 2, ..., n
2 .• (Mutation:) We use bit-by-bit mutation mk, which creates new individ-

uals by a small change in a single individual.

Pm(Pi) = (m1(Pi), m2(Pi), ..., mn(Pi)) (6)

where
mk : D → D, (7)

k = 1, 2, ..., n.
– After some number of generations, say T , the algorithm terminates–it is
hoped that a representative from the last population can represent a near-
optimum solution. The representative trading strategy considered in this
paper is the one whose fitness value is the median of the sample, i.e.,

dT
med = arg{median[Fitness(PT)]} (8)

The detailed description of each genetic operators Ps, Pc, Pm can be found
in Bauer (1994). The control parameters employed to run the OGA is given in
Table 1.

3 Retraining Scheme: The RGA

The recursive genetic algorithm is an adaptive version of the OGA, i.e., we endow
the OGA with a retraining scheme. The retraining scheme considered here is
motivated by Chen and Lin (1997). Chen and Lin (1997) studied two versions
of RGAs, one with unlimited memory size and the other with fixed memory size.
While each version has its theoretical support, we only consider the one with
fixed memory size here. This version has two characteristics.

– Firstly, it has a periodical retraining schedule, and the period of a retraining
cycle is predetermined. In other words, it will routinely restart OGA learning
after a fixed number of periods, say n2.

– Secondly, upon retraining, the data set is refreshed first. It will include all
the new observations which are not available in the last training. But, since
the memory size is fixed, this inclusion is inevitably accompanied by the
exclusion of an equal number of the most outdated observations.

n1

n1n2

n1n2

�

�

�

Fig. 1 The Data Structure of RGA

Figure 1 depicts the data structure used in the RGA. Here, n1 refers to the
memory size and n2 the period of a retraining cycle. For convenience, we will
denote the RGA with parameters n1 and n2 by RGA(n1, n2).

4 Generalization-Enhancing Scheme: The VGA

In the RGA, the termination criterion for a run is determined by the parameter
“Number of Generation” (Table 1), and in this paper it is arbitrarily set to be
1000. It is not clear whether or not the choice of this number is optimal. To avoid
overlearning (poor generalization) or underlearning, the early stopping validation
method is adopted here. The procedure of this method is described below.

1. We first divide available data into the training and validation sets.
2. We then use the training set to train and run the OGA initially for m1

generations.
3. Set NGEN = m1.
4. Use the validation set to calculate the fitness of PNGEN . Denote it by V −

Fitness(PNGEN).
5. Run another m2 generations.
6. Set NGEN = NGEN +m2.
7. Use the validation set to calculate the fitness of PNGEN .
8. Compute the difference:Diff =Median[V −Fitness(PNGEN)]−Median[V −

Fitness(PNGEN−m2)]

 n1 n3 n2

 n1 n3 n2

 n1 n3 n2

 �

Fig. 2. The Data Structure of the VGA

9. Stop if Diff ≤ 0; otherwise go back to Step 5.
Figure 2 depicts the data structure used in the VGA. In addition to n1 and

n2 introduced in the RGA, n3 is the size of the validation set. In sum, the content
of a VGA is concretized by the five parameters: n1, n2, n3, m1 and m2, and we
will use V GA(n1, n2, n3, m1, m2) to denote a specific VGA.

5 Performance Competition

Evaluating the performance of different trading strategies is by no means a simple
task. Chen (1998b) classified all performance criteria into two kinds: one which
explicitly incorporates the efficient frontier in the test, and one which does not.
For example, the Sharpe ratio and Jessen’s alpha are criteria of the first kind,
and the mean return is a criterion of the second. While from the theoretical
viewpoint the criteria based on the efficient frontier seem to be more rigorous,
many practitioners still only focus on the mean return. This paper only uses
the accumulated return at the termination date (9/27/97) as the performance
criterion. Volatility or risk has not been taken into account at this stage.
The accumulated return was defined in Chen and Chen (1998) (Equations

4-7). Given this criterion, the r600
1 (Equation 7) of the OGA, RGAs and VGAs

are computed. As described in Chen and Chen (1998), there are 20 different
data sets of Dijk (i < j < k, i, j, k = 1, ..., 6). So, given a GA, we first compute
the r600

1 for each Dijk. We then average the r600
1 over these 20 sets of Dijk. The

results are given in Table 2.
Among all GAs considered, the non-adaptive GA is the worst performer. By

Theorem 6 of Chen (1998), the non-adaptive GA (OGA) is doomed to fail if D
is not well-ordered enough. Since the empirical results found in Chen and Chen
(1998) show evidence of this possibility, the poor performance of the OGA is
not surprising. This result lends support to the use of the retraining scheme
and the validation scheme when landscapes are dynamic. For example, by using
RGAs, r600

1 can increase up to -159.52 from -660.28, and by using VGAs, r600
1

can further increase to 593.63. However, Table 2 also cautions us about the fact
that the difference made by using the retraining scheme and the generalization-
enhancing scheme is very sensitive to the setting of parameters. For example,
setting n2 at 24 can generally lead to a higher accumulated return than others.

Table 2. The Accumulated Return of GAs: 8/29/95- 9/27/97

Style of GAs r600
1 Rank

OGA -660.28 24/30

RGA (72, 6) -642.81 23/30

RGA (72, 12) -333.41 19/30

RGA (72, 24) -159.52 16/30

RGA (72, 40) -352.77 20/30

VGA (72, 24, 24, 200, 100) 431.71 9/30

VGA (72, 24, 24, 200, 100)[∗,20] 9.68 15/30

VGA (72, 24, 24, 200, 100)[∗,10] 201.14 13/30

VGA (72, 24, 24, 50, 10) 364.14 11/30

VGA (72, 24, 24, 10, 10) 247.12 12/30

VGA (72, 40, 40, 200, 100) -528.93 22/30

VGA (72, 24, 24, 200, 10) -302.63 18/30

VGA (72, 24, 24, 100, 10) -254.24 17/30

VGA (72, 40, 40, 10, 10) 593.63 8/30

RGA(n1, n2) and V GA(n1, n2, n3, m1, m2) are defined in Sections 3 and 4 respectively.
[∗, n] indicates that, in the initial generation, n strategies are generated by using
experts’ knowledge. The third column gives the the rank of GAs among 30 selected
trading strategies, including 14 GAs given in this table and 16 strategies from experts.

Nevertheless, because of limited trials, it is difficult to give a rigorous evaluation
of the setting of parameter values.
To see the relative performance of GAs, we also include 16 trading strategies

suggested by experts in the MasterLink Securities Corporation. The last column
of Table 2 gives the rank of GAs among these 30 trading strategies. While GAs
rank in the middle, the average accumulated return of the 14 GAs (-99.08)
significantly beats that of the 16 experts’ rules (-727.03).

6 Concluding Remarks

The experiments conducted in this study show that when landscapes are dy-
namic, the use of the retraining scheme (RGA) and the generalization-enhancing
scheme (VGA) can be potentially helpful. However, to take full advantage of
these two schemes, we have to know more about the setting of parameter val-
ues. It remains a challenging task to demonstrate that those parameter values
are functions of some extractable statistical properties. Until these functional
relations can be constructed, GAs will still be a black box.

References

1. Chen, S.-H. (1998a), “Can We Believe That Genetic Algorithms Would Help with-
out Actually Seeing Them Work in Financial Data Mining?: Part I, Theoretical

-2000

-1000

0

1000

2000

3000

8/
29

/9
5

10
/4

/9
5

11
/9

/9
5

12
/1

4/
95

1/
20

/9
6

2/
29

/9
6

4/
8/

96

5/
10

/9
6

6/
12

/9
6

7/
17

/9
6

8/
21

/9
6

9/
23

/9
6

11
/1

/9
6

12
/5

/9
6

1/
11

/9
7

2/
20

/9
7

3/
25

/9
7

4/
30

/9
7

6/
3/

97

7/
8/

97

8/
9/

97

9/
13

/9
7

OGA VGA(72, 24, 24, 200, 100) VGA(72,40,40,10,10)

Fig. 3. The Accumulated Returns of GAs

Foundations,” AI-ECON Research Group Working Paper Series # 9803, National
Chengchi University.

2. Chen, S.-H. (1998b), “Criteria to Evaluate the Success of Data Mining in Finance
and the Validity of Efficient Market Hypothesis,” AI-ECON Research Group Work-
ing Paper Series # 9806, National Chengchi University.

3. Chen, S.-H, and C.-F Chen (1998), “Can We Believe That Genetic Algorithms
Would Help without Actually Seeing Them Work in Financial Data Mining?: Part
II, Empirical Tests,” AI-ECON Research Group Working Paper Series # 9804,
National Chengchi University.

4. Chen, S.-H. and W.-Y. Lin (1997), “Financial Data Mining with Adaptive Ge-
netic Algorithms,” in T. Philip (ed.), Proceedings of the ISCA 10th International
Conference, pp. 154-159.

5. Hjorth, J. S. U. (1994), Computer Intensive Statistical Methods Validation, Model
Selection, and Bootstrap, London: Chapman & Hall.

6. Nelson, M. C. and W. T. Illingworth (1991), A Practical Guide to Neural Nets,
Reading, MA:Addison.

This article was processed using the LATEX macro package with LLNCS style

