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Abstract. This paper extends the N-person IPD game into a more in-
teresting game in economics, namely, the oligopoly game. Due to its mar-
ket share dynamics, the oligopoly game is more complicated and is in
general not an exact N-person IPD game. Using genetic algroithms, we
simulated the oligopoly games under various settings. It is found that,
even in the case of a three-oligopolist (three-player) game, collusive pric-
ing (cooperation) is not the dominating result.
Keywords: Oligopoly, Cartels, Price Wars, Genetic Algorithms, State-
Dependent Markov Chain, Coevolution.

1 Motivation and Introduction

In the past, the prisoner’s dilemma was frequently applied to the study of collu-
sive pricing or predatory pricing. However, this application is largely restricted to
the duopoly industry because most economists are only familar with the 2-person
Iterated Prisoner’s Dilemma (IPD) game. In terms of the oligopoly industry, the
more relevant one should be the n-person IPD game, which economists are less
familiar with. Recently, the n-person IPD game was studied in Yao and Darwen
(1994). Using genetic algorithms (GAs), they showed that cooperation can still be
evolved in a large group, but that it is more difficult to evolve cooperation as the
group size increases. Considering this result as a guideline for the oligopoly pric-
ing probelm, then what the n-person IPD game tells us is that when the number
of oligopolists is small, say 3, it is very likely to see the emergence of collusive
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pricing (cooperation). However, real data usually shows that, even in a three-
oligopolist industry, the observed pricing pattern is not that simple. (Midgely,
Marks and Cooper, 1996)

– First, while collusive pricing is frequently observed, it is continually inter-
rupte by the occurence of predatory pricing (price wars).

– Second, it is not always true that oligopolists are either collectively charging
high prices (collusive pricing) or low prices (price wars). In fact, a dispersion
of prices can persistently exist, i.e., some firms are charging a higher price,
whilst others are charging a lower price.

– Third, the firms who charge a high price may switch to a low price in a later
stage, and vice versa.

These features seem to be difficult to be displayed in 3-person IPD games (See
Yao and Darwen,ibid, Figure 5). Therefore, one may reasonably conject that
the oligopoly game is not an exact n-person IPD game. While they share some
common features, there are other essential elements which distinguish these two
games.

In this paper, we consider the payoff matrix determined by the market share
dynamics as such an essential element. In Section 2, we propose a very simple
oligopoly game with 3 oligopolists. We then in Section 3 show that this setup
disqualify the oligopoly game from being an n-person IPD game. Due to the
non-equivalence of these two games, we use genetic algroithms to simulate the
evolution of oligopoly games in Sections 4 and 5. The simulation results are given
in Section 5, followed by concluding remarks in Section 6.

2 The Analytical Model

For simplicity, an oligopoly industry is assumed to consist of three firms, say
i = 1, 2, 3. At each period, a firm can either charge a high price Ph or a low
price Pl. Let at

i be the action taken by firm i at time t. at
i = 1 if the firm i

charges Ph and at
i = 0 if it charges Pl. To simplify notations, let St denote the

row vector (at
1, a

t
2, a

t
3). To characterize the price competition among firms, the

market share dynamics of these three firms are summarized by the following
time-variant state-dependent Markov transition matrix,

Mt =



mt

11 m
t
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t
13

mt
21 m

t
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t
23

mt
31 m

t
32 m

t
33


 (1)

where mt
ij , the transition probability from state i to state j, denotes the pro-

portion of the customers of firm i switching to firm j at time period t. Let nt
i

(i=1,2,3) be the number of customers of firm i at time period t, and Nt the row
vector [nt

1, n
t
2, n

t
3]. Without loss of generality, we assume that each consumer will

purchase only one unit of the commodity. In this case, Nt is also the vector of
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quantities consumed. With Nt and Mt, the customers of each firm at period t+1
can be updated by:

Nt+1 = NtMt (2)

To see the effect of price competition on the market share dynamics, the
transition probabilities mt

ij are assumed to be dependent on the pricing strategy
vector St. If three firms charge the same price, then Mt is an identity matrix.
Furthermore, if firm i charges Ph, then it will lose α

2 percent of its consumers
each to firms j and k, who charge Pl. Furthermore, if firms i and j charge Ph,
then they each will lose α percent of their consumers to firm k, who charges Pl.

Given these state-dependent transition matrices, Equation (2) can be rewrit-
ten as:

Nt+1 = NtMt(St), (3)

where St = (at
1, a

t
2, a

t
3) and at

i ∈ {0, 1}.
Equation (3) summarizes the intra-industry competition given a number of

customers nt =
∑3

i=1 n
i
t. The next step of our modeling is to endogenize nt by

setting nt+1 as a function of St. More precisely,

nt+1 = nt(1 + β), β = β(St) (4)

The β(.) function explicitly shows how the market share of the industry can
be affected by its pricing strategies St. The simple β(.) function considered in
this paper is as follows.

β =




δW , if
∑3

i=1 ai = 0,
δw, if

∑3
i=1 ai = 1,

δc, if
∑3

i=1 ai = 2,
δC , if

∑3
i=1 ai = 3.

(5)

where δW ≥ δw ≥ δc ≥ δC .
Given Equations (3)-(5), the objective of oligopolists is to maximize their

profits or the present value of the firm, and the profits for a single period is
given by Equation (6).

πs
i = (P s

i − C)ns
i (6)

where P s
i is the price charged by firm i at period s, ns

i number of customers,
and C fixed unit cost. ns

i can be obtained from Equations (3) - (6).

3 The Oligopoly Game: an N-Perosn IPD Game?

Before proceeding further, let us consider the relevance of the n-person IPD
games to the oligopoly game. Is an oligopoly game necessarily an n-person IPD
game? If not, what is their relation? For simplicity, let us consider the first r
periods of an oligopoly game. Here, “cooperate” (C) means “charging high prices
for all r periods” and “defect” (D) means “charging low prices for all r periods”.
We first work out the payoff matrix defined by Yao and Darwen (1994). In our
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Table 1. Parameters and Payoffs

Set PH PL C α r D2 D1 D0 C2 C1 C0

1 1.4 1.2 1 0.2 8 3.47 2.07 1.6 3.2 1.33 1.33
2 1.4 1.2 1 0.2 25 13.40 7.10 5 10 1.60 1.60
3 2 1.2 1 0.2 8 3.47 2.07 1.6 8 3.33 3.33
4 2 1.2 1 0.2 25 13.40 7.10 5 25 3.98 3.98

case (3 oligopolists), there are six elements in the payoff matrix, namely Ci and
Di (i = 0, 1, 2). Here, Ci (Di) denotes the payoff for a specific player who plays
C (D) when there are i players acting cooperatively. From Equations (3)-(6), Ci

and Di can be derived. Without losing generality, let us assume that β = 0 and
n1 = n2 = n3 = 1, then the explicit solutions obtained are:

[
D2 C1 C1

]′ =




(PL − C)[3r − 2 (1−α)−(1−α)r+1

α ]
(PH − C)[ (1−α)−(1−α)r+1

α ]
(PH − C)[ (1−α)−(1−α)r+1

α ]



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C2 C2 C2

]′ =




(PH − C)r
(PH − C)r
(PH − C)r


 , [D0 D0 D0

]′ =




(PL − C)r
(PL − C)r
(PL − C)r


 .

Whether the oligopoly game is an n-person IPD game depends on the fol-
lowing criteria (Yao and Darwen, 1994):

– (1) D2 > C2, (2) D1 > C1, and (3) D0 > C0.
– (4) D2 > D1 > D0, and (5) C2 > C1 > C0.
– (6) C2 >

D2+C1
2 , and (7) C1 >

D1+C0
2 .

It is not difficult to see that not all of these conditions can be satisfied. For
example, in Table 1, four sets of parameters and their associated payoffs are
given. The conditions which can be satisfied by these four sets of parameters are
summarized in Table 2.

Given the analysis above, we may consider the oligopoly game is a pertur-
bation or a generalization of an n-person IPD game, and it is interesting to see
whether the evolution process of the n-person, in particular, the 3-person, IPD
game documented by Yao and Darwen (1994) still applies.
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Table 2. Parameter Sets and Testing Results

Inequality Set 1 Set 2 Set 3 Set 4
1. D2 > C2 > > < <

2. D1 > C1 > > < >

3. D0 > C0 > > < >

4. D2 > D1 > D0 >, > >, > >, > >, >

5. C2 > C1 > C0 >, = >, = >, = >, =
6. C2 > 0.5(D2 + C1) > > > >

7. C1 > 0.5(D1 + C0) < < > <

The sign > in columns 2-5 means the condition is satisifed. Other signs means the
condition is weakly violated (=) or strongerly violated (<).

4 Modeling the Adaptive Behavior of Oligopolists with
GAs

The main idea of genetic algorithms is to encode the variable one wants to
optimize as a binary string and work with it. Following, Midgley et al (1996),
we consider the following special class of pricing strategy ψ,

ψ : Ωk −→ {0, 1}, (7)

whereΩk is the collection of all {St−j}k
j=1. By this simplification, the oligopolist’s

memory is assumed to be finite.
While, potentially, different choices of k may lead to quite different sets of

strategies (Beaufils et al., 1998), the issue concerns us is the smallest value of k
which can reasonably replicate the price dynamics of the oligopoly industry, and
as we shall see later, setting k to equal 1 is good enough to achieve this goal.

5 Experimental Designs and Results

For all the experiments conducted in this study, Ph is set at “2”, Pl “1.2” and
C “1”. Other control parameters of GAs are set according to Tables 3 and 4.

The first experiment is to test whether GA-based oligopolists can achieve
a reasonable level of adaptation. For this purpose, we design the experiment
“absolute-loyalty-with-no-external-effects”. In terms of notations, absolute loyalty
means α = 0, and the absence of external effects means β = 0. When α = β = 0,
the most profitable pricing strategy for firm i is obviously an unconditional high-
price strategy, i.e.,

ψi = 1, ∀St ∈ Ω1, (8)

since a lower price will not help the firm to gain any advantages over its com-
petitors or other industries. So, we expect that the GA-based oligopoly industry
should converge to a state of a collusive price, i.e., the state (1, 1, 1).

In order to test whether GAs can find out this simple solution, we ran ex-
periment 1 for 1000 periods (125 generations) with the prespecified parameters
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Table 3. The Parameters of the GA-based Oligopoly Game

Memory size (k) 1
Number of oligopolists 3
Population size (l) 30
Number of periods in a single play (r) 8 (25)
Selection Scheme Roulette-wheel selection
fitness function Profits (π)
Number of generations evolved (Gen) 125 (126)
Number of periods (T) 1000 (3150)
Crossover Style One-Point Crossover
Crossover rate 0.8
Mutation rate 0.0001
Immigration rate 0.001

Table 4. Experimental Designs and Results

Experiment r # of Simulations α δW δw δc δC Results
Pilot 8 5 0 0 0 0 0 C(5)
1 25 5 0.2 0 0 0 0 C(2), c(1), NC(2)
2 8 5 0.2 0 0 0 0 C(5)

given in Tables 3 and 4. To facilitate the report of simulations, we need a few
more notations. Let “W” refer to the state “price war” (0,0,0), “C” the state
“collusive price” (1,1,1), “w” the states which are closer to “W” and “c” the
states closer to “C”. “Closer” is defined in terms of Hamming distance. Thus,
“w” includes states (0,0,1), (0,1,0) and (1,0,0), and “c” includes (1,1,0), (1,0,1),
(0,1,1). Since there are 30 pairs of oligopolists in each period of the evolution,
to summarize simulation results of St in terms of its distribution, let pt

W , pt
w,

pt
c, and pt

C denote respectively the percentage of the pairs who, in period t, are
in the states labeled with “W”, “w”,“c”, and “C” respectively. Figures 1.1-1.5
display the time series plot of the distribution of St. From Figures 1.1-1.5, we
can see that the industry converges to the state “C” (1,1,1) very quickly.

In Experiment 1, α is set to be 0.2. In the meantime, we still assume the
absence of external effects, i.e., β remains to be zero. In this situation, it is not
difficult to see that the best solution is to form a cartel and to jointly charge
a high price. To see how well our GA-based adaptive oligopolists evolve in this
scenario, we ran Experiment 1 for 3150 periods (126 generations), and the time
series of the distribution of St is shown in Figures 2.1-2.5. From Figures 2.2
and 2.5, we can see that, like the Pilot Experiment, pt

C gradually increases and
eventually converges to 1. However, as compared with Figure 1.1-1.5, it can be
seen that the convergence speed is much slower.

The interesting patterns observed in this experiments are shown in Figures
2.3 and 2.4. In these two simulations, we experience an oscillation between the
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states “w” and “c”, i.e., three firms are continuously charging different prices.
This is the second and the third stylized facts of oligopoly industries summa-
rized in Section 1. The emergence of persistenly heterogeneous pricing may be
caused by the inconsistency between “D2 < C2” and “D1 > C1” for the first
r periods (Table 2). This inconsistency may encourage an early defection, and
once that happens, by the path-dependent property, the oligopoly game is fur-
ther perturbated away from a standard n-person IPD game and may support
its own complex dynamics. To see whether or not this conjecture is correct, we
design the experiment 2 as shown in Table 4.

The only difference between Experiment 1 and Experiment 2 lies in the choice
of the parameter r. The setting has been changed from 25 to 8. By Table 2, this
makes the first three inequalities all consistent, i.e., Di < Ci, i = 0, 1, 2. This
structure shall punish early defection, and keep the payoff structure unchanged.
Then the whole process can be reinforced (an aspect of the path-dependent
property). The simulation results, as we have conjected, all converge to the state
of collusive pricing.

6 Concluding Remarks

The message revealed in this paper is simple: the oligopoly game in general is not
an n-person IPD game and, in effect, is more complicated than that. Therefore,
the simulated results can be quite rich in even a 3-person oligopoly game. But,
that also bridges the gap between the complexity of the oligopolists’ pricing
behaviour and the the simplicity of the insight gained from the n-person IPD
games. In a word, we think that the oligoply game is a meaningful generalization
of the n-person IPD game, and a formal mathematical treatment of it is definitely
a direction for future research.
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