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Summary. While by all standards the macroeconomic system is qualified
to be a complex adaptive system, mainstream macroeconomics is not capable
of demonstrating this feature. Recent applications of agent-based modeling to
macroeconomics define a new research direction, which demonstrates how the
macroeconomic system can be modeled and studied as a complex adaptive
system. This paper shall review the development of agent-based computa-
tional modeling in macroeconomics.
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1 Introduction

The growth of computer power enables us to study the complex economic
processes and phenomena through computer simulation. Recently, attention
has been paid to the issues of emerging behavioural patterns, structures,
and social order (e.g., cooperation, coordination, networks, institutions, con-
ventions, norms, the market, and its structure, etc.). Leigh Teafatsion in
her homepage Agent-Based Computational Economics (ACE) claimed
that “a central concern of ACE researchers is to understand the apparently
spontaneous appearance of global regularities in economic processes, such as
the unplanned coordination of trade in decentralized market economies that
economists associate with Adam Smith’s invisible hand.” She continued this
message by saying that the challenge is to explain these global regularities
from the bottom up, in the sense that the regularities arise from the lo-
cal interactions of autonomous agents channeled through actual or potential
economic institutions rather than through fictitious top-down coordinating
mechanisms such as a single representative consumer.

Axel Leijonhufvud, the founder of the Center for Computable Economics
at UCLA, stated in his Distinguished Guest Lecture given at the 1992 Annual
Meeting of the Southern Economic Association that “The economy is best
conceived of as a network of interacting processors, each one with less capa-
bility to process information that would be required of a central processor set



to solve the overall allocation problem for the entire system.”(Leijonhufvud
(1993), p.4)

With ever-increasing computer power, man can now have a better chance
to simulate the evolution of a large population on a long-term scale from
a few seconds to a few days in the electronic world. Through this power,
people can raise and answer questions from an evolutionary perspective, and
this is exactly one of the distinguishing features of agent-based computational
economics: “Agent-based computational economics is roughly characterized
as the computational study of economics modelled as evolving decentralized
systems of autonomous interacting agents. (ACE website)”

The significance of studying economics from a perspective of simulated
evolution is in fact well acknowledged not only by the economists in the west-
ern hemisphere, but also by those in the eastern hemisphere. For example,
economists in Japan recently established the Japan Association for Evolu-
tionary Economics (JAFEE). As it is well said in the chapter “Invitation for
JAFEE”, “The tasks of Evolutionary Economics are to elucidate the cogni-
tion that the coexistence and competition of multiple systems, organizations
and technology is indispensable resource for future development, and propose
a new direction of development of global society by analyzing the intrinsic
dynamics of ‘evolutionary process’ in which each system, organization and
technology are involved. (JAFFE website)”

The scope of both ACE and JAFEE touches an interdisciplinary term,
known as emergent properties. In his keynote speech given at the 1997 Joint
Conference of Information Sciences (JCIS’97), John Holland made an excel-
lent remark on it. The talk, entitled “Emergence: Models, Metaphors and
Innovation,” points out that creative models exhibit emergent properties, so
that “what comes out is more than what goes in.” For example, a game like
chess is defined by less than a dozen rules, yet it still rewards us with new
insights and strategies after centuries of intensive study.

“What comes out is more than what goes in” is certainly not a general
property shared by conventional economic models. Conventional economic
models usually have a simple equilibrium (outcome) characterized by a fixed
point or a stationary distribution. In other words, a typical economic model
uses lots of rules or axioms to describe a system, while the outcome is pretty
simple and regular. Therefore, in the conventional economic system, it is the
opposite that holds: “what comes out is much less than what goes in.”

With the advent of agent-based modeling, economists have begun to real-
ize that economics can be more interesting and fruitful if economics is stud-
ied within the context of complex adaptive systems, as what was vividly
described in Arthur (1992)’s artificial stock market.

We find that early in the experiment the price settles to random
noise about fundamental value. But after some time, mutually re-
inforcing trend-following or technical-analysis-like rules begin to
appear in the predictor population.... Eventually a slowly chang-



ing “ecology” of hypothesis-predictors becomes established, with
self-reinforcing technical trading rules very much part of the sys-
tem....The system has changed....it coevolves and changes and
transforms. It never settles. (Ibid, pp.23-24.)

In this paper we shall review the development of agent-based computa-
tional modeling in macroeconomics with a discussion of the following two
complexity-related issues. First, from a microscopic perspective, agent en-
gineering. How would agents behave when they are placed into a complex
system in which their knowledge of the system is always incomplete? Would
they evolve into complex and heterogeneous behavior in response to the sur-
rounding co-evolving environment? Second, from a macroscopic perspective,
market dynamics. What are the effects of agents’ adaptation and interac-
tions on the aggregate outcomes? Will the market exhibit complex dynamic
behavior? Will the aggregate outcomes be emergent in the sense that some
properties observed are not just the scaling-up of individual behavior? The
review mainly covers production and price dynamics in the cobweb mod-
els, saving and inflation in the overlapping generations models, arbitraging
and the exchange rate fluctuation in the foreign exchange rate market, and
investment and the stock price in the stock market.

2 Production and Price Stability

The cobweb model is a familiar playground in which to investigate the
effects of production decisions on price dynamics. In this model consumers
base their decisions on the current market price, but producers decide how
much to produce based on the past prices. Agricultural commodities serve
as a good example of the cobweb model. This model plays an important role
in macroeconomics, because it is the place in which the concept rational ex-
pectations originated (Muth 1961). Moreover, it is also the first neo-classical
macroeconomic prototype to which an agent-based computational approach
was applied (Arifovic 1994). This section will first briefly formulate the cob-
web model and then review the work on agent-based modeling of the cobweb
model.

Consider a competitive market composed of n firms which produce the
same goods by employing the same technology and which face the same cost
function described in Equation (1):

ci,t = xqi,t +
1
2
ynq2

i,t (1)

where qi,t is the quantity supplied by firm i at time t, and x and y are the
parameters of the cost function. Since at time t−1, the price of the goods at
time t, Pt, is not available, the decision about optimal qi,t must be based on



the expectation (forecast) of Pt, i.e., P e
i,t. Given P e

i,t and the cost function
ci,t, the expected profit of firm i at time t can be expressed as follows:

πe
i,t = P e

i,tqi,t − ci,t (2)

Given P e
i,t, qi,t is chosen at a level such that πe

i,t can be maximized and,
according to the first-order condition, is given by

qi,t =
1
yn

(P e
i,t − x) (3)

Once qi,t is decided, the aggregate supply of the goods at time t is fixed
and Pt, which sets demand equal to supply, is determined by the demand
function:

Pt = A − B

n∑
i=1

qi,t, (4)

where A and B are parameters of the demand function.
Given Pt, the actual profit of firm i at time t is :

πi,t = Ptqi,t − ci,t (5)

The neo-classical analysis simplifies the cobweb model by assuming the
homogeneity of market participants, i.e., a representative agent. In such a
setting, it can be shown that the homogeneous rational expectations equilib-
rium price (P ∗) and quantity (Q∗) are (Chen and Yeh 1996, p.449):

P ∗
t =

Ay + Bx

B + y
, Q∗

t =
A − x

B + y
. (6)

2.1 Agent-Based Cobweb Model

2.1.1 Convergence to Rational Expectation Equilibrium

The neo-classical analysis based on homogeneous agents provides us with
a limited understanding of the price dynamics or price instability in a real
market, since firms’ expectations of the prices and the resultant production
decisions in general must be heterogeneous. Using genetic algorithms to
model the adaptive behavior of firms’ production, Arifovic (1994) gave the
first agent-based model of the cobweb model. She applied two versions of
GAs to this model. The basic GA involves three genetic operators: repro-
duction, crossover, and mutation. Arifovic found that in each simulation of
the basic GA, individual quantities and prices exhibited fluctuations for its
entire duration and did not result in convergence to the rational expectations
equilibrium values, which is quite inconsistent with experimental results with
human subjects.



Arifovic’s second GA version, the augmented GA, includes the election
operator in addition to reproduction, crossover, and mutation. The election
operator involves two steps. First, crossover is performed. Second, the po-
tential fitness of the newly-generated offspring is compared with the actual
fitness values of its parents. Among the two offspring and two parents, the
two highest fitness individuals are then chosen. The purpose of this operator
is to overcome difficulties related to the way mutation influences the con-
vergence process, because the election operator can bring the variance of the
population rules to zero as the algorithm converges to the equilibrium values.

The results of the simulations show that the augmented GA converges
to the rational expectations equilibrium values for all sets of cobweb model
parameter values, including both stable and unstable cases, and can capture
several features of the experimental behavior of human subjects better than
other simple learning algorithms. To avoid the arbitrariness of choice of an
adaptive scheme, Lucas (1986) suggested that comparison of the behavior
of adaptive schemes with behavior observed in laboratory experiments with
human subjects can facilitate the choice of a particular adaptive scheme.
From this suggestion, the GA could be considered an appropriate choice to
model learning agents in a complex system.

Arifovic (1994)’s finding, which is basically optimistic about the inherent
stabilization force in the market, was was soon challenged and enriched by a
series of follow-up studies (Dawid and Kopel 1998, Franke 1998). Dawid and
Kopel (1998) complicated the simple cobweb model by including a term for
fixed costs or overhead,

ci,t = c0 + xqi,t +
1
2
ynq2

i,t, (7)

where c0 denotes the short-term fixed costs of the firm. After the addition
of the fixed costs, firms have to first decide whether they shall exit or stay
in the market. This decision is crucial, because the fixed costs may cause
negative profits for all quantities supplied (qi,t), even if qi,t = 0. Using ge-
netic algorithms, Dawid and Kopel (1998) enhanced Arifovic (1994)’s string
coding by one addition bit. The value of the bit shows the decision to exit or
stay. Without this additional bit, they showed that the market state could be
“locked in” a state where all firms make negative profits. However, by using
this additional bit to implement a separation of the production decision into
an exit and entry decision and a quantity determination, they found that
the market converged to a heterogeneous rational expectations equilibrium,
which describes an industry comprised of active and idle firms. This equilib-
rium is characterized by a market price which is supported by the number of
firms who decide to exit the market. Therefore, extending Arifovic (1994)’s
finding, Dawid and Kopel (1998)’s work showed how optimal market size
(number of survivable firms) and quantities supplied can be simultaneously
determined in such a biologically-inspired, agent-based model.



Franke (1998) complicated the simple cobweb model by first subjecting
the demand side (Equation 4) to serially-correlated random shocks.

Pt = A − B

n∑
i=1

qi,t + µt, (8)

where
µt = ρµt−1 + νt. (9)

νt are identically and independently drawn from a normal distribution with
zero mean. The second complication is related to agent engineering. In
both Arifovic (1994) and Dawid and Kopel (1998), the market only evolved
one type of decision rule, namely, quantity decision or plus the exit-or-stay
decision. Franke (1998) explored a higher level of heterogeneous agents: he
considered four types of decision rules. The first one is the same as Arifovic
(1994), but he also proposed three other classes of decision rules concerning
different ways to model firms’ expectations of price, P e

i,t, namely, one class
of adaptive expectations and two classes of regression strategies.

Firms characterized by these four classes of decision rules were compet-
ing with each other while they were evolving with genetic algorithms. This
setting pushed the agent-based economic modeling to a new frontier. First,
the diversity of the firms. One can ask whether there is one dominating class
of decision rules. Is the leading positing stable over time? Second, the emer-
gence of new rules and the survival time of them. How frequent or fast can
the system generate new rules? Are there rules that are able to survive for a
long time? If not, what is the general picture of the age structure of rules in
a period of time? Third, behavior heterogeneity and stability. Suppose we
remove one or a few class of rules out of the market and let the firms compete
and evolve with the rest. Would that result in significantly different market
dynamics?

Franke generally found that the GA did not lose the track of the ho-
mogeneous rational expectations equilibrium (HREE) even in the stochastic
environment with the perturbations of demand. The macroeconomy outcome
of this agent-based cobweb model may be described as an near-equilibrium
dynamics. The actual market production deviated from the HREE produc-
tion by a limited order of magnitude from 3.5% to 4.5%. The relatively small
production deviation with respect to HREE is characterized by the coevo-
lution of strategies (decision rules). Coevolution has to be understood, not
as a peaceful state of coexistence, but as an incessant struggle for survival
where no strategy, and even any type of strategy, can be safe from being re-
placed in the near future. New strategies were spontaneously developed and
old strategies were continually replaced. What kept the market functioning
was this ongoing struggle of competing strategies. It was also found that a
high degree of heterogeneity in strategy types is favorable to stability. Ex-
cluding selected strategy types from the initial distribution may result in a
significantly higher deviation of aggregate output.



The application of genetic programming to the cobweb model started
from Chen and Yeh (1996). Chen and Yeh (1996) compared the learning
performance of GP-based learning agents with that of GA-based learning
agents. They found that, like GA-based learning agents, GP-based learning
agents also can learn the homogeneous rational expectations equilibrium price
under both the stable and unstable cobweb case. However, the phenomenon
of price euphoria, which did not happen in Arifovic (1994), does show up
quite often at the early stages of the GP experiments. This is mainly because
agents in their setup were initially endowed with very limited information as
compared to Arifovic (1994). Nevertheless, GP-based learning can quickly
coordinate agents’ beliefs so that the emergence of price euphoria is only
temporary. Furthermore, unlike Arifovic (1994), Chen and Yeh (1996) did
not use the election operator. Without the election operator, the rational
expectations equilibrium is exposed to potentially persistent perturbations
due to agents’ adoption of the new, but untested, rules. However, what
shows up in Chen and Yeh (1996) is that the market can still bring any price
deviation back to equilibrium. Therefore, the self-stabilizing feature of the
market, known as the invisible hand, is more powerfully replicated in their
GP-based artificial market.

The self-stabilizing feature of the market demonstrated in Chen and Yeh
(1996) was furthered tested with two complications. In the first case, Chen
and Yeh (1997) introduced a population of speculators to the market and
examined the effect of speculations on market stability. In the second case,
the market was perturbed with a structural change characterized by a shift
in the demand curve, and Chen and Yeh (2000a) then tested whether the
market could restore the rational expectations equilibrium. The answer to
the first experiment is generally negative, i.e., speculators do not enhance the
stability of the market. On the contrary, they do destabilize the market. Only
in special cases when trading regulations, such as the transaction cost and
position limit, were tightly imposed could speculators enhance the market
stability. The answer for the second experiment is, however, positive. Chen
and Yeh (2000a) showed that GP-based adaptive agents could detect the shift
in the demand curve and adapt to it. Nonetheless, the transition phase was
non-linear and non-smooth; one can observe slumps, crashes, and bursts in
the transition phase. In addition, the transition speed is uncertain. It could
be fast, but could be slow as well.

This series of studies on the cobweb model enriches our understanding of
the self-stabilizing feature of the market. The market has its limit, beyond
which it can become unstable with crazy fluctuations. However, imposing
trading regulations may relax the limit and enhance market stability. One is
still curious to know where the self-stabilizing capability comes from in the
first place. Economists have known for a long time that it comes from the free
competition principle, or the survival-of-the-fittest principle. In GA or GP,
this principle is implemented through selection pressure. Chen (1997) studied



the role of selection pressure by replacing the usual proportionate selection
scheme with the one based on the approximate uniform distribution, showing
that if selection pressure is removed or alleviated, then the self-stabilizing
feature is lost. In a word, selection pressure plays the role of the invisible
hand in economics.

It is interesting to know whether the time series data generated by the
artificial market can replicate some dynamic properties observed in the real
market. Chen and Kuo (1999) and Chen and Yeh (2000a) started the anal-
ysis of the time series data generated from the artificial market. The time
series data employed was generated by simulating the agent-based cobweb
model with the presence of speculators. It was found that many stylized fea-
tures well documented in financial econometrics can in principle be replicated
from GP-based artificial markets, which include leptokutosis, non-IIDness,
and volatility clustering. Furthermore, Chen and Yeh (2000a) performed a
CUSUMSQ test, a statistical test for structural change, on the data. The
test indicated the presence of structural changes in the data, which suggested
that that the complex interaction process of these GP-based producers and
speculators can even generate endogenous structural changes.

3 Saving and Inflation

While there are several approaches to introducing dynamic general equi-
librium structures to economics, the overlapping generations model (here-
after, OLG) may be regarded as the most popular one in current macroe-
conomics. Over the last two decades, the OLG model has been extensively
applied to studies of savings, bequests, demand for assets, prices of assets,
inflation, business cycles, economic growth, and the effects of taxes, social
security, and budget deficits. In the following, we shall first give a brief il-
lustration of a simple OLG model of inflation, a two-period OLG model. We
then present a n-period generalization of it.

3.1 Overlapping Generations Models

3.1.1 Two-Period OLG Model

A simple OLG model can be described as follows. It consists of overlap-
ping generations of two-period-lived agents. At time t, N young agents are
born. Each of them lives for two periods (t, t + 1). At time t, each of them is
endowed with e1 units of a perishable consumption good, and with e2 units
at time t + 1 (e1 > e2 > 0). Presumably e1 is assumed to be greater than e2

in order to increase the likelihood (not ensure) that agents will choose to hold
money from period 1 to 2 so as to push value forward. An agent born at time



t consumes in both periods. Term c1
t is the consumption in the first period

(t), and c2
t the second period (t + 1). All agents have identical preference

given by
U(c1

t , c
2
t ) = ln(c1

t ) + ln(c2
t ) (10)

In addition to the perishable consumption good, there is an asset called
money circulating in the society. The nominal money supply at time t, de-
noted by Ht, is exogenously determined by the government and is held dis-
tributively by the old generation at time t. For convenience, we shall define
ht to be Ht

N , i.e., the nominal per capita money supply.
This simple OLG gives rise to the following agent’s maximization problem

at time t:
max

(c1
i,t,c

2
i,t)

ln(c1
i,t) + ln(c2

i,t) (11)

s.t. c1
i,t +

mi,t

Pt
= e1, c2

i,t = e2 +
mi,t

Pt+1
, (12)

where mi,t represents the nominal money balances that agent i acquires at
time period t and spends in time period t+1, and Pt denotes the nominal price
level at time period t. Since Pt+1 is not available at period t, what agents
actually can do is to maximize their expected utility E(U(c1

t , c
2
t )) by regarding

Pt+1 as a random variable, where E(.) is the expectation operator. Because
of the special nature of the utility function and budget constraints, the first-
order conditions for this expected utility maximization problem reduce to the
certainty equivalence form (13):

c1
i,t =

1
2
(e1 + e2πe

i,t+1) (13)

where πe
i,t+1 is agent i’s expectation of the inflation rate πt+1(≡ Pt+1

Pt
). This

solution tells us the optimal decision of savings for agent i given her expec-
tation of the inflation rate, πe

i,t+1.
Suppose the government deficit Gt is all financed through seignorage and

is constant over time (Gt = G). We can then derive the dynamics (time
series) of nominal price {Pt} and inflation rate {πt} from Equation (13). To
see this, let us denote the savings of agent i at time t by si,t. Clearly,

si,t = e1 − c1
i,t (14)

From Equation (12), we know that

mi,t = si,tPt, ∀i, t. (15)

In equilibrium, the nominal aggregate money demand must equal nominal
money supply, i.e.,

N∑
i=1

mi,t = Ht = Ht−1 + GPt, ∀t. (16)



The second equality says that the money supply at period t is the sum of the
money supply at period t− 1 and the nominal deficit at period t, GPt. This
equality holds, because we assume the government deficits are all financed
by seignorage.

Summarizing Equations (15)-(16), we get

N∑
i=1

si,tPt =
N∑

i=1

si,t−1Pt−1 + GPt (17)

The price dynamics are hence governed by the following equation:

πt =
Pt

Pt−1
=

∑N
i=1 si,t−1∑N

i=1 si,t − G
(18)

Now suppose that each agent has perfect foresight, i.e.,

πe
i,t = πt, ∀i, t. (19)

By substituting the first-order condition (13) into Equation (17), the
paths of equilibrium inflation rates under perfect foresight dynamics are then

πt+1 =
e1

e2
+ 1 − 2g

e2
− (

e1

e2
)(

1
πt

), (20)

where g = G
N is the real per capita deficit.

At steady state (πt+1 = πt), Equation (20) has two real stationary solu-
tions (fixed points), a low-inflation stationary equilibrium, π∗

L, and a high-
inflation one, π∗

H , given by

π∗
L =

1 + e1

e2 − 2g
e2 −

√
(1 + e1

e2 − 2g
e2 ) − 4 e1

e2

2
, (21)

π∗
H =

1 + e1

e2 − 2g
e2 +

√
(1 + e1

e2 − 2g
e2 ) − 4 e1

e2

2
. (22)

3.1.2 N-Period OLG Model

Bullard (1992) studied the n-period generalization of the OLG model. Let
n represents the number of periods in an agent’s lifetime. At time t, there
are n generation of agents alive, with each generation having a different birth
date corresponding to times t − n + 1, t − n + 2, ..., t − 1, t, and there is a
single representative agent alive in every generation. The endowment profile
is denoted by {e1, e2, ..., en} and it is further assumed that

e1 < e2 < ... < en. (23)



Agents in this economy can save only by holding fiat currency. Agents of
all generations seek to maximize the same time separable logarithmic utility
function:

U =
n∑

j=1

lncj
i,t , (24)

subject to

c1
i,t +

n∑
j=2

cj
i,tΠ

j−2
k=0πt+j ≤ e1

i,t +
n∑

j=2

ej
i,tΠ

j−2
k=0πt+j , (25)

where cj
i,t denotes consumption by the agent born at time t in period t+j−1.

and πt+j denotes the gross inflation rate between dates between t + j and
t + j + 1. Equation (25) is just intertemporal budget constraint.

The solution to the maximization problem of the young agent born at
time t yields a lifetime consumption and saving plan. Solving these problems
for consecutive n generations, it is possible to construct the amount of aggre-
gate savings (asset holdings) in the economy at any time t, St, by summing
together the time t savings amounts of all individuals alive in the economy
at time t. Bullard (1992) showed that this aggregate function is giving by

St =
n−1∑
i=1

ei +
n−3∑
i=0

n−2−i∑
j=1

ei+1Πj
k=1π

−1
t−k − E1 −

n−2∑
i=1

i∑
j=0

E1+iΠi
k=1π

−1
t−k, (26)

where

Ek ≡ 1
n

[e1 +
n−1∑
i=1

ei+1Πk+i−2
j=k−1πt+i] (27)

Since all savings must be held in the form of fiat currency, the market clearing
condition for this economy is given by

StPt = Ht. (28)

As already state in Equation (17), an equilibrium law of motion for prices is

Pt = (
St−1

St − G
)Pt−1. (29)

Bullard (1992) has shown, for the case where G = 0, that there are at most
two steady-state equilibrium for π for any value of n; this result generalizes to
a positive government deficit. Hence, the general n-period OLG model under
perfect foresight is analogous to the more familiar two-period OLG economy
with two steady-state inflation rates (Equations 21, 22).



3.1.3 Indeterminacy of the Inflation Rate

Despite its popularity, the OLG models are well known for their multi-
plicity of equilibria, in our case, the coexistence of two inflation equilibria:
Equations (21) and (22). Things can be even more intriguing if these equi-
libria have different welfare implications. In our case, the one with a higher
inflation rate is the Pareto-inferior equilibrium, whereas the one with a lower
inflation rate is the Pareto-superior equilibrium.

3.2 Agent-Based OLG Models of Inflation

3.2.1 Self-Coordination of Heterogeneous Agents

To see whether decentralized agents are able to coordinate intelligently to
single out a Pareto-superior equilibrium rather than be trapped in a Pareto-
inferior equilibrium, Arifovic (1995) proposed the first agent-based modifi-
cation of an OLG model of inflation. She applied genetic algorithms (GAs)
towards modeling the learning and adaptive behavior of households. In her
study, GA-based agents were shown to be able to select the Pareto-superior
equilibrium. She further compared the simulation results based on GAs with
those from laboratories with human subjects, concluding that GAs were su-
perior to other learning schemes, such as the recursive least squares.

This line of research was further carried out in Dawid (1996), Bullard
and Duffy (1998), Bullard and Duffy (1998), Bullard and Duffy (1999), and
Birchenhall and Lin (2002). Bullard and Duffy (1999) made the distinction
between two implementations of GA learning: depending on what to encode,
GA learning can be implemented in two different ways, namely, learning
how to optimize (Arifovic 1995) and learning how to forecast (Bullard and
Duffy 1999). It was found that these two implementations lead to the same
result: agents can indeed learn the Parato superior equilibrium. The only
difference is the speed of convergence. The learning how to forecast version of
genetic algorithm learning converges faster than the learning how to optimize
implementation studied by Arifovic (1995). Nevertheless, a robust analysis
showed that coordination was more difficult when the number of inflation
values considered (search space) by agents was higher, when government
deficits increased, and when agents entertained inflation rate forecasts outside
the bounds of possible stationary equilibria.

Chen and Yeh (1999) generalized Bullard and Duffy (1999)’s learning how
to forecast version of GA learning with GP. In Bullard and Duffy (1999),
what learning agents learn is just a number of the inflation rate rather than
a regularity about the motion of the inflation rate, which is a function. Chen
and Yeh (1999) considered it too restrictive to learn just a number. From
Grandmont (1985), if the equilibrium of an OLG is characterized by limit
cycles or strange attractors rather than by fixed points, then what agents



need to learn is not just a number, but a functional relationship, such as
xt = f(xt−1, xt−2, ...). Chen and Yeh (1999) therefore generalized Bullard
and Duffy (1999)’s evolution of “beliefs” from a sequence of populations of
numbers to a sequence of populations of functions. Genetic programming
serves as a convenient tool to make this extension.

The basic result observed in Chen and Yeh (1999) is largely consistent
with Arifovic (1994) and Bullard and Duffy (1999), namely, agents being
able to coordinate their actions to achieve the Pareto-superior equilibrium.
Furthermore, their experiments showed that the convergence is not sensitive
to the initial rates of inflation. Hence, the Pareto-superior equilibrium has a
large domain of attraction. A test on a structural change (a change in deficit
regime) was also conducted. It was found that GP-based agents were capable
of converging very fast to the new low-inflationary stationary equilibrium
after the new deficit regime was imposed. However, the basic result was not
insensitive to the dropping of the survival-of-the-fittest principle. When that
golden principle was not enforced, we experienced dramatic fluctuations of
inflation and occasionally the appearance of super inflation. The agents were
generally worse off.

Bullard and Duffy (1998) extended Arifovic (1995)’s two-period OLG
model to an n-period one. As Bullard and Duffy (1999), agents based their
saving decision their forecasts of the inflation rate. The forecast rules were
encoded with strings of L binary bits. The first L − 1 bits specify whether
or not to include certain lagged values in either a linear least-squares auto-
regression on past price level or past first differences in prices. The last bit
specifies whether the auto-regression is to be performed using price level or
first difference in price. What we have here is a way of using genetic algo-
rithms to encode a set of function forms. A part of the strings is used to
encode the function to be included, a part of the strings is used to decide
which variables to be used, and the last part of the strings is the choice of a
data preprocessor. This usage of GAs does not directly encode the objects.
Instead, it gives them a number, and the bit strings are used to encoded the
number only. This certainly enhance the expression power of GA, and is an
alternative for GP.

The model parameters are estimated using the first half of the available
data on past prices. The criterion used to assess forecast accuracy is the
MSE between the model forecasts and the actual data over the second half
of the price data set. It was found that for a relatively low value of n, the
system is more likely to achieve coordination on the low inflation stationary
perfect foresight equilibrium, which is consistent with the findings of the
earlier analyses in two-period OLG economies. However, as n increases we
see that persistent currency collapse outcomes become increasingly likely.

The pioneering works by Arifovic popularized a standard procedure, also
known as the augmented genetic algorithms, to evolve a population of agents,
namely,



Reproduction → Crossover → Mutation → Election,

or, written in a composite function,

Election (Mutation (Crossover (Reproduction))).

However, other variants also exist. Bullard and Duffy (1998) treated imita-
tion (reproduction) and innovation (crossover and mutation) as two separate
learning processes, and run a parallel procedure on both of them. Each pro-
cess will produce one decision rule, and adaptive agent will decide which she
should follow by the election operator. Therefore, their procedure is

Election ((Reproduction), (Mutation (Crossover))).

We see no particular reason why these two procedures could result in different
outcomes. In particular, in both procedure, the election operator used as the
last step gives the same protection against the disturbance from innovation.

Birchenhall and Lin (2002) provided perhaps the most extensive coverage
of robustness checks ever seen in agent-based macroeconomic models. Their
work covers two different levels of GA designs: one is genetic operators, and
the other is architecture. For the former, they consider different implemen-
tations of the four main GA operators, i.e., selection, crossover, mutation,
and election. For the latter, they consider a single-population GA (social
learning) vs. a multi-population GA (individual learning). They found that
Bullard and Duffy’s results are sensitive to two main factors: the election
operator and architecture. Their experimental results in fact lend support
to some early findings, e.g., the significance of the election operator (Ari-
fovic 1994) and the different consequences of social learning and individual
learning (Vriend 2001). What is particularly interesting is that individual
learning reduces the rate of convergence to the same belief. This is certainly
an important finding, because most studies on the convergence of GAs to
Pareto optimality are based on the social learning version. For more discus-
sion on the distinction between individual learning and social learning, see
Chen (2002).

3.2.2 Cyclical Equilibria

Bullard and Duffy (1998) studied a more complicated version of the two-
period OLG model based on Grandmont (1985). They consider the following
utility function for the households,

U(c1
t , c

2
t ) =

ln(c1
t )1−ρ1

1 − ρ1
+

ln(c2
t )1−ρ2

1 − ρ2
(30)

Under time-separable preferences and provided that the value of the coeffi-
cient of relative risk aversion for the old agent (ρ2) is high enough and that



of the young agents is low enough (ρ1), Grandmont (1985) showed that sta-
tionary perfect-foresight equilibria also may exist in which the equilibrium
dynamics are characterized either as periodic or chaotic trajectories for the
inflation rate, and these complicated stationary equilibria are also Pareto op-
timal. To have these possibilities, they set ρ2 equal to 2 and then increased
the value of this preference parameter up to 16 by increments of 0.1, while
fixed ρ1 at 0.5 in all cases.

The forecast rule considered by Bullard and Duffy (1998) is to use the
price level that was realized k + 1 periods in the past as the forecast of next
period’s price level, namely,

P e
i,t = Pt−k−1, k ∈ [0, k̄]. (31)

In their case, k̄ was set to 256, which allows the agents to take actions con-
sistent with a periodic equilibrium of an order as high as 256. Alternatively,
agent i’s forecast of the gross inflation factor between dates t and t + 1 is
given by

πe
i,t =

Pt−k−1

Pt−1
. (32)

As usual, the lifetime utility function was chosen as the fitness function to
evaluate the performance of a particular forecast rule. Instead of roulette
wheel selection, tournamnet selection was applied to create the next genera-
tion.

It was found that the stationary equilibria on which agents coordinate
were always relatively simple - either a steady state or a low-order cycle. For
low values of ρ2, in particular, those below 4.2, they observed convergence
to the monetary steady state in every experiment, which is the same pre-
diction made by the limited backward perfect-foresight dynamics. As ρ2 was
increased further, the limiting backward perfect foresight dynamics displayed
a bifurcation, with the monetary steady state losing stability and never re-
gaining it for values of ρ2 ≥ 4.2. However, in their system with learning,
the monetary steady state was always a limit point in at least 1 of the 10
experiments conducted for each different value of ρ2. Also, for ρ2 ≥ 4.2, their
system often converged, in at least one experiment, to a period-2 stationary
equilibrium, even in cases in which that equilibrium, too, had lost its stability
in the backward perfect-foresight dynamics.

It is difficult, however, for an economy comprised of optimizing agents
with initial heterogeneous beliefs to coordinate on especially complicated sta-
tionary equilibria, such as the period-k cycles where k ≥ 3. In particular,
the period-3 cycle that is stable in the backward perfect-foresight dynamics
for values ρ2 ≥ 13 was never observed in their computational experiments.
Interesting enough, three is the last entry of Sarkovskii’s ordering, whereas
one, two and four are first few entries.

They also found that the time it took agents to achieve coordination
tended to increase with the relative risk aversion of the old agents over a large



portion of the parameter space. Usually, it was the case when the system
converged to the period-2 cycle. Moreover, when cycles exist, the transient
dynamics of their systems could display qualitatively complication dynamics
for long periods of time before eventually to relatively simple, low-periodicity
equilibria.

3.2.3 Sunspots

A related phenomenon to cyclical equilibria is sunspot equilibria. The
sunspot variable is the variable which has no intrinsic influence on an econ-
omy, i.e., it has nothing to do with an economy’s fundamentals. Sunspot
equilibria exist if the sunspot variable can impact the economy simply be-
cause a proportion of agents believe so and act accordingly to their belief.
Azariadis and Guesnerie (1986) showed that the connection between cyclical
and sunspot equilibria are very close. They proved that a two-state station-
ary sunspot equilibrium exists if and only if a period-2 equilibrium exists.
Dawid (1996) started with an OLG model of inflation comparable to Bullard
and Duffy (1998).

He studied an economy whose households have the following utility func-
tion,

U(c1
t , c

2
t ) = 0.1[c1

t ]
0.9 + 10 − [

10
1 + c2

t

]2 (33)

This utility function has the property that the concavity with respect to c1
t

is much smaller than the concavity with respect to c2
t , which is necessary for

the existence of a periodic equilibrium (Grandmont 1985).
He first found that in cases where periodic equilibria exist, households’

beliefs were successfully coordinated to the period-2 cycle rather than the
steady state. He then assumed all households to be sunspot believers and
showed that households’ beliefs converged to the sunspot equilibrium. In
that case, the observed values of the price levels are completely governed
by something which has nothing to do with the economy’s fundamentals.
Finally, he relaxed the assumption by simulating an explicit contest between
sunspot believers and sunspot agnostics. The simulation showed that in most
cases, the population consisted, after a rather short period, only of households
whose actions depended on the value of the sunspot variable.

4 Arbitrage and Foreign Exchange Rate Fluctua-
tions

Another popular class of OLG models to which an agent-based approach
is applied is the the OLG model of foreign exchange rates, which is a version
of the two-country OLG model with fiat money (Kareken and Wallance 1981).



4.1 The OLG Model of the Exchange Rate

There are two countries in the model. The residents of both countries are
identical in terms of their preferences and lifetime endowments. The basic
description of each country is the same as the single-country OLG model.
Each household of generation t is is endowed with e1 units of a perishable
consumption good at time t, and e2 of the good at time t + 1, and consumes
c1
t of the consumption good when young and c2

t when old. Households in
both countries have common preferences given by

U(c1
t , c

2
t ) = ln(c1

t ) + ln(c2
t ). (34)

A government of each country issues its own unbacked currency, H1,t and
H2,t. Households can save only through acquiring these two currencies. There
are no legal restrictions on holdings of foreign currency. Thus, the residents of
both countries can freely hold both currencies in their portfolios. A household
at generation t solves the following optimization problem at time t:

max
(c1

i,t,mi,1,t)
ln(c1

i,t) + ln(c2
i,t) (35)

s.t. c1
i,t +

mi,1,t

P1,t
+

mi,2,t

P2,t
= e1, c2

i,t = e2 +
mi,1,t

P1,t+1
+

mi,2,t

P2,t+1
, (36)

where mi,1,t is household i’ nominal holdings of currency 1 acquired at time
t, mi,2,t is household i’ nominal holdings of currency 2 acquired at time t,
P1,t is the nominal price of the good in terms of currency 1 at time t, and
P2,t is the nominal price of the good in terms of currency 2 at time t. The
savings of household i at time t by si,t is

si,t = e1 − c1
i,t =

mi,1,t

P1,t
+

mi,2,t

P2,t
. (37)

The exchange rate et between the two currencies is defined as et = P1,t/P2,t.
When there is no uncertainty, the return on the two currencies must be equal,

Rt = R1,t = R2,t =
P1,t

P1,t+1
=

P2,t

P2,t+1
, t ≥ 1, (38)

where R1,t and R2,t are the gross real rate of return between t and t + 1,
respectively. Rearranging (38), we obtain

P1,t+1

P2,t+1
=

P1,t

P2,t
t ≥ 1. (39)

From equation (39) it follows that the exchange rate is constant over time:

et+1 = et = e, t ≥ 1. (40)



Savings demand derived from household’s maximization problem is given by

si,t =
mi,1,t

p1,t
+

mi,2,t

p2,t
=

1
2
[e1 − e2 1

Rt
]. (41)

Aggregate savings of the world at time period t, St, are equal to the sum of
their savings in terms of currency 1, S1,t, and in terms of currency 2, S2,t.
With the homogeneity assumption, we can have

S1,t =
2N∑
i=1

mi,1,t

P1,t
=

2Nm1,t

P1,t
, (42)

and

S2,t =
2N∑
i=1

mi,2,t

P2,t
=

2Nm2,t

P2,t
. (43)

The equilibrium condition in the loan market requires

St = S1,t + S2,t = N [e1 − e2 P1,t+1

P1,t
] =

H1,t + H2,te

P1,t
. (44)

4.1.1 Indeterminacy of the Exchange Rate

Equation (44) only informs us of the real saving in terms of the real world
money demand. This equation alone cannot determine the household real
demands for each currency. Hence, this equation cannot uniquely determine
a set of price (P1,t, P2,t), and leave the exchange rate indeterminate as well.
This is known as the famous indeterminacy of exchange rate proposition. The
proposition says that if there exists a monetary equilibrium in which both
currencies are valued at some exchange rate e, then there exists a monetary
equilibrium at any exchange rate ê ∈ (0,∞) associated with a different price
sequence {P̂1,t, P̂2,t} such that

Rt =
P1,t

P1,t+1
=

P2,t

P2,t+1
=

P̂1,t

P̂1,t+1

=
P̂2,t

P̂2,t+1

, (45)

and
St =

H1,t + H2,te

P1,t
=

H1,t + H2,tê

P̂1,t

, (46)

where

P̂1,t =
H1,t + êH2,tP1,t

H1,t + eH2,t
, P̂2,t =

P̂1,t

ê
. (47)



4.1.2 Indeterminacy of the Price Level and the Portfolio

Rearranging Equation (44), one can derive the law of motion of P1,t.

P1,t+1 =
e1

e2
P1,t − H1,t + eH2,t

Ne2
(48)

For any given exchange rate e, this economy with constant supplies of both
currencies, H1 and H2, has a steady-state equilibrium, namely,

P1,t+1 = P1,t = P ∗
1 =

H1 + eH2

N(e1 − e2)
(49)

Like e, the level of P ∗
1 is also indeterminate. In addition, since households

are indifferent between the currencies that have the same rates of return in
the homogeneous-expectations equilibrium, the OLG model in which agents
are rational does not provide a way to determine the portfolio λi,t, which is
the fraction of the savings placed into currency 1.

4.2 Agent-Based OLG Models of the Exchange Rate

4.2.1 Exchange Rate Dynamics

In order to examine the behavior of the exchange rate and the associated
price dynamics, Arifovic (1996) initiated the agent-based modeling of the
exchange rate in the context of the OLG model. In the OLG model of the
exchange rate, households have two decisions to make when they are young,
namely, saving (si,t) and portfolio (λi,t). These two decisions were encoded by
concatenation of two binary strings, the first of which encoded si,t, whereas
the second of which encoded λi,t. The single-population augmented genetic
algorithm was then applied to evolve these decision rules. The length of a
binary string, l, is 30: The first 20 elements of a string encode the first-period
consumption of agent i of generation t; the remaining 10 elements encode the
portfolio fraction of agent i.

010100...110︸ ︷︷ ︸
20 bits:si,t

101..001︸ ︷︷ ︸
10 bits:λi,t

While Equation (40) predicts the constancy of the exchange rate, genetic
algorithm simulations conducted by Arifovic (1996) indicated no sign of the
setting of the exchange rate to a constant value. Instead, they showed per-
sistent fluctuations of the exchange rate. Adaptive economic agents in this
model can, in effect, endogenously generate self-fulfilling arbitrage opportu-
nities, which in turn make exchange rates continuously fluctuate.

The fluctuating exchange rate was further examined using formal statis-
tical tests in both Arifovic (1996) and Arifovic and Gencay (2000). First, in



Arifovic (1996), the stationarity test (the Dickey-Fuller test) was applied to
examine whether the exchange rate series is nonstationary. The result of the
test did not indicate nonstationarity. Second, Arifovic and Gencay (2000)
analyzed the statistical properties of the exchange rate returns, i.e., the log-
arithm of et/ee−1. The independence tests (the Ljung-BOx-Pierce test and
the BDS test) clearly rule out the lack of persistence (dependence) in the
return series. Third, they plotted the phase diagrams of the return series
and found that there is a well-defined attractor for all series. The shapes of
the attractor are robust to the changes in the OLG model parameters as well
as to the changes in the GA parameters. Fourth, to verify that this attractor
is chaotic, the largest two Lyapunov exponents were calculated. The largest
Lyapnov exponent is positive in all series, which supports that attractors un-
der investigation are chaotic. Finally, volatility clustering was also found to
be significant in the return series. This series of econometric examinations
confirms that agent-based modeling is able to replicate some stylized facts
known in financial markets.

4.2.2 Currency Attacks and Collapse

Arifovic (2002) considered a different applications of GAs to modeling
the adaptive behavior of household. Instead of savings and portfolio decision
rules, she turned to the forecasting behavior of households. The forecasting
models of exchange rates employed by agents are simple moving-average mod-
els. They differ in the rolling window size, which are endogenously determined
and can be time-variant. What is encoded by GAs is the size of the rolling
window rather than the usual savings and portfolio decision. Simulations
with this new coding scheme resulted in the convergence of the economies to
a single-currency equilibrium, i.e., the collapse of one of the two currencies.
This result was not found in Arifovic (1996). This study therefore shows
that different implementations of GA learning may have non-trivial effects
on the simulation results. In one implementation, one can have persistent
fluctuation of the exchange rate (Arifovic (1996)); in another case, one can
have a single-currency equilibrium.

Following the design of Franke (1998), Arifovic (2002) combined two dif-
ferent applications of GA learning. In addition to the original population
of agents, who are learning how to forecast, she added another population
of agents, who are learning how to optimize. Nevertheless, unlike Franke
(1998), these two population of agents did not compete with each other.
Instead, they underwent separate genetics algorithm updating. Simulations
with these two separate evolving populations did not have the convergence
to single currency equilibrium, but were characterized instead by persistent
fluctuation.

A different scenario of the currency collapse is also shown in Arifovic
(2001), which is an integration of the OLG model of exchange rate with the



OLG model of inflation. In this model, the governments of both countries
have constant deficits (Gi, i = 1, 2) which were financed via seignorage,

Gi =
Hi,t − Hi,t−1

Pi,t
, i = 1, 2. (50)

Combining Equations (44) and (50) gives the condition for the monetary
equilibrium in which both governments finance their deficits via seignorage:

G1 + G2 = St − St−1Rt−1. (51)

This integrated model inherits the the indeterminacy of the exchange
rate from the OLG model of the exchange rate and the indeterminacy of the
inflation rate from the OLG model of inflation. Any constant exchange rate e
(e ∈ (0,∞)) is an equilibrium that supports the same stream of government
deficits (G1, G2), and the same equilibrium gross rate of return (and thus
the same equilibrium savings). The existence of these equilibrium exchange
rates indicates that the currencies of both countries are valued despite the
difference of the two countries’ deficits. In fact, in equilibrium the high-
deficit country and the low-deficit county experience the same inflation rate,
and hence so do their currencies’ rates of return. Nonetheless, since the high-
deficit country has a higher money supply, if both currencies are valued, then
the currency of the high-deficit country will eventually drive the currency
of the low-deficit country out of households’ portfolios. Given this result, it
might be in the interest of a country with lower deficits to impose a degree
of capital control.

Arifovic (2001) showed that agent-based dynamics behave quite different
from the above homogeneous rational expectations equilibrium analysis. In
her agent-based environment, the evolution of households’ decision rules of
savings and portfolios results in a flight away from the currency used to
finance the larger of the two deficits. In the end, households hold all of their
savings in the currency used to finance the lower of the deficits. Thus, the
economy converges to the equilibrium in which only the low-deficit currency
is valued. The currency of the country that finances the larger of the two
deficits become valueless, and we have a single-currency equilibrium again.

5 Artificial Stock Markets

Among all applications of the agent-based approach to macroeconomic
modeling, the most exciting one is the artificial stock market. By all stan-
dards, the stock market is qualified to be a complex adaptive system. How-
ever, conventional financial models are not capable of demonstrating this
feature. On the contrary, the famous no-trade theorem shows in equilibrium



how inactive this market can be (Tirole 1982). It was therefore invigorat-
ing when John Holland and Brian Arthur established an economics program
at the Santa Fe Institute in 1988 and chose artificial stock markets as their
initial research project. The SFI artificial stock market is built upon the
standard asset pricing model (Grossman 1976, Grossman and Stiglitz 1980).
What one can possibly learn from this novel approach was well summarized
in Palmer et al. (1994), which is in fact the first journal publication on an
agent-based artificial stock market. A series of follow-up studies materialized
the content of this new fascinating frontier in finance.

5.1 Agent Engineering and Trading Mechanisms

Agent-based artificial stock markets have two main stays: agent engineer-
ing and institution (trading mechanism) designs. Agent engineering mainly
concerns the construction of the financial agents. Tayler (1995) showed how
to use genetic algorithms to encode trading strategies of traders. A genetic
fuzzy approach to modeling trader’s behavior was shown in Tay and Linn
(2001), whereas the genetic neural approach was taken by LeBaron (2001).
To simulate the agent-based artificial stock market based on the standard
asset pricing model, the AI-ECON Research Center at National Chengchi
University developed software known as the AI-ECON artificial stock
market (AIE-ASM). The AIE artificial stock market differs from the SFI
stock market in the computational tool that is employed. The former applies
genetic programming, while the latter has genetic algorithms. In AIE-ASM,
genetic programming is used to model agents’ expectations of the price and
dividends. A menu-like introduction to AIE-ASM Ver. 2 can be found in
Chen, Yeh and Liao (2002).

In Chan et al. (1999) and Yang (2001) we see a perfect example of
bringing different learning schemes into the model. The learning schemes
incorporated into Chan et al. (1999) include empirical Bayesian traders,
momentum traders, and nearest-neighbor traders, where those included in
Yang (2001) are neural networks traders and momentum traders. LeBaron
(1999) gave a more thorough and general discussion of the construction of
artificial financial agents. In addition to models, data is another dimension
of agent engineering. What can be addressed here is the issue of stationarity
that the series traders are looking at. Is the entire time series representative
of the same dynamic process, or have things changed in the recent past?
LeBaron (2001) studied traders who are initially heterogeneous in perception
with different time horizons, which characterize their interpretation of how
much of the past is relevant to the current decision making.

Chen and Yeh (2001) contributed to agent engineering by proposing a
modified version of social learning. The idea is to include a mechanism, called
the business school. Knowledge in the business school is open for everyone.



Traders can visit the business school when they are under great survival pres-
sure. The social learning version of genetic programming is applied to model
the evolution of the business school rather than directly on traders. Doing
it this way, one can avoid making an implausible assumption that trading
strategies, as business secrets, are directly imitable. Yeh and Chen (2001a)
further combined this modified social learning scheme with the conventional
individual learning scheme in an integrated model. In this integrated model a
more realistic description of traders’ learning behavior is accomplished: the
traders can choose to visit the business school (learning socially), to learn
exclusively from their experience (learning individually), or both. In their
experiments, based on the effectiveness of different learning schemes, traders
will switch between social learning and individual learning. Allowing such
a competition between these two learning styles, their experiment showed
that it is the individual learning style which won the trust of the majority.
To the best of our knowledge, this is the only study which leaves the choice
of the two learning styles to be endogenously determined. Other aspects
of agent engineering studied include search intensity, psychological pressure,
and prudence. (Chen and Yeh 2000b, Chen and Yeh 2000c)

The second component of agent-based stock markets is the institutional
design. An institutional design should answer the following five questions:
who can trade, when and how can orders be submitted, who may see or han-
dle the orders, how are orders processed, and how are prices eventually set.
Trading institutional designs in the conventional SFI artificial stock market
either follow the Walrasian tatonnement scheme or the rationing scheme.
Chan et al. (1999) and Yang (2001), however, considered a double auction
mechanism. This design narrows the gap between artificial markets and the
real market, and hence makes it possible to compare the simulation results
with the behavior of real data, e.g., tick-by-tick data. Since stock mar-
ket experiments with human subjects were also conducted within the double
auction framework (Smith, Suchanek and Williams 1988), this also facilitates
the conversation between the experimental stock market and the agent-based
artificial stock market.

Based on agent engineering and trading mechanism designs, agent-based
artificial stock markets can generate various market dynamics, including
price, trading volumes, the heterogeneity and complexity of traders’ behav-
ior, and wealth distribution. Among them, price dynamics is the one under
the most intensive study. This is not surprising, because ever since the 1960s
price dynamics has been the focus of studies on random walks, the efficient
market hypothesis, and market rationality (the rational expectations hypoth-
esis). With the advancement of econometrics, it further became the focus of
the study of non-linear dynamics in the 1980s.



5.2 Mispricing

Agent-based artificial stock markets make two important contributions to
our understanding of the behavior of stock prices. First, they enable us to
understand what may cause the price to deviate from rational equilibrium
price or the so-called fundamental value.

Both Yang (2001) and Chan et al. (1999) discussed the effect of mo-
mentum traders on price deviation. Yang (2001) found that the presence of
momentum traders can drive the market price away from the homogeneous
rational equilibrium price. Chan et al. (1999) had a similar finding: adding
momentum traders to a population of empirical Bayesian has an adverse
impact on market performance, although price deviation decreased as time
went on. LeBaron (2001) inquired whether agents with a long-horizon per-
ception can learn to effectively use their information to generate a relatively
stable trading environment. The experimental results indicated that while
the simple model structure with fixed long horizon agents replicates the usual
efficient market results, the route to evolving a population of short horizon
agents to long horizons may be difficult. Arthur et al. (1997) and LeBaron,
Arthur and Palmer (1999) found that when the speed of learning (the length
of a genetic updating cycle) decreased (which forces agents to look at longer
horizon features), the market approached the REE.

Chen and Liao (2002a) is another study devoted to price deviation. They
examined how well a population of financial agents can track the equilibrium
price. By simulating the artificial stock market with different dividend pro-
cesses, interest rates, risk attitudes, and market sizes, they found that the
market price is not an unbiased estimator of the equilibrium price. Except
in a few extremely bad cases, the market price deviates from the equilibrium
price moderately from minus four percent to positive sixteen percent. The
pricing errors are in fact not patternless. They are actually negatively related
to market sizes: a thinner market size tends to have a larger pricing error,
and a thicker market tends to have a smaller one. For the thickest market
which they have simulated, the mean pricing error is only 2.17%. This figure
suggests that the new classical simplification of a complex world may still
provide a useful approximation if some conditions are met, such as in this
case, the market size.

5.3 Complex Dynamics

As to the second contribution, agent-based artificial stock markets also
enhance our understanding of several stylized features well documented in
financial econometrics, such as fat tails, volatility clusters, and non-linear
dependence. LeBaron, Arthur and Palmer (1999) showed that the appear-
ance of the ARCH effect and the non-linear dependence can be related to
the speed of learning. Yang (2001) found that the inclusion of momentum



traders generates a lot of stylized features, such as excess volatility, excess
kurtosis (leptokurtotic), lack of serial independence of return, and high trad-
ing volume.

Another interesting line is the study of emergent properties within the
context of artificial stock markets. Emergence is about “how large interact-
ing ensembles exhibit a collective behavior that is very different from anything
one may have expected from simply scaling up the behavior of the individ-
ual units” (Krugman (1996); p.3). Consider the efficient market hypothesis
(EMH) as an example. If none of the traders believe in the EMH, then this
property will not be expected to be a feature of their collective behavior.
Thus, if the collective behavior of these traders indeed satisfies the EMH
as tested by standard econometric procedures, then we would consider the
EMH as an emergent property. As another example, consider the rational
expectations hypothesis (REH). It would be an emergent property if all our
traders are boundedly rational, with their collective behavior satisfying the
REH as tested by econometrics.

Chen and Yeh (2002) applied a series of econometric tests to show that
the EMH and the REH can be satisfied with some portions of the artificial
time series. However, by analyzing traders’ behavior, they showed that these
aggregate results cannot be interpreted as a simple scaling-up of individ-
ual behavior. The main feature that produces the emergent results may be
attributed to the use of genetic programming, which allows us to generate
a very large search space. This large space can potentially support many
forecasting models in capturing short-term predictability, which makes sim-
ple beliefs (such as that where the dividend is an iid series, or that when
the price follows a random walk) difficult to be accepted by traders. In
addition to preventing traders from easily accepting simple beliefs, another
consequence of a huge search space is the generation of sunspot-like signals
through mutually-reinforcing expectations. Traders provided with a huge
search space may look for something which is originally irrelevant to price
forecasts. However, there is a chance that such kinds of attempts may mutu-
ally become reinforced and validated. The generation of sunspot-like signals
will then drive traders further away from accepting simple beliefs.

Using Granger causality tests, Chen and Yeh (2002) found that dividends
indeed can help forecast returns. By their experimental design, the dividend
does not contain the information of future returns. What happens is a typical
case of mutually-supportive expectations that make the dividend eventually
contain the information of future returns.

As demonstrated in Chen and Yeh (2001) and Chen and Yeh (2002), one
of the advantages of agent-based computational economics (the bottom-up
approach) is that it allows us to observe what traders are actually thinking
and doing. Are they martingale believers? Are they sunspot believers? Do
they believe that trading volume can help predict returns? By counting the
number of traders who actually use sunspots or trading volumes to forecast



returns, one can examine whether sunspots’ effects and the causal relation
between stock returns and trading volume can be two other emergent prop-
erties (Chen and Liao 2002b, Chen and Liao 2002c).

5.4 Market Diversity and Market Efficiency

Yeh and Chen (2001b) examined another important aspect of agent engi-
neering, i.e., market size (number of market participants). Few studies have
addressed the significance of market size on the performance of agent-based
artificial markets. One good exception is Bell and Beare (2002), whose sim-
ulation results showed that the simple tradable emission permit scheme (an
auction scheme) can be the most effective means for pollution control when
the number of participants is small. However, as the number of participants
increases, its performance declines dramatically and becomes inferior to that
of the uniform tax scheme. Another exception is Bullard and Duffy (1999).
In most studies, the number of market participants is usually determined in
an arbitrary way, mainly constrained by the computational load. Arifovic
(1994), however, justified the number of participants from the viewpoint of
search efficiency. She mentioned that the minimal number of strings (agents)
for an effective search is usually taken to be 30 according to artificial intel-
ligence literature. Nonetheless, agent-based artificial markets have different
purposes and concerns.

Related to market size is population size. In the case of social learning
(single-population GA or GP), market size is the same as population size.
However, in the case of individual learning (multi-population GA or GP),
population size refers to something different, namely, the number of solu-
tion candidates each trader has. Like market size, population size is also
arbitrarily determined in practice.

Yeh and Chen (2001b) studied the effect of market size and population
size upon market efficiency and market diversity under social and individual
learning styles. Their experimental results obtained can be summarized as
two effects on market efficiency (price predictability), namely, the size effect
and the learning effect. The size effect says that the market will become effi-
cient when the number of traders (market size) and/or the number of models
(GP trees) processed by each trader (population size) increases. The learn-
ing effect says that the price will become more efficient if traders’ adaptive
behavior becomes more independent and private. Taking a look at market
diversity, we observe very similar effects except for population size: market
diversity does not go up with population size. These findings motivate us
to search for a linkage between market diversity and market efficiency. A
“theorem” may go as follows: a larger market size and a more independent
learning style will increase the diversity of traders’ expectations, which in
turn make the market become more active (high trading volume) and hence



more efficient (less predictable). Their simulation results on trading volumes
also supported this “theorem”. They further applied this “theorem” to ex-
plain why the U.S stock market behaves more efficient than Taiwan’s stock
market.

6 Concluding Remarks

The agent-based approach to macroeconomic modeling has a one-decade
history. Its impacts on the mainstream macroeconomics are increasing, and
it should play a much more important role in the 21st-century. In this survey
article we review the development of the agent-based approach to macroe-
conomic modeling. We witness how the agent-based approach has revolu-
tionized the conventional macroeconomic general equilibrium analysis built
upon the unconvincing assumption of homogeneous agents. Artificial adap-
tive agents are introduced to model the adaptive behavior of agents placed
in a complex environment which may naturally arise when the homogeneity
assumption is dropped. The resultant dynamic aggregate behavior can be
much more complex than just the homogeneous rational expectations equi-
librium. The complex aggregate dynamics are characterized by persistent
fluctuations with chaotic or non-linear stochastic properties, which are fre-
quently observed in a real macroeconomic time series. What co-evolves with
these complex aggregate complex dynamics is a great diversity of adapting
agents, who are continuously reviewing and revising their decision rules.
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