
The Electronic Journal of Evolutionary Modeling and Economic Dynamics
http://www.e-jemed.org/

Article number: 1002

Please cite this article as following:

Shu-Heng Chen, John Duffy, Chia-Hsuan Yeh, 2002, Equilibrium Selection via Adaptation:
Using Genetic Programming to Model Learning in a Coordination Game, The Electronic
Journal of Evolutionary Modeling and Economic Dynamics, n° 1002, http://www.e-
jemed.org/1002/index.php

Equilibrium Selection via Adaptation: Using Genetic Programming
to Model Learning in a Coordination Game

Shu-Heng Chen John Duffy Chia-Hsuan Yeh
National Chengchi University University of Pittsburgh Yuan Ze University

Abstract

This paper models adaptive learning behavior in a simple coordination game that
Van Huyck, Cook and Battalio (1994) have investigated in a controlled laboratory
setting with human subjects. We consider how populations of artificially
intelligent players behave when playing the same game. We use the genetic
programming paradigm, as developed by Koza (1992, 1994), to model how a
population of players might learn over time. In genetic programming one seeks to
breed and evolve highly fit computer programs that are capable of solving a given
problem. In our application, each computer program in the population can be
viewed as an individual agent's forecast rule. The various forecast rules
(programs) then repeatedly take part in the coordination game evolving and
adapting over time according to principles of natural selection and population
genetics. We argue that the genetic programming paradigm that we use has
certain advantages over other models of adaptive learning behavior in the context
of the coordination game that we consider. We find that the pattern of behavior
generated by our population of artificially intelligent players is remarkably similar
to that followed by the human subjects who played the same game. In particular,
we find that a steady state that is theoretically unstable under a myopic, best--
response learning dynamic turns out to be stable under our genetic--
programming— based learning system, in accordance with Van Huyck et al.'s
(1994) finding using human subjects. We conclude that genetic programming
techniques may serve as a plausible mechanism for modelling human behavior,

The Electronic Journal of Evolutionary Modeling and Economic Dynamics
http://www.e-jemed.org/

and may also serve as a useful selection criterion in environments with multiple
equilibria.

Keywords: Coordination Game, Equilibrium Selection, Genetic Programming,
Adaptiation.

JEL: C63, D83

Copyright: Suh-Heng Chen, John Duffy, Chia-Hsuan Yeh. 2002.

Equilibrium Selection via Adaptation: Using Genetic

Programming to Model Learning in a Coordination

Game∗

Shu-Heng Chen

Department of Economics

National Chengchi University

Taipei 11623, Taiwan

E-mail: chchen@nccu.edu.tw

John Duffy

Department of Economics

University of Pittsburgh

Pittsburgh, PA 15260 U.S.A.

E-mail: jduffy+@pitt.edu

Chia-Hsuan Yeh

Department of Information Management

Yuan Ze University

Chungli, Taoyuan 320, Taiwan

E-mail: imcyeh@saturn.yzu.edu.tw

Abstract

This paper models adaptive learning behavior in a simple coordination game that Van Huyck,
Cook and Battalio (1994) have investigated in a controlled laboratory setting with human sub-
jects. We consider how populations of artificially intelligent players behave when playing the
same game. We use the genetic programming paradigm, as developed by Koza (1992, 1994), to
model how a population of players might learn over time. In genetic programming one seeks to
breed and evolve highly fit computer programs that are capable of solving a given problem. In
our application, each computer program in the population can be viewed as an individual agent’s
forecast rule. The various forecast rules (programs) then repeatedly take part in the coordination
game evolving and adapting over time according to principles of natural selection and population
genetics. We argue that the genetic programming paradigm that we use has certain advantages
over other models of adaptive learning behavior in the context of the coordination game that we
consider. We find that the pattern of behavior generated by our population of artificially intelli-
gent players is remarkably similar to that followed by the human subjects who played the same
game. In particular, we find that a steady state that is theoretically unstable under a myopic,
best–response learning dynamic turns out to be stable under our genetic–programming–based
learning system, in accordance with Van Huyck et al.’s (1994) finding using human subjects. We
conclude that genetic programming techniques may serve as a plausible mechanism for modelling
human behavior, and may also serve as a useful selection criterion in environments with multiple
equilibria.

JEL Classification Nos. C63, D83.

∗This project was initiated while Duffy was visiting National Chengchi University. A preliminary version of this
paper, Chen, Duffy and Yeh (1996), was presented at the 1996 Evolutionary Programming Conference.

1

1 Introduction

The empirical usefulness of static equilibrium analysis is compromised when economic models have

multiple equilibria. Consequently, extensive efforts have been made to identify ways of reducing

the set of equilibria that are focal in models with multiple equilibria. There seems to be some

consensus emerging that a sensible selection criterion for choosing among multiple equilibria is to

determine which of the candidate equilibria are stable with respect to some kind of disequilibrium,

“learning” dynamic.1 A number of such learning dynamics have been proposed and used to reduce

or eliminate multiple equilibria as empirically relevant candidates. However, the notion that these

learning dynamics accurately reflect the behavior of individual economic agents or groups of agents

has only very recently begun to be examined through a number of controlled laboratory experiments

with human subjects.2

This paper focuses on results obtained from one such experiment conducted by Van Huyck, Cook

and Battalio (1994) that tested the predictions of a class of selection dynamics in a generic coordi-

nation game against the behavior of human subjects who played the same coordination game. Van

Huyck et al. postulated that one of two candidate learning processes could describe the behavior of

human subjects playing the coordination game. The first learning process is a Cournot–type, my-

opic best–response dynamic, and the second is an inertial learning algorithm that allows for slowing

changing beliefs.3 Both learning models are special versions of a large class of relaxation algorithms

that have frequently appeared in the learning literature.4 Under certain parameterizations, these

two learning processes yield different predictions for the stability of one of the game’s two Nash

equilibria. Van Huyck et al.’s (1994) experimental results suggest that in those parameterizations

where the two learning algorithms yield different predictions, the inertial learning algorithm pro-

vides a better characterization of the behavior of human subjects in the coordination game than the

myopic best response dynamic.

In this paper, we adopt a computational approach, using Koza’s (1992, 1994) genetic program-

ming techniques to model the behavior of artificial economic agents playing the same simple coor-

dination game that was studied by Van Huyck et al. (1994). The computational approach that we

1For references, see, e.g. the surveys by Kreps (1990), Sargent (1993), and Marimon (1997).
2For a survey of some of these experiments, see, e.g., Kagel and Roth (1995).
3Van Huyck et al. refer to this inertial learning dynamic as the “L–map” which is a reference to Lucas’ (1986) use

of this type of learning dynamic.
4The class of relaxation algorithms includes, for example, the past averaging algorithm of Bray (1982) and Lucas

(1986), and the least squares learning algorithm of Marcet and Sargent (1989).

2

take to modelling agent behavior allows for a considerably more flexible experimental design than

is possible with experiments involving human subjects. Moreover, unlike most rule–based models of

adaptive learning behavior, the artificial players in our genetic programming implementation of the

coordination game are explicitly endowed with the ability to “think” nonlinearly, and are given all

the “building blocks” necessary to construct a vast array of both linear and nonlinear forecasting

rules including the myopic best response and the inertial learning algorithms considered by Van

Huyck et al. (1994). Thus we know, at the outset, that our artificial players are capable of both

choosing and coordinating upon linear or nonlinear forecasting rules that may result in stationary,

periodic or aperiodic trajectories. We find that our more general computational approach to mod-

elling learning behavior in the coordination game results in behavior that is qualitatively similar

to that of the subjects in Van Huyck et al.’s (1994) coordination game experiment. Indeed, we

think of our genetic programming implementation of learning in the coordination game as a kind

of robustness check on the experimental results reported for the same game. Finally, we argue that

the genetic programming techniques we illustrate in this application have certain advantages over

other artificial intelligence techniques that have been applied to economic models, namely, genetic

algorithms.

The coordination game found in Van Huyck et al. (1994) differs from previous coordination

games that have been studied experimentally, (e.g. Cooper, DeJong, Forsythe and Ross (1990) and

Van Huyck, Battalio and Beil (1990, 1991)) in that 1) the set of agent actions is considerably larger

(indeed, there can be a continuum of possible actions), and 2) the stability of one of the game’s

two equilibria cannot be ascertained a priori. The first difference makes it difficult to formulate and

enumerate strategies that are based upon all possible actions as is often done in adaptive learning

models. The second difference arises because Van Huyck et al. (1994) entertain the notion that

agents might adopt nonlinear rules to choose actions. Because of these differences, learning models

that have been used to explain behavior in the early coordination game experiments, for example,

the linear learning models of Crawford (1991, 1995) and the genetic algorithm approach of Arifovic

(1997) are not as well suited to the coordination game environment studied by Van Huyck et al.

(1994). By contrast, we argue that the genetic–programming approach that we take to modelling

learning behavior is particularly well suited to the coordination game environment of Van Huyck et

al. (1994). We now turn to a description of this coordination game.

3

2 The Coordination Game

Consider the generic coordination game Γ(ω), studied by Van Huyck et al. (1994). There are n

players, each of whom chooses some action ei ∈ [0, 1], i = 1, 2, ...n. The individual player i’s payoff

function in every round of play, t, is described by:

πi,t(e
i, e−i) = c1 − c2|e

i − ωMt(e)[1 − Mt(e)]|, (1)

where c1 and c2 are constants, Mt(e) denotes the median of all n players’ actions in round t, ω ∈ (1, 4]

is a given parameter and e−i denotes the vector of actions taken by the other n − 1 players in the

same round. Both the payoff function and the set of feasible actions are assumed to be common

knowledge.

It is clear from the structure of the payoff function that the individual player in this game should

seek to minimize the expression that lies between the absolute value signs. That is, for a given value

of the median, M , the individual player’s best response function b(M), is:

b(M) = ωM(1 − M).

This best response function gives rise to two Nash equilibria: a corner equilibrium, where ei = 0

for all i, and an interior equilibrium where ei = 1 − 1

ω
for all i. The best response function b(M) is

easily recognized to be a member of the family of quadratic maps, where the degree of curvature is

determined by the tuning parameter ω.

3 Selection Dynamics

Van Huyck et al. (1994) suggested that a certain class of “relaxation algorithms” that are frequently

encountered in the learning literature could be used to characterize the evolution of play of this

coordination game over time. This class of relaxation algorithms is described by the simple dynamical

system:

Mt = b(M̂t),

M̂t = M̂t−1 + αt(Mt−1 − M̂t−1),

where M̂t is the representative agent’s expected value for the median at time t > 1, and αt ∈ [0, 1] is

a given forgetting factor. Van Huyck et al. (1994) consider two specific versions of this relaxation

4

algorithm: 1) a “myopic” best response algorithm where αt = 1 for all t > 1, and 2) an “inertial”

algorithm, where αt = 1/t for all t > 1.

The myopic best response version of the dynamical system gives rise to a simple first order

difference equation that characterizes the evolution of the median over time:

Mt = ωMt−1(1 − Mt−1)

It is easily shown that for 1 < ω < 3, the interior equilibrium, 1− 1

ω
is attracting (locally stable) while

the corner equilibrium, 0, is repelling (locally unstable) under the myopic best response dynamics.

However for ω > 3, the dynamics of the myopic best response algorithm become increasingly more

complicated, resulting in a dense set of periodic trajectories for the median that follow the Sarkovskii

order. When ω = 3.839, the myopic best response algorithm gives rise to a stable cycle of period 3,

which according to the famous theorem of Li and Yorke implies that there are cycles of all periods and

an uncountable set of nonperiodic (chaotic) trajectories.5 Thus, for ω > 3, the interior equilibrium

is no longer stable under the myopic best response dynamics.

The inertial version of the relaxation algorithm gives rise to the dynamical system:

Mt = b(M̂t)

M̂t =
t − 1

t
M̂t−1 +

1

t
Mt−1

Note that the inertial learning algorithm differs from the myopic best response algorithm in that

the inertial algorithm gives most weight to the previous expected value of the median whereas the

myopic best response algorithm gives all weight to the previous realized value of the median. It is

easily shown that for all feasible values for ω (ω ∈ (1, 4]), the interior equilibrium 1 − 1

ω
is a global

attractor under the dynamics of the inertial learning algorithm.

Thus if 1 < ω ≤ 3, both the myopic best response and the inertial learning algorithms predict

that the interior equilibrium 1 − 1

ω
will be the equilibrium that agents eventually coordinate upon.

However, for 3 < ω ≤ 4, the myopic best response algorithm predicts that the interior equilibrium

will be unstable, whereas the inertial learning algorithm predicts that the interior equilibrium will

continue to be stable.

5For a detailed analysis of the first order difference equation, Mt = ωMt−1(1−Mt−1), that characterizes the myopic
best response dynamic see, e.g. Devaney (1989).

5

4 Experimental Results and Experimental Design

Van Huyck et al. (1994) considered two experimental versions of the coordination game, Γ(ω),

described above. In one version of the game, Γ(2.4722), the interior equilibrium is predicted to be

stable under both the myopic best response and inertial learning dynamics based on the choice of

ω < 3. In a second version of game, Γ(3.86957), the interior equilibrium is predicted to be unstable

under the myopic best response dynamics; starting from any initial condition, the myopic best

response algorithm results in a chaotic trajectory for the median. By contrast, under the inertial

learning dynamics, the interior equilibrium in the game Γ(3.86957) is predicted to remain stable since

ω ≤ 4. Thus, the second game, Γ(3.86957), is the more interesting one, as the stability predictions

of the myopic best response and inertial learning dynamics differ for this particular game.

Van Huyck et al. (1994) report results from 2 experimental sessions of Γ(2.4722) and 6 experi-

mental sessions of Γ(3.86957) using 5 subjects in each session. In all eight sessions they found that

almost all subjects quickly coordinated on the interior equilibrium; that is, the interior equilibrium is

judged to be stable in all treatments. The authors thus conclude that the inertial learning algorithm

is a better selection device in the coordination game than the myopic best response algorithm, since

the prediction of the inertial learning algorithm regarding the stability of the interior equilibrium is

always consistent with the experimental findings.

Van Huyck et al.’s conclusion that the inertial learning algorithm serves as a reasonable learning

model/selection criterion is subject to some criticism. First, while it is true that the inertial learning

algorithm converges to the interior equilibrium in the game Γ(3.86957) (whereas myopic best response

does not), the convergence trajectory taken by this algorithm is much too smooth when compared

with the evolution of the median in the human subject experiments (see the experimental data

reported in Appendix B of Van Huyck et al. (1994)). A second, related criticism is that it is

apparent from the experimental data that the players in the coordination game do not all use the

same learning scheme. If they all did use the same scheme, then for the same sequence of values

for the median, we should expect to observe the same actions being taken. However, we observe

players taking many different actions, especially in the early stages of the experiment, which suggests

that they do not hold identical expectations. For this reason, it seems necessary to look beyond

the predictions of representative agent learning models and to consider instead the performance of

heterogeneous, multi–agent learning models. Our genetic–programming–based learning model is an

example of this kind of multi–agent approach.

6

We note also that in implementing the coordination game experimentally, Van Huyck et al. (1994)

made the simplifying assumption that the action set, ei consists of only a finite set of discrete choices;

players were asked to choose an action ei from the set of integers {1, 2, ..., 90}. Each subject’s action

was then mapped into the unit interval using the function f(ei) = (90 − ei)/89. The discreteness

of the action set however, leads to some rather dramatic changes in the analysis of the myopic best

response dynamics for the interesting case where ω > 3. First, the discreteness of the action set

rules out the possibility of chaotic trajectories which require the continuum of the unit interval.

Indeed, the restriction that the median takes on one of 90 values implies that the median must

repeat itself at least once every 91 periods. Second, the discreteness of the action set also leads to

the possibility that the interior equilibrium of the game Γ(3.86957) is locally stable under the myopic

best response dynamics. In particular, the stability of the interior equilibrium of the discrete choice

coordination game Γ(3.86957) now depends crucially on the initial condition, i.e. the first median

value M1. For almost all feasible values for M1 ∈ {1, 2, ...90}, the myopic best response dynamics

for the game Γ(3.86957) converge to a stable seven cycle, implying that the interior equilibrium is

unstable. However, for some initial values the interior and the corner equilibria can also be locally

stable under the discrete choice, myopic best response dynamics.6

In the genetic programming implementation of the coordination game that we explore in this

paper, we do not have to discretize the action set. The computer programs that we evolve are all

capable of choosing actions on the continuum of the unit interval. Therefore, unlike the experimental

implementation of the coordination game we do not rule out the possibility of chaotic trajectories.

Moreover, by allowing a continuum for the set of feasible actions, the coordination problem faced by

our artificial agents is much more complicated than that faced by the experimental subjects whose

actions were limited to a finite, discrete choice set. Finally, we consider a much larger size population

of players than is practically feasible in an experiment with human subjects. This larger population

size should again, make the coordination problem more difficult. Thus, our genetic programming

implementation of learning in the coordination game can be viewed as a check of whether the

experimental results are robust to a continuous action set with a large number of players that would

6In particular, for M1 ∈ {24, 67}, the interior equilibrium is locally stable under the discrete choice, myopic best
response dynamics, and for M1 ∈ {1, 90}, the corner equilibrium is locally stable under these same dynamics. It is
interesting to note that in one of Van Huyck et al.’s 6 treatments of the game Γ(3.86957) – session 7 – the initial
median was 24. With this value for M1, the discrete choice, myopic best response dynamic would predict that the
system would stay at 24, the interior equilibrium forever, and indeed, this is roughly what occurred. See figure 13 of
Van Huyck et al. (1994). Thus, one cannot dismiss altogether the possibility that discrete choice, myopic best response
dynamic might also characterize the behavior of the experimental subjects in the game Γ(3.86957).

7

be difficult to implement in an experiment involving human subjects.

5 Genetic Programming

Before describing how we model agent behavior in the coordination game using genetic programming

techniques, we first provide a brief overview of genetic programming. A more detailed description

of genetic programming, especially as it applies to the coordination game that we study, is provided

in Appendix A.

5.1 An Overview

Genetic programming (GP) represents a new field in the artificial intelligence literature that was

developed only recently by Koza (1992, 1994) and others.7 GP belongs to a class of evolutionary

computing techniques based on principles of population genetics. These techniques combine Darwin’s

notion of natural selection through survival of the fittest with naturally occurring genetic operations

of recombination (crossover) and mutation. Genetic programming techniques have already been

widely applied to engineering type optimization problems (both theoretical and commercial), but

have seen comparatively little application to economic problems, which are often similar in nature.

The few economic applications of GP thus far include Allen and Karjalainen (1999), Chen and Yeh

(1997a,b), Dworman, Kimbrough and Laing (1996) and Neely et al. (1997).

While GP techniques are often viewed as an offshoot of Holland’s (1975) genetic algorithm (GA),

GP techniques are perhaps more accurately viewed as a generalization of the genetic algorithm.

The standard genetic algorithm operates on a population of structures, usually strings of bits.

Each of the members of this population, the individual bitstrings, represent different candidate

solutions to a well–defined optimization problem. The genetic algorithm evaluates the fitness of

these various candidate solutions using the given objective function of the optimization problem and

retains solutions that have, on average, higher fitness values. Operations of crossover (recombination)

and mutation are then applied to some of these more fit solutions as a means of creating a new

“generation” of candidate solutions. The whole process is repeated over many generations, in order

to evolve solutions that are as close to optimal as possible. In analyzing the evolution of solutions

over time, it is typical to report the solution in each generation that has the highest fitness value

– this solution is designated the “best–of–generation” solution. The algorithm is ended when this

7See also Kinnear (1994).

8

best–of–generation solution satisfies a certain criterion (e.g. some tolerance) or after some maximum

number of iterations has been reached.

Theoretical analyses of genetic algorithms suggest that they are capable of quickly locating

regions of large and complex search spaces that yield highly fit solutions to optimization problems.

That is because the genetic operators of the GA work together to optimize on the trade–off between

discovering new solutions and using solutions that have worked well in the past (Holland (1975)).8

Koza’s idea in developing genetic programming techniques was to take the genetic algorithm a

step further and ask whether the same genetic operators used in GAs could be applied to a population

of computer programs so as to evolve highly fit computer programs. There are several advantages to

using computer programs rather than bitstrings as the structures to be evolved. First, the computer

programs of GP have an explicit, dynamic structure that can be easily represented in a decision

tree format. By contrast, the bitstrings of GAs typically encode passive yes/no type decisions or

parameter values for prespecified, often static functional forms. The dynamic nature of the computer

programs of GP makes them capable of a much more sophisticated and nonlinear decision making

than in generally possible using the bitstrings of GAs. Second, the computer programs of GP are

immediately implementable structures; as such, they can be readily interpreted as the forecast rules

used by a heterogeneous population of agents. For example, in GP, a computer program used by

player i in round t, gpi,t, might take the form:

gpi,t = 0.31 + Mt−1(Mt−1 − Mt−2).

Here, Mt−j represents the value of the median j periods in the past. Given these lagged median

values, this program can be immediately executed and delivers a forecast of the median in period t,

equal to the value of 0.31 + Mt−1(Mt−1 − Mt−2). This forecast then becomes the action taken by

player i in round t. Note that this program is readily interpreted as the agent’s forecast function. By

contrast, the bitstrings used in GAs are not immediately implementable and their interpretation is

less clear; these bitstrings first have to be decoded and then the decoded values must be applied to

some prespecified functional form before the solution the bitstrings represent can be implemented.

Finally, while the length of the bitstrings used in GAs is fixed, the length of the computer programs

used in GP is free to vary (up to some limit, of course) providing for a much richer range of

8For an introduction to the theory of genetic algorithms, see, e.g. Goldberg (1989) or Mitchell (1996). Economic
applications of genetic algorithms can be found in the work of Arifovic (1994, 1995, 1996, 1997), Arthur et al. (1997),
Bullard and Duffy (1998ab), Dawid (1996), Miller (1996) and Tesfatsion (1997) among others and are also discussed
in Sargent (1993) and Birchenhall (1995).

9

structures.9

Koza chose to develop GP techniques using the Lisp programming language because the syntax

of Lisp allows computer programs to be easily manipulated like bitstrings, so that the same genetic

operations used on bitstrings in GAs can also be applied to the computer programs that serve as the

evolutionary structures in GP. Moreover, the new computer programs that result from application

of these genetic operations are immediately executable programs.

Lisp has a single syntactic form, the symbolic expression (S–expression), that consists of a number

of atoms. These atoms are either members of a terminal set, that comprise the inputs (e.g. data) to

be used in the computer programs, or they are members of a function set that consists of a number

of prespecified functions or operators that are capable of processing any data value from the terminal

set and any data value that results from the application of any function or operator in the function

set. Each Lisp S–expression has the property that it is immediately executable as a computer

program, and can be readily depicted as a rooted, point–labeled tree. Moreover, the S–expressions

are easily manipulated like data; cutting a tree at any point and recombining the cut portion with

another tree (S–expression) results in a new S–expression that is immediately executable. A more

detailed discussion of Lisp S–expressions is provided in Appendix A.

As Koza and others have noted the use of Lisp is not necessary for genetic programming; what

is important for genetic programming is the implementation of a Lisp–like environment, where

individual expressions can be manipulated like data, and are immediately executable. For the results

reported in this paper, we have chosen to implement the Lisp environment using Pascal 4.0.10

5.2 Using Genetic Programming to Model Learning in the Coordination Game

In this section, we explain how we use genetic programming to model population learning in the coor-

dination game. Discussion of some of the more technical details of our implementation can be found

in Appendix A. The version of genetic programming used here is the simple genetic programming

that is described in detail in Koza (1992).

Let GPt, denote a population of trees (S–expressions), representing a collection of players’ fore-

casting functions. A player i, i = 1, ..., n, makes a decision about his action for time t using a parse

tree, gpi,t ∈ GPt, written over the function and terminal sets that are given in Table 1.

9While in principle it is possible to represent dynamic, variable length expressions using the bitstrings of genetic
algorithms, this has not been the practice. See Angeline (1994) for a further discussion.

10Other programming languages, e.g. C, C++, and Mathematica have also been used to implement Lisp environ-
ments.

10

Table 1: Tableau for the GP–Based Learning Algorithm

Population size 500

The number of initial trees generated by the full method 250

The number of initial trees generated by the grow method 250

The maximum depth of a tree 17

Function set {+,−,×,%, Exp,Rlog, Sin,Cos}

Terminal set {<,Mt−1,Mt−2,Mt−3,Mt−4,Mt−5}

The maximum number in the domain of Exp 1,700

The number of trees created by reproduction 50

The number of trees created by crossover 350

The number of trees created by mutation 100

The probability of mutation 0.0033

The probability of leaf selection under crossover 0.5

The maximum number of generations 1,000

Fitness Criterion Payoff Function: πi,t

As Table 1 indicates, the function set, includes the standard mathematical operations of addition

(+), subtraction (−), multiplication (×) and protected division (%), and also includes the exponen-

tial function (Exp) a protected natural logarithm function (Rlog) and the sin and cosine functions

(Sin and Cos).11 This set of operators and functions is the one that the artificial agents in our

experiments are “endowed” with.

The terminal set includes the set of constants and variables that the artificial agents may use in

combination with the operators and functions from the function set to build forecast rules. As indi-

cated in Table 1, the terminal set includes the random floating–point constant < which is restricted

to range over the interval [−9.99, 9.99], as well as the population mean choice of action lagged up to

h periods, i.e., Mt−1,..., Mt−h. Note that in our version of the coordination game, M refers to the

mean rather than the median choice of action as in Van Huyck et al. (1994).12 The choice of the

11The protected division operator protects against division by zero by returning the value 1 if its denominator
argument is 0; otherwise, it returns the value from dividing its first argument (the numerator) by its second argument
(the denominator). Similarly, the protected natural logarithm function avoids nonpositive arguments by returning the
natural logarithm of the absolute value of its argument, and returning the value 0 if its argument is 0. The exponential
function, which takes the argument x and returns the value ex, allows a maximum argument value of 1, 700 as indicated
in Table 1. Such function modifications and restrictions are necessary to avoid ill–defined forecasts; these types of
modifications are quite standard in the GP literature. See, e.g., Koza (1992).

12Van Huyck et al. (1994) used the median rather than the mean in the coordination game because in experiments
involving small numbers of human subjects (they only had 5 subjects in each experimental session), the mean can be

11

lag length, h, determines players’ ability to recall the past. We set h equal to 5, so that agents may

consider as many as 5 past lagged values of the mean in their forecast functions.

The forecasting functions that players may construct and use are linear and nonlinear functions

of Mt−1,..., Mt−h, <, and, as we shall see later, they may also be functions, in whole or in part, of

past forecast rules gpi,t(Mt−1, ...,Mt−h). We note that the set of forecast functions that our artificial

players may adopt includes the myopic best response, but not the inertial learning algorithm, as the

latter requires knowledge the previous period’s forecast of the mean value, M̂t−1.

Indeed, Chen and Yeh (1997a) have shown that GP techniques can be used to uncover a variety

of nonlinear data generating functions. In one demonstration, they generated a time series for the

nonlinear, chaotic dynamical system xt+1 = 4xt(1 − xt), which is the same as our myopic best

response law of motion with ω = 4. They then used a GP–based search in an effort to recover this

exogenously given system. Fitness was based on how close the forecast functions in the population

came to matching the given time series behavior, and the GP function and terminal sets were nearly

identical to those used in this paper. Chen and Yeh (1997a) report that the GP–based search was

able to uncover the data generating process in no more than 19 generations. In this paper, by

contrast, the data generating process for the mean is endogenously determined by the actions chosen

by all of the individual players. Nevertheless, it is nice to know that a GP–based search algorithm

can deduce a nonlinear data generating function such as the myopic best response law of motion.

The decoding of a parse tree gpi,t gives the forecasting function used by player i at time period

t, i.e., gpi,t(Ωt−1) where Ωt−1 is the information set containing past mean values through time t− 1.

Evaluating gpi,t(Ωt−1) at the realization of Ωt−1 gives the mean action predicted by player i in round

t, i.e., gpi,t. Without any further restriction, the range of gpi,t is (−∞,∞). However, since the action

space for each player is restricted to [0, 1], we must restrict gpi,t so that it also lies in [0, 1]. We chose

to implement this restriction in two different ways. Our first approach was to use the symmetric

sigmoidal activation function to map (−∞,∞) to [0, 1] so as to obtain a valid mean forecast, M̂i,t,

for player i in round t, i.e.

M̂i,t =
1

1 + e−gpi,t

A second approach that we also considered was a simple truncated linear transformation where player

easily influenced by the behavior of a single subject. By contrast, the computational coordination game experiments
that we perform involve hundreds of artificial agents, so that the use of the mean rather than the median is no longer
a concern.

12

i’s round t forecast was determined as follows:

M̂i,t =





gpi,t if 0 ≤ gpi,t ≤ 1,
1 if gpi,t > 1,
0 if gpi,t < 0.

Using either of these two approaches ensures that player i’s mean choice of action lies in the feasible

[0, 1] interval.

Once we have all n players’ mean action choices (equivalent to their mean forecasts), it is possible

to determine the actual value of the mean in round t, Mt = 1

n

∑n
i=1 M̂i,t. Given this mean value, we

can calculate each player’s fitness value in round t. The raw fitness of a parse tree gpi,t is determined

by the value of the player’s payoffs earned in round t as determined by the payoff function πi,t, given

in equation (1). To avoid negative fitness values, each raw fitness value is adjusted to produce an

adjusted fitness measure µi,t that is described as follows:

µi,t =

{
πi,t + 0.25 if πi,t ≥ −0.25,
0 if πi,t < −0.25.

In making this adjustment, we are effectively eliminating from the population forecast functions

gpi,t that lose more than $0.25, since these rules will have comparatively lower adjusted fitness

values (equal to 0) than rules that did not perform so poorly. Our decision to make the above

adjustment to the fitness measure was due to the following consideration. In the early rounds of a

game, players have very limited experience with the environment so their expectations essentially

amount to random guessing. As a consequence, many of the players will lose money. If we only

considered players with forecast functions that earned positive payoffs, the selection process would

quickly come to be dominated by those few players (forecast functions) that were lucky enough

to earn positive payoffs in the initial stages of the game. However, we want to maintain some

heterogeneity in the population and avoid the possibility of premature convergence, a problem that

can occur in populations lacking sufficient heterogeneity. For this reason, we allow some players

to earn negative payoffs, but we restrict such losses so that they do not exceed $0.25. After a few

generations when most of the players have begun to earn positive payoffs, this protection no longer

plays any effective role. We have experimented with adjustment values other than 0.25. While small

adjustment values do not significantly alter our simulation results, very large adjustment values do

affect our results because these large values effectively nullify the adjusted fitness measure as an

indicator of the relative success of a forecast function. Later in the paper, we examine what happens

when we replace the adjustment value of 0.25 in the adjustment scheme described above with the

13

much larger value of 200.00. However, unless otherwise indicated, all of the simulation results we

report below involve an adjustment value equal to 0.25.

Once all of the adjusted fitness values are determined, each adjusted fitness value µi,t is then

normalized. The normalized fitness value pi,t is given by:

pi,t =
µi,t∑n

i=1 µi,t

.

It is clear that the normalized fitness value is a probability measure. Moreover, pi,t will vary directly

with the performance of the parse tree gpi,t; the better the parse tree performs (in terms of its payoff),

the higher is its normalized fitness value. The normalized fitness values pi,t are used to determine the

next generation of agents (parse trees) GPt+1 from the current generation GPt through application

of the three primary genetic operators, i.e., reproduction, crossover, and mutation. We now describe

these three genetic operators.

1. Reproduction:

The reproduction operator makes copies of individual parse trees from generation GPt and

places them in the next generation GPt+1. The criterion used for copying is the normalized

fitness value pi,t. If gpi,t is an individual in the population GPt with normalized fitness value

pi,t, then each time the reproduction operator is called, gpi,t will be copied into the next

generation with probability pi,t. The reproduction operator does not create anything new

in the population and the “offspring” generated by reproduction constitute only part of the

population of the next generation of trees, GPt+1. As specified in Table 1, the reproduction

operator is used to create only 10% (50 out of 500) of the next generation. The rest of the

offspring are generated by the other two operators, crossover and mutation.

2. Crossover:

The crossover operation for the genetic programming paradigm is a sexual operation that

starts with two parental parse trees that have been randomly selected from the population GPt

based upon their normalized fitness values as described above. Crossover involves exchanging

different parts of these “parents” to produce two new “offspring.” This exchange begins by

randomly and independently selecting a single point on each parental parse tree using a uniform

distribution described below. By the syntax of Lisp, each point (atom) of a parse tree could

be either a leaf (terminal) or a inner code (function). Thus, the point (atom) selected for

14

crossover could either be a terminal or a function. As specified in Table 1, the probability that

the crossover point is a terminal or a function is the same, i.e., one-half. Given that a terminal

or function is to be the point chosen for crossover, the probability that any terminal or function

is chosen as the crossover point is uniformly distributed. For example, if the crossover point is

to be a terminal, and there are three terminals in the parse tree, the probability that any one

of the three terminals is chosen for the crossover point is one–third. Unlike reproduction, the

crossover operation adds new individuals (new forecasts rules) to the population. As indicated

in Table 1, crossover is responsible for creating 70% (350 out of 500) of the next generation of

parse trees, GPt+1.

3. Mutation:

The operation of mutation also allows for the creation of new individuals. The mutation

operator begins by selecting a parse tree gpi,t from the population GPt based once again upon

normalized fitness values pi,t. Each point (atom) of the selected parse tree is then subjected

to mutation (alteration) with a small, fixed probability. As specified in Table 1, this fixed

probability of mutation is 0.0033. To ensure that the resulting expression is a syntactically

and semantically valid Lisp S–expression, terminals can only be altered to another member

from the terminal set and functions can only be altered to another member from the function

set possessing the same number of arguments. The altered individual forecast rule (parse tree)

is then copied into the next generation of the population. As indicated in Table 1, mutation

is responsible for creating 20% (100 out of 500) of the next generation of parse trees.

The three operators combined create the population GPt+1 by copying, recombining and mutat-

ing the parse trees that make up the population GPt. Once the new population GPt+1 has been

created, the decoding of each parse tree gpi,t+1 is performed to obtain the new mean, Mt+1. Once

the new mean is determined, the raw, adjusted and normalized fitness values for each parse tree can

be determined using the payoff function (1), and the GP operators can then be applied to create

the population GPt+2. The algorithm continues with successive generations, up to the maximum

number of generations. We set the maximum number of generations equal to 1,000 as indicated in

Table 1.

The initial S-expressions were randomly generated using both of the methods suggested by Koza

15

Table 2: Parameter Values for the Coordination Game
Used in the Genetic Programming Simulations

Parameter Case 1 Case 2

ω 2.47222 3.86957

c1 0.5 0.5

c2 1.0 1.0

n 500 500

e∗I 0 0

e∗II 0.59551 0.74157

e∗I : The optimal action under the strict equilibrium ei = 0 ∀i.
e∗II : The optimal action under the strict equilibrium ei = 1 − 1

ω
∀i.

(1992) – the full method and the grow method.13 Together, these two initialization methods provide

for a great diversity of initial programs. Table 1 indicates that each method was responsible for

creating one–half (250) of the initial population of trees, GP1.

We consider the same two coordination games studied by Van Huyck et al. (1994), although as

mentioned previously, we do not restrict the action set to a finite set of discrete choices. Furthermore,

we have many more (artificial) players. We refer to the game Γ(2.4722) studied by Van Huyck et

al. (1994) as Case 1 and the other game these authors considered, Γ(3.86957), as Case 2. The exact

parameterizations of these two cases are reported in Table 2.

6 Simulation Results

Our simulation experiments were organized as follows. For each of the two different transformation

functions – the symmetric sigmoidal transformation function and the truncated linear transformation

function – we conducted 10 simulations for a total of 20 simulations. Within each group of 10

simulations, 5 of the simulations were conducted under the Case 1 parameterization and 5 were

conducted under the Case 2 parameterization.

We focus our attention first on the 10 simulations that we conducted using the symmetric sig-

moidal transformation function. Means and standard deviations from these 10 simulations are

reported in Table 3. In this table, simulation 1.1 refers to our first simulation of Case 1, while

simulation 2.1 refers to our first simulation of Case 2, and so on. Time series for the mean, Mt,

from a single simulation of Case 1 and Case 2 are plotted in Figures 1A–1B. These time series

13See Appendix A for a brief description of these two methods. See also Koza (1992) pp. 92–93.

16

Table 3: GP Simulation Results Using the Symmetric Sigmoidal Transformation

Simulation

Case 1 2 3 4 5

1 Ma 0.5917 0.5897 0.5910 0.5907 0.5901

δM,a 0.0118 0.0107 0.0091 0.0094 0.0122

δM∗,a 0.0124 0.0122 0.0102 0.0105 0.0133

1 Mb 0.5958 0.5925 0.5936 0.5933 0.5946

δM,b 0.0037 0.0026 0.0033 0.0028 0.0021

δM∗,b 0.0038 0.0039 0.0038 0.0035 0.0023

2 Ma 0.7406 0.7411 0.7415 0.7450 0.7447

δM,a 0.0061 0.0067 0.0069 0.0064 0.0064

δM∗,a 0.0061 0.0067 0.0069 0.0073 0.0071

2 Mb 0.7394 0.7403 0.7399 0.7434 0.7431

δM,b 0.0033 0.0039 0.0040 0.0034 0.0024

δM∗,b 0.0039 0.0041 0.0043 0.0039 0.0029

Ma = the average of Mt of a simulation from Generation 1 to 1,000.

Mb = the average of Mt of a simulation from Generation 201 to 1,000.

δM,a = standard deviation about the Ma of a simulation from Generation 1 to 1,000.

δM,b = standard deviation about the Mb of a simulation from Generation 201 to 1,000.

δM∗,a = standard deviation about the strict interior equilibrium 1 − 1

ω
from Generation 1 to 1,000.

δM∗,b = standard deviation about the strict interior equilibrium 1 − 1

ω
from Generation 201 to 1,000.

plots are typical of the other simulations we conducted for the two cases. As these figures clearly

indicate, the time series for Mt in both cases of the GP–based coordination game (Case 1 and Case

2) tend to converge to a neighborhood of the strict interior equilibrium 1− 1

ω
, i.e., 0.59551 for Case

1 and 0.74157 for Case 2. In addition, the transition to 1 − 1

ω
is remarkably brief; If one considers

(0.99 − 1

ω
, 1.01 − 1

ω
) as a neighborhood of 1 − 1

ω
then, for all simulations, it takes no more than 50

generations to move into this neighborhood.

A second finding is that while Mt does not converge to 1− 1

ω
in a strict sense, due to the constant

mutation rate, there appears to be a force that serves to stabilize the movement of Mt in a very

small band around the interior equilibrium. In other words, GP-based coordination games have a

self–stabilizing feature. These properties are also revealed by Table 3.

As Table 3 reveals, in almost all of our simulations, the average of the means, Mt, from generation

201 to 1,000, i.e. M b, does not deviate from the interior equilibrium value, 1 − 1

ω
, by more than

0.5%. Note also that if we compare the standard deviations, δM,a with δM,b or δM∗,a with δM∗,b for

each simulation, we see that after the first 200 periods of learning, the stability of the mean in all of

the GP-based coordination games improves.

17

���������
	���
�������	�������	���	�����	��! #"%$&��	(')	�*�+�,-�� #��.�	/ #"%
�.
$0�� #+� #"%$&��	/,- # 1��2���+�*3$&�� #+
4 *#��	

5�6 7 �
5�6 738
5�6 7#9
5�6 7#:
5�6 7#;
5�6 9 �
5�6 938
5�6 9#9
5�6 9#:
5�6 9#;
5�6 < �

5 � 5#5 =>5#5 8>5#5 7#5#5 9#5#5 <#5#5 :#5#5 ?#5�5 ;#5#5 � 5#5#5
4 	�+�	���*�$0�� #+

@ A
BC D
C E
FC
B
G
H ID
BJ

����	
 1�
	
$0��.�*#K1L�M�����K���N��
������OP*#K���	
P.
$0��*#K1L�M�����K���N���������OP*#K���	

�����#���
	���QR������	/������	���	��
��	��! #"%$0��	/')	
*#+�,-�� #��.�	/ #"�
P.
$0�� #+� #"%$0��	�,- � 1�
2���+�*�$0�� #+
4 *#��	

5�6 <#<

5�6 <#?

5#6 :

5�6 :3=

5�6 :#7

5�6 :#<

5�6 :#?

5#6 ?

5 � 5#5 =>5#5 8>5#5 7#5#5 9#5#5 <#5#5 :#5#5 ?#5�5 ;#5#5 � 5#5#5
4 	�+�	��
*�$0�� #+

@ A
BC D
C E
FC
B
G
H ID
BJ

����	
 1�
	
$0��.�*#K1L�M�����K���N��
������OP*#K���	
P.
$0��*#K1L�M�����K���N���������OP*#K���	

18

A third result is that the chaotic trajectories for Γ(3.86957) that are predicted by the myopic

best response dynamic are not apparent in any of our simulations of Case 2. However, by comparing

δM,b or δM∗,b across Case 1 and Case 2 in Table 3, we find that the standard deviations in Case 2

are generally somewhat larger than those in Case 1. Indeed, a rank order test reveals that δM∗,b is

significantly larger in Case 2 as compared with Case 1 (p ≤ .10).14 This difference between the two

cases is also apparent from a visual comparison between Figures 1A and 1B. Thus, while it appears

that the aggregate outcome from the GP simulations is similar for both treatments, there appears to

be some evidence that the coordination problem in Case 2 is more difficult for our artificial players

than is the coordination problem in Case 1.

We have also considered how sensitive our results are to the use of payoff fitness as the main

determinant of successive generations of forecast rules through application of the reproduction,

crossover and mutation operations. Recall that we made an adjustment to the raw fitness values, so

as to avoid excluding rules with negative payoffs. In all of our simulations we used an adjustment

factor of 0.25. We have also performed a simulation exercise where we considered what happens

when we used a much larger adjustment factor of 200.00. That is, we adjusted raw fitness values,

πi,t as follows:

µi,t =

{
πi,t + 200.00 if πi,t ≥ −200.00,
0 if πi,t < −200.00.

The effect of this adjustment is to nullify the usefulness of fitness as an indicator of the relative

success of individual forecast functions. That is because the raw, unadjusted fitness values, π i,t can

only take on values in the range [−.50, .50]. (See the payoff function (1) and the parameterizations

of this function given in Table 2). Adding 200.00 to these raw fitness values makes them essentially

indistinguishable from one another, even after the adjusted fitness values have been converted into

the normalized fitness values that are used to determine application of the reproduction, crossover

and mutation operations.

Thus, the experiment where the adjustment value is set at 200.00 rather than at 0.25 serves as a

test of whether relative fitness values are the driving force behind the results reported above. Indeed,

this experiment is a test of the explanatory power of GP techniques. Figure 2 presents the time

series for the mean from the single experiment involving Case 1 where we set the adjustment factor

equal to 200.00 rather than 0.25. We see in this figure that the mean just wanders about randomly

14No significant difference was found for δM,b between Cases 1 and 2. See Siegel and Castellan (1988) for an
explanation of the nonparametric, robust rank order test used here.

19

��� ���
��� ���
��� ���
��� ��	
��� ��

��� ���
��� ���
��� ���
��� ��	
��� ��

��� ���

� �����
���� ����� ����� ����� ����� 	���� �����
���� �������
�������������������

 !"
#
$ "
% &!

')(���*��������+���,*-/.10���,���21����0�3546��,�0�� 76+���0���,*89�����:46��,�0��

and has not settled down after 1,000 iterations. In particular, the mean does not approach either

the corner equilibrium (0) or the interior equilibrium of Case 1 (.59551). We may conclude from this

exercise that the reliance of the genetic operators on relative fitness values is a driving force behind

our simulation results, i.e. that fitness of forecast functions matters.

In addition to considering the dynamics of the mean choice of action, it is also interesting to

examine the evolution of the population of forecast functions, i.e., GPt. The length of the best–

of–generation forecast function (Lisp S–expression) varies pretty widely. The length of a forecast

function is measured by counting the number of elements (atoms) that are used in the program.15

Programs with longer lengths are more complex than those with shorter lengths, so the length of

the program serves as a measure of the complexity of the forecast rule. Initially, the length of the

best–of–generation program is rather small, but over time, the length increases substantially.

Consider, Simulation 2.5 for example. (Simulation 2.5 corresponds to the fifth simulation of Case

2). The length of the shortest best–of–generation program (S–expression) in this simulation is 15

and it appears in generations 16, 23, 27, 29, 32, 35, 37, 40, 41 and 50:16

gpbest,16 = ((Mt−5 + Mt−4) ∗ Mt−4)

gpbest,23 = ((Mt−5 + Mt−4) ∗ Mt−4)

15The length of a Lisp S–expression is distinct from the depth of a Lisp S–expression in tree form. See Appendix A
for a further discussion.

16All of the GP programs below are represented as algebraic expressions (so that they can be more easily understood)
rather than in the Lisp S-expression form in which they are encoded for GP.

20

gpbest,27 = ((Mt−5 + Mt−3) ∗ Mt−4)

gpbest,29 = (Mt−3 ∗ (Mt−5 + Mt−4))

gpbest,32 = ((Mt−1 + Mt−3) ∗ Mt−3)

gpbest,35 = (Mt−5 ∗ (Mt−5 + Mt−4))

gpbest,37 = (Mt−3 ∗ (Mt−4 + Mt−5))

gpbest,40 = (Mt−3 ∗ (Mt−4 + Mt−5))

gpbest,41 = (Mt−2 ∗ (Mt−5 + Mt−5))

gpbest,50 = (Mt−5 ∗ (Mt−4 + Mt−5))

Programs with such a small program length continued to appear frequently after generation 50

but they were no longer selected as best–of–generation programs. Instead, increasingly complicated

programs with lengths over 200 were more likely to be selected as the best–of–generation; the longest

best–of–generation program with a length of 459 appeared in generation 554:

gpbest,554 = (SinCos((CosCosCos(CosMt−3 ∗ Mt−3) ∗ CosSin(CosCos(Cos(

CosMt−4%Mt−4) ∗ Cos(Mt−2 + SinSinMt−1)) + (Mt−5 ∗ CosMt−2

))) ∗ CosCosCosSin((Mt−3 ∗ Mt−3) − CosMt−3))%CosSinCos((

(Cos(CosMt−1 ∗ Cos(ExpSinCosMt−4 ∗ Mt−2))%CosSinCosSin

(Mt−4%CosSinCosMt−1)) ∗ CosSinRLog((Sin(Mt−4 ∗ CosCosMt−1

) ∗ Cos(Mt−4%((CosMt−5 + Mt−2) ∗ (CosMt−3 ∗ Mt−4)))) ∗ Cos((

Cos(Mt−3 ∗ CosMt−5) ∗ CosCosMt−4) ∗ Mt−1))) ∗ Cos(Sin(Sin

Cos(CosSinCosMt−1 ∗ (CosSinMt−2 ∗ CosCosMt−4)) + ExpSin

CosCosSin((Mt−2 ∗ Mt−3) − CosMt−3)) ∗ Cos((SinMt−3 + Mt−5)

∗((Mt−4 + (Mt−3 + ((Mt−2 ∗ SinMt−2) ∗ Mt−1)))%CosMt−3)))))

At generation 1,000 of simulation 2.5, the length of the individual programs was found to vary over

the interval [3, 297]. This wide variation in program length implies that considerable heterogeneity

remains in the population of forecast rules even after many generations.

Our findings that the best–of–generation programs become increasingly more complicated over

time and that heterogeneity does not appear to diminish with time are perhaps attributable to our

use of the symmetric sigmoidal activation function to map forecasts into the unit interval. The

symmetric sigmoidal transformation function effectively “squashes” the output of forecast rules so

that forecasts always lie within the unit interval. As a result, the forecasts of the various rules and

their associated fitness values may not be all that distinct from one another even though the rules

themselves may differ considerably. One consequence is that simple forecast rules, e.g. gpt = Mt−i,

i = 1 or 2, may be unable to effectively compete with more complicated rules (programs with

21

longer lengths), since these more complicated rules are better able to differentiate themselves from

the simpler rules after being squashed, and therefore, these more complicated rules stand a better

chance of being chosen for reproduction than the simpler rules.

As an alternative to the symmetric sigmoidal transformation function, we also considered the

performance of our GP–based learning algorithm when the simple truncated linear transformation

(discussed above) is used in place of the symmetric sigmoidal transformation. The truncated linear

transformation is essentially a linear mapping into the unit interval whereas the symmetric sigmoidal

transformation comprises a nonlinear mapping. Thus, with the truncated linear transformation

there is less “squashing” of forecasts and associated fitness values. Indeed, squashing only occurs

for forecasts that exceed the bounds of the unit interval; forecasts that lie within the unit interval

are unaltered, and therefore remain more distinct (in terms of fitness) than under the symmetric

sigmoidal transformation.

We conducted 10 simulations using the truncated linear transformation function in place of the

symmetric sigmoidal transformation function – 5 simulations of Case 1 and 5 simulations of Case

2.17 Means and standard deviations from these 10 simulations are reported in Table 4. Here again,

simulation 1.1 refers to our first simulation of Case 1, while simulation 2.1 refers to our first simulation

of Case 2, and so on. Time series for the mean, Mt, from a single simulation of Case 1 and Case 2 are

plotted in Figures 3A–3B. These time series plots are typical of the other simulations we conducted

for the two cases using the truncated linear transformation.

From Table 4 and Figures 3A–3B, we see that our use of the truncated linear transformation

in place of the symmetric sigmoidal transformation results in several significant differences. First,

a comparison between Figures 3A–3B and Figures 1A–1B and between the results in Tables 4

and 3 reveals that after 1,000 generations, the GP learning algorithm with the truncated linear

transformation is generally closer to achieving the interior equilibrium than is the GP learning

algorithm with the symmetric sigmoidal transformation. This quicker convergence to the interior

equilibrium is more consistent with the experimental findings of Van Huyck et al. (1994). Second,

we observe that the deviation of the mean from the interior equilibrium, 1 − 1

ω
, in both Case 1 and

Case 2 is much smaller when we use the truncated linear transformation in place of the symmetric

sigmoidal transformation; in all 10 simulations, the average of the means, Mt, from generation 201

to 1,000, i.e. M b, does not deviate from the interior equilibrium value, 1 − 1

ω
by more than 0.01%.

17Here we are using an adjustment factor of 0.25 once again to obtain adjusted fitness values.

22

���������
	���
�������	�������	���	��
��	
������� �!	�"#	%$�&�'(�!����)
	�����
*)+�,����&������ �!	�'-���.�
/!��&!$0� ����&
1 $0�2	

3046587
3�4 9

304 9:7
3�4 �

304 � 7
3�4 ;

304 ;�7
3�4 7

304 7�7
3�4 <

304 <�7

3 58303 9:3�3 � 3�3 ;�3�3 7�3�3 <�303 =�3�3 >03�3 ?�3�3 583�3�3
1 	%&!	%�
$0� ����&

@ A
BC D
C E
FC
B
G
H ID
BJ

���!	%���
	
� ��)%$�K.L�M!�!��K���N��
���!�PO*$�K��!	
*)
� �!$�K.L�M��!��K���N��+�����POQ$�K��!	

���������
	R��ST�����!	�������	��!	%�
��	%�U����� �!	�"V	
$�&�'(�!����)%	�����
*)
� ����&������ �!	�'(�0�.�
/!��&!$0� ����&
1 $���	

3�4 9:7
3�4 �

3�4 � 7
3�4 ;

3�4 ;�7
3�4 7

3�4 7�7
3�4 <

3�4 <�7
3�4 =

3�4 =�7
3�4 >

3 583�3 9.3�3 � 3�3 ;�3�3 703�3 <�3�3 =�3�3 >�3�3 ?�3�3 583�3�3
1 	%&!	��+$0� ����&

@ A
BC D
C E
FC
B
G
H ID
BJ

���!	%�.�
	+�,��)
$�K.LRM!�!��K���N��
���!�POQ$�K��!	
*)+�,�!$�K.L�M!�!��K���N��
���!�PO*$�K��!	

23

Table 4: GP Simulation Results Using the Truncated Linear Transformation

Simulation

Case 1 2 3 4 5

1 Ma 0.59281308 0.59279258 0.59328333 0.59295982 0.59249145

δM,a 0.02706819 0.02707828 0.02422021 0.02663368 0.02761726

δM∗,a 0.02720234 0.02721443 0.02432245 0.02675562 0.02778190

1 Mb 0.59543389 0.59544433 0.59546691 0.59546368 0.59545463

δM,b 0.00033369 0.00033578 0.00025092 0.00028152 0.00029720

δM∗,b 0.00034227 0.00034215 0.00025460 0.00028531 0.00030232

2 Ma 0.74079979 0.74081541 0.74069191 0.74081630 0.74080296

δM,a 0.01710630 0.01744866 0.01870916 0.01680324 0.01777976

δM∗,a 0.01712365 0.01746498 0.01872978 0.01682015 0.01779631

2 Mb 0.74154575 0.74154649 0.74155158 0.74155041 0.74154058

δM,b 0.00043555 0.00045807 0.00044765 0.00048606 0.00050182

δM∗,b 0.00043622 0.00045867 0.00044803 0.00048645 0.00050268

Ma = the average of Mt of a simulation from Generation 1 to 1,000.

Mb = the average of Mt of a simulation from Generation 201 to 1,000.

δM,a = standard deviation about the Ma of a simulation from Generation 1 to 1,000.

δM,b = standard deviation about the Mb of a simulation from Generation 201 to 1,000.

δM∗,a = standard deviation about the strict interior equilibrium 1 − 1

ω
from Generation 1 to 1,000.

δM∗,b = standard deviation about the strict interior equilibrium 1 − 1

ω
from Generation 201 to 1,000.

This tighter distribution of forecasts around the interior equilibrium is again more consistent with

the experimental findings of Van Huyck et al. (1994).18

As in the case of the symmetric sigmoidal transformation, we find that the chaotic trajectories

for the game Γ(3.86957) that are predicted by the myopic best response dynamic are not apparent

in any of our simulations of Case 2. We also find once again that a comparison of the standard

deviations, δM,b or δM∗,b across Cases 1 and 2 in Table 4 reveals that these standard deviations

are slightly larger in Case 2 than in Case 1. A rank order test confirms that both δM,b and δM∗,b

are significantly larger in Case 2 than in Case 1 (p ≤ .01 in both cases). This difference is also

present, though difficult to see, in a visual comparison between Figures 3A and 3B. We conclude

that the coordination problem remains somewhat more difficult in Case 2 than in Case 1 regardless

of whether we use truncated linear transformation or the symmetric sigmoidal transformation.

Finally, we note that under the truncated linear transformation, the length of the best–of–

18More direct comparisons between the experimental data and the simulated data from the GP-based learning
algorithm are not really possible due to differences in the two experimental designs (e.g. the GP algorithm allows
forecasts on the continuum of the unit interval, while the experimental subjects were limited to a finite set of discrete
choices).

24

generation programs are considerably smaller than those discovered under the sigmoidal transfor-

mation. Simulation 2.2 (our second simulation of Case 2) is typical of the other simulation results

we obtained using the truncated linear transformation. In this simulation, the longest best–of–

generation program appeared in generation 2, and had a length of 29:

gpbest,2 = Exp((((Mt−3 ∗ Mt−5) − ExpMt−1) ∗ Mt−1) − (Mt−2%Rlog(−2.66020 + Mt−5)))

Following generation 100 of simulation 2.2, no best–of–generation program had a length that ex-

ceeded 3. In fact, the best–of– generation programs after generation 100 were always of the simplest

form:

gpbest,t>100
= Mt−i, i = 1, 2, 3, 4 or 5.

Given such simple forecast rules, it is easy to understand why the distribution of forecasts becomes

more tightly concentrated around the interior equilibrium when we use the truncated linear trans-

formation.

7 Summary and Conclusions

We have considered a simple coordination game where the actions of the individual players are mod-

eled and updated using GP techniques. Our GP–based coordination game allows for a considerably

more flexible experimental design than is possible in experiments with human subjects. In particu-

lar, we do not have to restrict the choice set to a finite set of discrete actions, and we can have large

numbers of players, e.g. n = 500. Moreover, players in our genetic programming implementation

are explicitly endowed with the ability to formulate a vast number of both linear and nonlinear fore-

casting rules for the mean, including the myopic best response rule. This more flexible design allows

for a possibly dense set of periodic and chaotic trajectories for the mean for values of ω > 3. Despite

this more flexible design, the evolution of play in our GP–based coordination game remains quite

similar to that observed in the experiments that Van Huyck et al. (1994) conducted with human

subjects. The mean choice of action eventually settles down to a small neighborhood of the interior

equilibrium, even in Case 2, where the myopic best response dynamic predicts that this interior

equilibrium should be unstable. There is evidence however, that the coordination problem that our

artificial agents face in Case 2 is somewhat more difficult than the coordination problem they face

in Case 1, as indicated by the different standard deviations about the mean/interior equilibrium for

these two cases.

25

While these results cast some doubt on the plausibility of the myopic best response dynamic as

a selection criterion (or any other learning schemes that would predict the interior equilibrium to

be unstable), it is not yet clear that the myopic best response dynamic should be rejected on the

basis of a “bad” prediction for a single game, namely Γ(3.86957), or that the alternative, inertial

learning algorithm should be accepted as a plausible selection dynamic on the same basis. While

the inertial learning dynamic predicts that the interior equilibrium is always stable, the predicted

trajectory for the mean/median is much too smooth when compared with the same trajectory

from the experimental data. Moreover, the notion that a single, representative–agent–type learning

algorithm can be used to characterize the evolution of the mean/median is at odds with the initial

heterogeneity that is apparent in the experimental subjects’ actions. Finally, since our GP–based

learning algorithm always “converges” to the interior equilibrium it is, by the criterion of Van Huyck

et al. (1994), just as plausible a selection dynamic as the inertial learning algorithm. The initial

heterogeneity of the forecasts that arise from our population–based GP algorithm makes it all the

more plausible as a characterization of the experimental data.

We also note that the predictions of our GP–based learning model, especially those involving

the truncated linear transformation, compare quite favorably with some new coordination game

experiments that Van Huyck, Battalio and Rankin (1996) have recently conducted with human

subjects. These new experiments differ from the previous experiments conducted by Van Huyck et

al. (1994) in that subjects are not informed of the game’s payoff function π; the only information

available to subjects is their own past action/payoff history and the discrete action set that they may

choose from. The purpose of this new experimental treatment is to place the human subjects in an

environment that is as close as possible to that of artificial learning algorithms such as GP. In this

new treatment, the human subjects learn to coordinate on the interior equilibrium even more quickly

than in the previous treatment where subjects are informed of the payoff function π, of the game.

Van Huyck, Battalio and Rankin (1996) compare the experimental behavior in the new treatment

with the behavior of a representative–agent–type, linear, stochastic reinforcement algorithm. While

this algorithm eventually achieves a neighborhood of the interior equilibrium, it takes much longer

to achieve this equilibrium (750 iterations) than it takes the experimental subjects. By contrast, our

multi–agent GP-based learning algorithm converges much more quickly to a neighborhood of the

interior equilibrium (usually within 50 iterations) so that it comes closer to mimicking the behavior

of the experimental subjects.

26

Finally, we note that our findings for the coordination game are consistent with some other co-

ordination experiments that have involved overlapping generations economies. Marimon, Spear and

Sunder (1993) for example, report that experimental subjects are unable to coordinate on two–state

sunspot equilibria, choosing instead to settle upon the steady state of an overlapping generations

economy. Similarly, Bullard and Duffy (1998b) simulate behavior using a genetic algorithm–based

learning model in an overlapping generations economy and find that their population of artificial

agents is able to eventually coordinate on steady state and low–order cycles for inflation rates but

not on the higher order periodic equilibria of their model. This paper extends these earlier findings

by suggesting that it may not be possible for agents to coordinate on aperiodic, chaotic trajectories.

27

Appendix A: Lisp S–Expressions and Genetic Programming

In this appendix, we briefly illustrate how genetic programming techniques are applied to the Lisp

symbolic expressions (S–expressions) that serve as the forecast rules for our heterogeneous population

of artificial agents.19 Lisp S-expressions, which are written in the syntax of the Lisp programming

language, are immediately implementable computer programs. These S–expressions consist of either

atoms or lists. Atoms include variables, constants, mathematical operators or functions, while lists

are collections of atoms or lists, grouped within parentheses, (). Constant atoms (e.g. the constant

2) evaluate to their constant value, while variable or function atoms evaluate to the value taken by

the variable or function. The evaluation of lists, such as (+ 2 3) proceeds from left to right. In the

expression (+ 2 3), the addition operator, +, is applied to the two constants 2 and 3; this expression

yields the value 5. The prefix operator syntax of Lisp – where the operator precedes the operands –

allows for considerable flexibility. In particular, this syntax allows an operator such as addition, +,

to take on any number of arguments, including zero arguments. For example, the Lisp S-expression

(+ 2 (− 1 3) 1) yields the value 1, while (+ 2) yields the value 2, and (+) yields the value 0. The

length of a Lisp S–expression is determined by counting from the leftmost to the rightmost position

the number of elements in the string that makes up the S–expression, including spaces. For example,

the Lisp S–expression (+ 2 (− 1 3) 1) has length 15. Generally, the greater the length of a Lisp

S–expression, the more complex is the program.

For an example that is more relevant to our application, consider the following S–expression:

(+ 0.31 (∗ (Mt−1 (− Mt−1 Mt−2)))) (1)

Here, Mt−j denotes the value of the mean action variable at time t − j. Note that lagged values of

the mean action are included in the terminal set that agents are allowed to draw from in assembling

their forecast rules, as are floating point constant values drawn from a subset of the real line (<):

[−9.99, 9.99] (See Table 1). The above Lisp S-expression (program) can also be represented as a

rooted, directed parse tree:

19For a more complete description, see Koza (1992, especially Chapter 6).

28

�

��
+

�
��

��
��
0.31

@
@@

�

��
*

�
��

��
��
Mt−1

@
@@

�

��
–

�
��

@
@@

��
��
Mt−1 ��

��
Mt−2

The depth of a parse–tree such as the one depicted above, is defined as the length of the longest

path from root to endpoint. Given this definition, it is easy to verify that the depth of the parse

tree depicted above is 4.

Algebraically, we would write the Lisp S-expression (1) or the parse-tree depicted above as:

0.31 + Mt−1(Mt−1 − Mt−2)

Implementation of expression (1) yields a forecast gpi,t = 0.31 + Mt−1(Mt−1 − Mt−2). This forecast

is then transformed into a valid mean forecast M̂i,t ∈ [0, 1] using either the symmetric sigmoidal

transformation or the truncated linear transformation as described in the text. This mean forecast

M̂i,t is the action taken by agent the i in round t who possesses forecast rule (1).

Once all n forecasts for period t have been determined, it is possible to calculate the actual mean

action at time t, Mt = 1

n

∑n
i=1 M̂i,t. Using the value of Mt it is possible to determine each forecast

rule’s raw fitness, πi
t, and to obtain the normalized fitness value pi,t as described in the text.

Given payoffs for each forecast rule, it is possible to apply the first of the genetic operators,

reproduction. As discussed in the text, the reproduction operator makes copies of a number of

forecast rules that reside in the population of trees at time t, GPt The criterion for choosing from

among these trees is the normalized fitness value, pi,t. Each tree i with normalized fitness value pi,t is

chosen by the reproduction operator with probability pi,t. Thus, trees with higher normalized fitness

values have a higher probability of being chosen for inclusion in the set of forecast rules that make

up the population of rules at time t + 1. In our application, the reproduction operator is applied

50 times at each date to create 10% (50 out of 500) of the trees that will enter in the population

at time t + 1. The remaining 450 trees that enter the population at time t + 1 are the result of the

two other genetic operators, crossover and mutation. We now describe how these two other genetic

29

operations are applied to the population of Lisp S-expressions.

Let us suppose, for illustrative purposes, that the forecast rule described by the S-expression

(1) is chosen for crossover based on its normalized fitness value, and is randomly paired with the

following S-expression (also chosen for crossover on the basis of its normalized fitness value):

(− (∗ 1.06 Mt−1) (Rlog (% Mt−1 Mt−2))) (2)

The % sign indicates application of the protected division operator; the first argument that follows

this operator is divided by the second argument provided that the second argument is not equal to

0. If the second argument is 0, the % operator returns the value 1. Similarly, the Rlog operator is a

protected natural logarithm function that returns the natural logarithm of the absolute value of its

argument if this argument is not equal to 0; otherwise, it returns the value 0.20 Algebraically, we

would write the S-expression (2) as:

1.06Mt−1 − ln

∣∣∣∣
Mt−1

Mt−2

∣∣∣∣

assuming that Mt−2 and Mt−1/Mt−2 6= 0. The two paired S-expressions (1) and (2) are depicted

below in their tree forms, where we have numbered the different atoms (nodes) of each tree in a

depth first, left–to–right manner.

�

��
+1

�
��

��
��
0.312

@
@@

�

��
* 3

�
��

��
��
Mt−14

@
@@

�

��
– 5

�
��

@
@@

��
��
Mt−16 ��

��
Mt−2 7

�

��
–1

�
�

��

�

��
*2

��
��
1.063

J
JJ

��
��
Mt−1 4

Q
Q

QQ

��
��
Rlog 5

�

��
% 6

��
��
Mt−17

J
JJ

��
��
Mt−2 8

Using the above tree forms for expressions (1–2) enables us to illustrate how the crossover operator

works. In the first tree, three of the atoms (1, 3 and 5) are functions drawn from the function set

while four of the atoms (2, 4, 6 and 7) are terminal values drawn from the terminal set. (See Table

20Slight modifications of this sort have to be made to ensure that each of the arguments in the function set are able
to accept values returned by functions in the function set or by values in the terminal set. This closure property of
the functions in the function set ensures that any S-expressions that result from genetic operations of crossover and
mutation are syntactically legal S-expressions.

30

1 for the function and terminal sets). Similarly, for the second tree, four atoms (1, 2, 5 and 6) are

functions while the other four atoms (3, 4, 7 and 8) are terminal values. In our specification of

the crossover operation, the probability that the crossover point occurs at a function atom or at a

terminal atom is the same, i.e. it is equal to one-half. Let us suppose that in both trees illustrated

above, it is determined that the crossover point should be a function. Then, among the function

atoms of the first tree, the atoms (1, 3 and 5) have equal (i.e. one-third) chance of being chosen as

crossover points. The four function atoms of the second tree (1, 2, 5 and 6) also have an equal (i.e.

one-fourth) chance of being chosen as crossover points. Suppose that in the first tree, function atom

3 is chosen as the crossover point while in the second tree, function atom 5 is chosen as the crossover

point. Note that the crossover points need not be the same. The trees are then cut at these two

points, yielding the two fragments:

�

��
*

�
��

��
��
Mt−1

@
@@

�

��
–

�
��

@
@@

��
��
Mt−1 ��

��
Mt−2

��
��
Rlog

�

��
%

��
��
Mt−1

J
JJ

��
��
Mt−2

These two fragments are then swapped and recombined at the crossover points of the two trees,

resulting in two new trees, (two new forecast rules):

�

��
+

�
��

��
��
0.31

@
@@

��
��
Rlog

�

��
%

��
��
Mt−1

J
JJ

��
��
Mt−2

�

��
–

�
�

��

�

��
*

��
��
1.06

J
JJ

��
��
Mt−1

Q
Q

QQ

�

��
*

��
��
Mt−1

J
JJ

�

��
–

��
��
Mt−1

J
JJ

��
��
Mt−2

Algebraically, the first new rule can be written as:

0.31 + ln

∣∣∣∣
Mt−1

Mt−2

∣∣∣∣

31

while the second new rule would be written as:

1.06Mt−1 − Mt−1(Mt−1 − Mt−2)

In practice, the crossover operation is performed on the Lisp S-expressions themselves rather than on

the tree representations of these expressions. We illustrate by considering the same two S-expressions

considered above:

(+ 0.31 (∗ (Mt−1 (− Mt−1 Mt−2))))

(− (∗ 1.06 Mt−1) (Rlog (% Mt−1 Mt−2)))

All atoms and lists to the right of the randomly chosen crossover points are shown in bold type. The

fragments to the right of each crossover point are swapped resulting in two new S-expressions:

(+ 0.31 (Rlog (% Mt−1 Mt−2)))

(− (∗ 1.06 Mt−1) (∗ (Mt−1 (− Mt−1 Mt−2))))

Note that the crossover operation will often result in two offspring forecast rules that are of differ-

ent lengths (and complexity) than the original parent rules. This difference results from allowing

crossover to occur at two different points, and is one way in which genetic programming differs from

genetic algorithms, which do not permit such variable length structures.

The two new rules that result from the application of the crossover operation would enter the

population of decision rules that yield forecasts in the next round of play, time t + 1. In our

application, crossover is used to create 70% (350 out of 500) of the trees that enter the population

at time t + 1. Thus, after application of the reproduction and crossover operations, we have already

obtained 80% (400 out of 500) of the trees that will make decisions in the next period. The remaining

20% (100 out of 500) of the next generation of trees are created through application of the mutation

operator.

The mutation operator begins by choosing a forecast rule (tree) from the time t population on

the basis of normalized fitness values. Given a tree that has been selected for mutation, every atom

(node) of that tree is subjected to a small probability of mutation. In our application, the probability

of mutation of each atom is fixed at .0033. If an atom is to be mutated, the algorithm first checks

whether the atom is a function or a terminal value. If the atom is a function, then it is replaced

by another function in the function set, with each of the other functions in this set having an equal

32

chance of being chosen. If it is a terminal atom, then it is replaced by another terminal value from

the terminal set, with each of the other terminal values having an equal chance of being chosen.

Once the mutation operator has been applied to every atom of the selected tree, the resulting tree

enters the population of trees that yield forecasts in the next round of play, GPt+1.

The initial population of trees, GP1 is created using one of two methods proposed by Koza (1992,

pp. 92–3). In the full initialization method, the initial trees have the property that every path from

root to endpoint is of full i.e. maximum depth. Table 1 indicates that the maximum depth of a tree

is set equal to 17. However, for initialization purposes only, the maximum depth of a tree was not

allowed to exceed 6. Under the full method, all nodes of the tree that are less than the maximum

depth are chosen randomly from the function set only. The final nodes of the tree, at the maximum

depth, are chosen randomly from the terminal set. In the grow initialization method, initial trees

can be of various depths, subject to the constraint that they not exceed the maximum depth. Thus,

each node is chosen randomly from either the function or the terminal set; a path ends with the

choice of a value from the terminal set. If a member of the terminal set has not been chosen for the

node prior to the maximum node allowed, then the final node choice for the path is constrained to

be from the terminal set. The initialization scheme we used is the “ramped half and half” method

detailed in Koza (1992). Under this scheme, equal numbers of trees are generated using a maximum

initial depth that ranges from 2 to 6, so that 20% (100) of all initial trees are generated under the

condition that the maximum depth is equal to 2, another 20% are generated under the condition

that the maximum depth is equal to 3, etc. on up to a depth of 6. For each of the five maximum

depth levels, 50% (50) of initial trees are generated using the full method and the other 50% (50) are

generated using the grow method. Thus, under our initialization scheme, the full method is used to

create one–half (250) of the initial trees and the grow method is used to create the other half (250)

of the initial trees, as we have indicated in Table 1. Following the initial round, trees could achieve

a depth greater than 6, up to a maximum depth of 17 via the crossover operation.

The genetic programming algorithm may be summarized as follows. Given an initial population

of 500 trees (rules) GP1, the forecasts M̂i,t, from each of the rules are determined, and the mean

action at time t, Mt is determined. Next, the payoffs for each forecast rule π i
t are determined

from which it is possible to construct the normalized fitness values, pi,t as described in the text.

Given the normalized fitness values for all 500 rules, the three operations of reproduction, crossover

and mutation are applied to the population GP1 to obtain, respectively, 10%, 70% and 20% of the

33

population of rules that will play the same game in the next round (generation), GP2. This process

is then repeated until the maximum number of rounds (generations), set at 1,000, has been reached.

Appendix B: Source Code and Extensions

In the coordination game application, the GP method is able to locate and converge upon the

interior Nash equilibrium of the game, consistent with the behavior of subjects in Van Huyck et al.’s

experiment. However, there are lots of parameters in GP, and the results we obtained using the GP

method might be sensitive to the particular parameter values we chose. While we know from our

own experimentation that our findings are robust to modest changes in the GP parameter values we

report in the paper, we have not conducted an exhaustive sensitivity analysis. We leave it to other

interested researchers to pursue such an exercise, and provide a link below to the source code we

used for this paper.

B.1: Source Code

The software AIE-GAME is available from the following web address:

http://www.aiecon.org/software.htm The software is composed of 12 files as shown in Figure

4. Among them, Exper1.exe is the main executable file. The parameters indicated in Table 1 and

Table 2 are stored in the file Exper.ini (Figure 5). The dynamics of the game are initialized by

using the initial values of the mean choice of action specified in the file p.txt. To run the program,

the files Exper1.exe and Exper.ini have to be put under the same directory, and the location of the

34

������������	�

������������

���

����� � �!

	 �#"

$

file p.txt should be declared in the Exper.ini (Figure 5). Once the file Exper1.exe is executed, the

results are immediately shown on the screen (Figure 6).

AIE-GAME is quite user-friendly because most of the parameters can be directly modified

through the file Exper.ini. However, if one would like to go further, the file containing the main

GP operations is Exper.pas. For example, if one would like to modify the fitness function, then

one has to click the Exper1.dpr, which shall in turn open the project file, Exper.pas. Then one

can move the cursor down to Lines 809 (Figure 7), 1593, and 1525, which are the locations of the

fitness function, and change it directly from there.

Depending on the computing environment, running genetic programming can be very time-

consuming. For example, for a typical run of 25,000 generations, it takes four hours on Pentium III

650, 256 MB SDRAM, whereas it can take 100 minutes on Pentium 133, 16 MB DRAM even for a

run of 1,000 generations. These run-time speeds limit the possibility of large-scale simulation. That

is why most of results shown in this paper are based on only 5 runs. Those interested in conducting

further experiments are encouraged to download the software and confirm our results. It is our belief

35

that the main contribution of this paper is not give to provide a final word on the subject, but to

provide an innovative platform to facilitate more extensive research in this direction. Below, we give

two examples of how this software can be easily modified so as to examine two interesting variants

of the coordination game model.

B.2: A Buffer Design

In the evolutionary design adopted in Section 5.2, individual rules are assigned a fitness value based

solely on their performance in the immediate past round which is used to determine their probability

of passing into the next generation, either via reproduction, cross-over or mutation. As a result,

the rules are functions whose validity is based on a single evaluation of the rules’ performance.

Inevitably, some rules may survive or die simply because of this single-shot fitness evaluation rule.

Alternatively, rule fitness might be evaluated over several rounds, rather than on the basis of a single

trial, so that “genetic operations” of the model are applied only after several rounds, during which

the cumulated strength of the rules serve as the fitness measure. Specifically, one may consider the

following alternative to the raw fitness measure.

The raw fitness of a parse tree gpi,t is determined by the value of the player’s payoffs earned over

k consecutive rounds, i.e.,

Πi,t =
k−1∑

j=0

πi,t+j, (3)

where πi,t is given in equation (1).

With this design, each rule is assigned a “strength”, resulting from the cumulation of past fitness

36

measure over k rounds, and this is used to determine the probability (normalized fitness) of passing

to the next generation. The crucial role of the strength is to buffer potentially successful rules from

temporary shocks, due to exceptional reasons. We consider the buffer design an interesting follow-up

to this study. In fact, it is quite easy to conduct such experiments with our software. To do so,

end-users only need to supply the line “Round No” in the file Exper.ini (See Figure 5).

B.3: Catastrophe Payoffs

The GP mechanism proposed in Section 5.2., computes the rule response, then “squashes” it into the

unit interval, adjusts the raw fitness to eliminate extremely poor performance, and finally normalizes

the resulting values. This mechanism makes it extremely complicated to relate the rules’ structure

to a measure of the rule’s effectiveness (fitness). It is, therefore, desirable to simplify the mapping

from rule results to rule fitness in order to better understand why we obtain certain rules rather

than others.

This problem may be fixed in several different ways. For example, it is not necessary to limit the

response to the unit interval. One may use a very punitive reward mechanism (catastrophe payoff)

for rules providing values outside the unit interval. In this case, rules producing non-sensible results

37

��� ���

��� ���

��� ���

��� ���

��� ���

��� ���

��� ���

��� ���

��� ���

� 	
��� ����� ����� ����� ����� ����� ����� �����
���� 	
�����
�������������������

� �
 ! "
! #
$!

%
& '"
 (

)+*,���-��������.���/-021�3���/���4,����3,5768��/�3�� 98.���3���/-021�3���/��:4,�;�:3�5768��/�3��

��� ���

��� ���

��� ���

��� ���

��� ���

��� ���

���
��

� 	
��� ����� ����� ����� ����� ����� ����� �����
���� 	
�����
�������������������

� �
 ! "
! #
$!

%
& '"
 (

)<*����-��������.���/-0<1,3���/���4,����3�5768��/�3�� 98.���3���/-021�3���/��:4,����3�5768��/�3��

The upper diagram corresponds to Case 1 defined in Table 2, whereas the lower diagram corresponds to Case

2.

may be immediately removed in favor of other rules. An specific design could be as follows.

πi,t =

{
πi,t if 0 ≤ Mi,t ≤ 1,
πi,t − 0.25 otherwise.

(4)

In this design, a catastrophe payoff −0.25 is assigned to those rules providing values outside the unit

interval. End-users can easily choose some other catastrophe value by supplying a different parameter

value in the file Exper.ini (See Figure 5). We ran a few simulations driven by catastrophe payoffs

without further squashing response rules. We see in Figure 8 that our findings can be quite sensitive

to this change.

38

References

[1] Allen F. and R. Karjalainen (1999). Using Genetic Algorithms to Find Technical Trading Rules.

Journal of Financial Economics, 51(2), 245–71.

[2] Angeline, P. (1994). Genetic Programming and Emergent Intelligence. Chapter 4 of Kinnear

(1994).

[3] Arifovic, J. (1994). Genetic Algorithm Learning and the Cobweb Model. Journal of Economic

Dynamics and Control, 18, 3–28.

[4] Arifovic, J. (1995). Genetic Algorithms and Inflationary Economies. Journal of Monetary Eco-

nomics, 36, 219–243.

[5] Arifovic, J. (1996). The Behavior of the Exchange Rate in the Genetic Algorithm and Experi-

mental Economies. Journal of Political Economy, 104, 510–541.

[6] Arifovic, J. (1997). Strategic Uncertainty and the Genetic Algorithm Adaptation. In H. Amman

et al. (eds.), Computational Approaches to Economic Problems. Boston: Kluwer Academic

Press, 225–36.

[7] Arthur, W.B., J.H. Holland, B. LeBaron, R. Palmer and P. Tayler (1997). Asset Pricing Under

Endogenous Expectations in an Artificial Stock Market. In W.B. Arthur et al. (eds.), The

Economy as a Evolving Complex System II. Reading, MA: Addison-Wesley, 15–44.

[8] Birchenhall, C.R. (1995). Genetic Algorithms, Classifier Systems and Genetic Programming

and Their Use in Models of Adaptive Behavior and Learning. Economic Journal, 105, 788–795.

[9] Bray, M. (1982). Learning, Estimation, and the Stability of Rational Expectations. Journal of

Economic Theory, 26, 318–339.

[10] Bullard, J. and J. Duffy (1998). A Model of Learning and Emulation with Artificial Adaptive

Agents. Journal of Economic Dynamics and Control, 22, 179–207.

[11] Bullard, J. and J. Duffy (1998). On Learning and the Stability of Cycles. Macroeconomic Dy-

namics, 2, 22–48.

39

[12] Chen, S., J. Duffy and C. Yeh (1996). Genetic Programming in the Coordination Game with

a Chaotic Best–Response Function. In: Proceedings of the 1996 Evolutionary Programming

Conference, San Diego, CA.

[13] Chen, S., and C. Yeh (1997a). Toward a Computable Approach to the Efficient Market Hypoth-

esis: An Application of Genetic Programming. Journal of Economic Dynamics and Control, 21,

1043–1063.

[14] Chen, S., and C. Yeh (1997b). On the Coordination and Adaptability of the Large Economy: An

Application of Genetic Programming to the Cobweb Model. In P. Angeline and K.E. Kinnear,

Jr., (eds.), Advances in Genetic Programming II, Chapter 22. Cambridge, MA: MIT Press.

[15] Cooper, R., D. DeJong, R. Forsythe and T. Ross (1990). Selection Criterion in Coordination

Games: Some Experimental Results. American Economic Review, 80, 218–233.

[16] Crawford, V.P. (1991). An Evolutionary Interpretation of Van Huyck, Battalio and Beil’s Ex-

perimental Results on Coordination. Games and Economic Behavior, 3, 25–59.

[17] Crawford, V.P. (1995). Adaptive Dynamics in Coordination Games. Econometrica, 63, 103–143.

[18] Dawid, H. (1996), Adaptive Learning by Genetic Algorithms, Lecture Notes in Economics and

Mathematical Systems No. 441. New York: Springer.

[19] Devaney, R.L. (1989). An Introduction to Chaotic Dynamical Systems, 2nd Ed.. Reading, MA:

Addison–Wesley.

[20] Dworman, G., S.O. Kimbrough, and J.D. Laing (1996). On Automated Discovery of Models

Using Genetic Programming: Bargaining in a Three–Agent Coalitions Game. Journal of Man-

agement Information Systems, 12, 97–125.

[21] Goldberg D.E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning.

Reading, MA: Addison–Wesley.

[22] Holland J.H. (1975). Adaptation in Natural and Artificial Systems: An Introductory Analysis

with Applications to Biology, Control, and Artificial Intelligence. Ann Arbor: University of

Michigan Press.

40

[23] Kagel, J.H. and Roth, A.E. (1995), eds., Handbook of Experimental Economics. Princeton, NJ:

Princeton University Press.

[24] Kinnear, K.E. Jr. (1994), (ed.) Advances in Genetic Programming. Cambridge, MA: MIT Press.

[25] Koza, J.R. (1992). Genetic Programming. Cambridge, MA: MIT Press.

[26] Koza, J.R. (1994). Genetic Programming II. Cambridge, MA: MIT Press.

[27] Kreps, D.M. (1990). Game Theory and Economic Modelling. New York: Oxford University

Press.

[28] Lucas, R.E. Jr. (1986). Adaptive Behavior and Economic Theory. Journal of Business, 59,

S401–S426.

[29] Marcet, A. and T.J. Sargent (1989). Convergence of Least Squares Learning Mechanisms in Self

Referential Linear Stochastic Models. Journal of Economic Theory, 48, 337–368.

[30] Marimon, R., (1997). Learning From Learning in Economics. In D.M. Kreps and K.F. Wallis,

eds., Advances in Economics and Econometrics: Theory and Applications, Vol. 1, Seventh World

Congress, Econometric Society Monographs, No. 26, Cambridge: Cambridge University Press.

[31] Marimon, R., S.E. Spear and S. Sunder (1993). Expectationally Driven Market Volatility: An

Experimental Study. Journal of Economic Theory, 61, 74–103.

[32] Miller, J.H. (1996). The Coevolution of Automata in the Repeated Prisoner’s Dilemma. Journal

of Economic Behavior and Organization, 29, 87–112.

[33] Mitchell, M. (1996). An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press.

[34] Neely, C.J., P. Weller and R. Dittmar. Is Technical Analysis in the Foreign Exchange Market

Profitable?: A Genetic Programming Approach. Journal of Financial and Quantitative Analy-

sis, 32, 405–26.

[35] Sargent, T.J. (1993), Bounded Rationality in Macroeconomics. New York: Oxford University

Press.

[36] Siegel, S. and N.J. Castellan, Jr. (1988). Nonparametric Statistics for the Behavioral Sciences,

2nd Ed. New York: McGraw Hill.

41

[37] Tesfatsion, L. (1997). A Trade Network Game with Endogenous Partner Selection. In H. Amman

et al. (eds.), Computational Approaches to Economic Problems. Boston: Kluwer, 249-269.

[38] Van Huyck, J.B., R.C. Battalio, and R. Beil (1990). Tacit Coordination Games, Strategic

Uncertainty and Coordination Failure. American Economic Review, 80, 234-248.

[39] Van Huyck, J.B., R.C. Battalio, and R. Beil (1991). Strategic Uncertainty, Equilibrium Se-

lection Principles and Coordination Failure in Average Opinion Games. Quarterly Journal of

Economics, 106, 885–910.

[40] Van Huyck, J.B., J.P. Cook, and R.C. Battalio (1994). Selection Dynamics, Asymptotic Stabil-

ity, and Adaptive Behavior. Journal of Political Economy, 102, 975–1005.

[41] Van Huyck, J.B., R.C. Battalio, and F.W. Rankin (1996). Selection Dynamics and Adaptive

Behavior Without Much Information. Working paper, Texas A&M University.

42

