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1 DMotivation and Introduction

AL-ECON Research Center, formerly the AI-ECON Re-
search Group, was established in 1995 at the College of
Social Sciences, National Chengchi University. While in-
terdisciplinary innovation may have triggered the idea, it
is the growth of computer power that has given momen-
tum to such efforts. Our goal of the center is to acknowl-
edge the significance of the growth of computer power for
the future of economics: it facilitates the integration of
economics into the multidisciplinary research stream and
benefits economists from the cross-fertilization of ideas
with different disciplinary backgrounds.

In this article we shall review some of our contributions
made to agent-based artificial markets (AAMs) since
1995. The review mainly covers the following three ac-
tive research areas in AAMs, namely, the cobweb models,
overlapping generations models, and asset pricing models.

2 The Cobweb Model

The cobweb model is probably the first neo-classical pro-
totype to which an agent-based computational approach
was applied. ([1]). Attentions were drawn to this proto-
type partially because this model is the motherland of the
rational expectations revolution. In addition, it is also one
of the simplest models from which price instability can be
induced. Nonetheless, the neo-classical analysis simplifies
the cobweb model by assuming the homogeneity of mar-
ket participants. It is therefore not entirely clear whether
those stability or instability conditions would apply to a

real market process with participants who are obviously
heterogeneous.

Early findings based on [1] are very optimistic about
the inherent stabilization force in the market. However,
this finding was soon challenged and enriched by a series
of follow-up studies ([27], [28], [30]).

AI-ECON’s contributions to the cobweb model started
from [18]. This study distinguishes itself from other stud-
ies in the tool chosen to model adaptive firms. The lat-
ter applied genetic algorithms (G As), whereas the former
is perhaps the first application of genetic programming
(GP) to modeling adaptive firms. It is a little surprising
that few economists have ever addressed the distinction
between the GA and GP in their applications to mod-
eling autonomous agents." However, [18] did make this
distinction and justified the choice of GP.

The main attraction of using GP to modeling adaptive
economic agents is the parse-tree representations and the
associated expression power. Expression power is crucial
to agent-based economic modeling, because agents’ be-
havior in general can be too complex to be embedded
in a finite-dimensional space. In symbolic regression, ge-
netic programming proves to be a useful tool for non-
parametric and non-linear modeling.? Therefore, it is
natural to assume that when agents are adapted to the
potential infinitely complex world, they are not confining
themselves to any parametric model, but are trying in-
stead to maximize their flexibility with genetic program-

LGenerally speaking, most researchers on agent-based artificial
markets do not justify well the choice of their tools; be it GA or
other machining learning tools. A good exception can be found
in [29], which showed that the behavior rules of artificial agents
can be suitably modeled on the basis of prior evidence from human
subjects experiments. Based on observations from fieldwork, [29]
did not even consider the necessity of genetic algorithms in modeling
artificial agent behavior.

2Farlier applications of genetic programming to econometrics
can be found in [44], [46], and [47]. [11] provides a review of this
early-stage development.



ming.

By suitably choosing the terminal set and function set,
GP can represent a very large class of behavior rules.
As also stated by [34], “one of the as yet unrealized
strengths of genetic programming is that it is general
enough to integrate many of the different techniques and
approaches used in other styles of evolutionary compu-
tation into a more powerful whole.”® This superb ex-
pression power would leave the determination of behavior
rules endogenously to the market, instead of exogenously
to researchers’ intervention.*

Chen and Yeh ([18]) compared the learning perfor-
mance of GP-based learning agents with that of GA-based
learning agents. They found that, like GA-based learn-
ing agents, GP-based learning agents also can learn the
homogeneous rational expectations equilibrium price un-
der both the stable and unstable cobweb case. However,
the phenomenon of price euphoria, which did not hap-
pen in [1], did show up quite often at the early stages
of the GP experiments. This is mainly because agents
in their setup were initially endowed with very limited
information as compared to [1]. Nevertheless, GP-based
learning can quickly coordinate agents’ beliefs so that the
emergence of price euphoria is only temporary. Further-
more, unlike [1], [18] did not use the election operator.
Without the election operator, the rational expectations
equilibrium is exposed to potentially persistent perturba-
tions due to agents’ adoption of the new, but untested,
rules. However, what shows up in [18] is that the market
can still bring any deviation back to equilibrium. There-
fore, the self-stabilizing feature of the market, known as
the invisible hand, is more powerfully replicated in their
GP-based artificial market.

The self-stabilizing feature of the market demonstrated
in [18] was furthered tested with two complications. In
the first case, [19] introduced a population of speculators
to the market and examined the effect of speculations
on market stability. In the second case, the market was
perturbed with a structural change characterized by a
shift in the demand curve, and [21] then tested whether
the market could restore the rational expectations equi-
librium. The answer for the first experiment is gener-
ally negative, i.e., speculators do not enhance the stabil-
ity of the market. On the contrary, they do destabilize
the market. Only in the special cases when trading reg-
ulations, such as the transaction cost and position limit,

3This advantage is particular important for the purpose of mod-
eling adaptive economic agents. Today, we experience various mod-
els of adaptive economic agents based on different machine learn-
ing tools, e.g., decision trees, nearest neighborhood, reinforcement
learning, neural networks, and auto-regressive models. It would
be useful to have a general representation such that these different
modeling techniques can be integrated. In other words, they can
all be endogenously generated without first in-graining them. How-
ever, the powerful integration which may be possibly brought by
GP is yet to be seen.

4An in-depth discussion can be found in [11].

were tightly imposed could speculators enhance the mar-
ket stability. The answer for the second experiment is,
however, positive. [21] showed that GP-based adaptive
agents could detect the shift in the demand curve and
adapt to it. Nonetheless, the transition phase was non-
linear and non-smooth; one can observe slumps, crashes,
and bursts in the transition phase. In addition, the tran-
sition speed is uncertain. It could be fast, but could be
slow as well.

This series of studies on the cobweb model enriches our
understanding of the self-stabilizing feature of the mar-
ket. The market has its limit, beyond which it can be-
come unstable with crazy fluctuations. However, impos-
ing trading regulations may relax the limit and enhance
market stability. One is still curious to know where the
self-stabilizing capability comes from in the first place.
Economists have known for a long time that it comes
from the free competition principle, or the survival-of-the-
fittest principle. In the GA or GP, this principle is imple-
mented through selection pressure. [10] studied the role
of selection pressure by replacing the usual proportionate
selection scheme with the one based on the approximate
uniform distribution, showing that if selection pressure is
removed or alleviated, then the self-stabilizing feature is
lost. In a word, selection pressure plays the role of the
invisible hand in economics. By nullifying the implemen-
tation of the survival-of-the-fittest principle, the market
mechanism is paralyzed.

It is interesting to know whether the time series data
generated by the artificial market can replicate some dy-
namic properties observed in the real market. [14] and
[21] started the analysis of the time series data gener-
ated from the artificial market. The time series data
employed was generated by simulating the agent-based
cobweb model with the presence of speculators. It was
found that many stylized features well documented in fi-
nancial econometrics can in principle be replicated from
the GP-based artificial markets, which include leptokuto-
sis, non-IIDness and wolatility clustering. Furthermore,
[21] performed a CUSUMSQ test, a statistical test for
structural change, on the data. The test indicated the
presence of structural changes in the data, which sug-
gested that that the complex interaction process of these
GP-based producers and speculators can even generate
endogenous structural changes.

3 Overlapping Generations Models

While there are several approaches to introducing dy-
namic general equilibrium structures to economics, the
overlapping generations model (hereafter, OLG), may be
regarded as the most popular one in current macroeco-
nomics. Over the last two decades, the OLG model has
been extensively applied to studies of savings, bequests,
demand for assets, prices of assets, inflation, business cy-
cles, economic growth, and the effects of taxes, social se-



curity and budget deficits. Despite its popularity, the
OLG models are well known for their multiplicity of equi-
libria. “When there are multiple equilibria it means that
the physical description of the economy together with the
notion of equilibrium are not sufficient to pin down a
unique predicted outcome.( [43], p.26)” Things can be
even more intriguing if these equilibria have different wel-
fare implications.

To see whether decentralized agents are able to coordi-
nate intelligently to single out a Pareto-superior equilib-
rium rather than be trapped in a Pareto-inferior equilib-
rium, Arifovic ([2]) proposed the first agent-based modi-
fication of an OLG model of inflation ([52]). She applied
genetic algorithms (GAs) to modeling the learning and
adaptive behavior of agents in [52]. There are two station-
ary equilibria in [52], and they differ in the inflation rate.
The one with a higher inflation rate is the Pareto-inferior
equilibrium, whereas the one with a lower inflation rate is
the Pareto-superior equilibrium. In her study, GA-based
agents were shown to be able to select the Pareto-superior
equilibrium. She further compared the simulation results
based on GAs with those from laboratories with human
subjects, and concluded that GAs were superior to other
learning schemes, such as the recursive least squares.

This line of research was further carried out in [6], [7],
[8], and [5]. [8] made the distinction between two im-
plementations of GA learning: depending on what to en-
code, GA learning can be implemented two different ways,
namely, learning how to optimize ([2] and learning how to
forecast ([8]). Tt was found that these two implementa-
tions lead to the same result: agents can indeed learn
the Parato superior equilibrium.®> Nevertheless, a robust
analysis showed that coordination was more difficult when
the number of inflation values considered by agents was
higher, when the two stationary equilibria of the model
were closer together, and when agents entertained infla-
tion rate forecasts outside the bounds of possible station-
ary equilibria.

[6] extends [2]’s two-period OLG model to an n-period
one. It was found that for a relatively low value of n, the
system is more likely to achieve coordination on the low
inflation stationary perfect foresight equilibrium, which
is consistent with the findings of many earlier analyses of
adaptive learning behavior in two period OLG economies.
However, as n increases we see that persistent currency
collapse outcomes become increasingly likely. [7] stud-
ied a more complicated version of the two-period OLG
model ([31]).5 Tt was found that the stationary equilibria

5The only difference is the speed of convergence. The learn-
ing how to forecast version of genetic algorithm learning converges
faster than the learning how to optimize implementation studied by
[2].

6Under time-separable preferences and provided that the value
of the coefficient of relative risk aversion for the old agent is high
enough and that of the young agents is low enough, [31] showed
that stationary perfect-foresight equilibria also may exist in which
the equilibrium dynamics are characterized either as periodic or

on which agents coordinate are always relatively simple -
either a steady state or a low-order cycle. It is difficult,
however, for an economy comprised of optimizing agents
with initially heterogeneous beliefs to coordinate on espe-
cially complicated stationary equilibria.

[5] provided perhaps the most extensive coverage of ro-
bustness checks ever seen in agent-based artificial mar-
kets. Their work covers two different levels of GA designs:
one is genetic operators, and the other is architecture. For
the former, they consider different implementations of the
four main GA operators, i.e., selection, crossover, muta-
tion, and election. For the latter, they consider a single-
population GA (social learning) vs. a multi-population
GA (indiwidual learning). They find that Bullard and
Duffy’s results are sensitive to two main factors: the elec-
tion operator and architecture. Their experimental results
in fact lend support to some early findings, e.g., the sig-
nificance of the election operator ([1]), and the different
consequences of social learning and individual learning
([51]). What is particularly interesting is that individual
learning reduces the rate of convergence to the same be-
lief. This is certainly an important finding, because most
studies on the convergence of GAs to Pareto optimality
are based on the social learning version.”

In [20], the A ECON Research Center generalized [8]’s
learning how to forecast version of GA learning with GP.
In [8], what learning agents learn is just a number of the
inflation rate rather than a regularity about the motion of
the inflation rate, which is a function. We consider it too
restrictive to learn just a number. By [31], if the equilib-
rium of an OLG is characterized by limit cycles or strange
attractors rather than by fixed points, then what agents
need to learn is not just a number, but a functional re-
lationship, such as x; = f(2;_1,2¢ 2,...). [20], therefore,
generalized [8]’s evolution of “beliefs” from a sequence of
populations of numbers to a sequence of populations of
functions. Genetic programming serves as a convenient
tool to make this extension.

The basic result observed in [20] is largely consistent
with [1] and [8], namely, agents being able to coordi-
nate their actions to achieve the Pareto-superior equilib-
rium. Furthermore, their experiments showed that the
convergence is not sensitive to the initial rates of infla-
tion. Hence, the Pareto-superior equilibrium has a large
domain of attraction. A test on a structural change (a
change in deficit regime) was also conducted. It was found
that GP-based agents were capable of converging very fast
to the new low-inflationary stationary equilibrium after
the new deficit regime was imposed. However, the basic
result was not insensitive to the dropping of the survival-
of-the-fittest principle. When that golden principle was
not enforced, we experienced dramatic fluctuations of in-

chaotic trajectories for real money balances, and these complicated
stationary equilibria are also Pareto optimal.

"For more discussion on the distinction between individual learn-
ing and social learning, see [12].



flation, and occasionally the appearance of super infla-
tion. The agents were generally worse off.

4 Artificial Stock Markets

Among all agent-based artificial markets built in the AI-
ECON Research Center, the most exciting one is the ar-
tificial stock market. By all standards, the stock market
is qualified to be a complex adaptive system. However,
conventional financial models are not capable of demon-
strating this feature. On the contrary, the famous no-
trade theorem shows in the equilibrium how inactive this
market can be [50]. It was therefore invigorating when
John Holland and Brian Arthur established an economics
program at the Santa Fe Institute in 1988 and chose artifi-
cial stock markets as their initial research project.® What
one can possibly learn from this novel approach was well
summarized in [42], which is in fact the first journal publi-
cation on an agent-based artificial stock market. A series
of follow-up studies materialized the content of this new
fascinating frontier in finance.

Agent-based artificial stock markets have two main
stays: agent engineering and institution (trading mech-
anism) designs. Agent engineering mainly concerns the
construction of the financial agents. [49] showed how
to use genetic algorithms to encode trading strategies of
traders. A genetic fuzzy approach to modeling trader’s
behavior was shown in [48], whereas the genetic neural
approach was taken by [37]. In [9] and [53], we see a
perfect example to bring different learning schemes into
the model. The learning schemes incorporated into [9] in-
clude an empirical Bayesian trader, a momentum trader,
and a nearest-neighbor trader, where those included in
[53] are neural networks traders and momentum traders.
[36] gave a more thorough and general discussion of the
construction of artificial financial agents. In addition to
models, data is another dimension of agent engineering.
What can be addressed here is the issue of stationarity
that the series traders are looking at. Is the entire time
series representative of the same dynamic process, or have
things changed in the recent past? [37] studied traders
who are initially heterogeneous in a time horizon param-
eter, which characterizes their interpretation of how much
of the past is relevant to the current decision making.

The second component of agent-based stock markets
is the institutional design. A institutional design should
answer the following five questions: who can trade, when
and how can orders be submitted, who may see or han-
dle the orders, how are orders processed, and how are
prices eventually set. Trading institutional designs in the
conventional SFI artificial stock market either follow the
Walrasian tatonnement scheme or the rationing scheme.
[9] and [53], however, consider a double auction mech-
anism. This design narrows the gap between artificial

8The SFI artificial stock market is built upon the standard asset
pricing model ([32], [33]).

markets and the real market, and hence makes it possible
to compare the simulation results with the behavior of
real data, e.g., tick-by-tick data.’

Based on agent engineering and trading mechanism de-
signs, agent-based artificial stock markets can generate
various markets dynamics, including price, trading vol-
umes, the heterogeneity and complexity of traders’ behav-
ior, and wealth distribution. Among them, price dynamics
is the one under the most intensive study. This is not sur-
prising, because ever since the 1960s price dynamics has
been the focus of the studies of random walks, the effi-
cient market hypothesis, and market rationality (the ra-
tional expectations hypothesis). With the advancement
of econometrics, it further became the focus of the study
of non-linear dynamics in the 1980s.'°

Agent-based artificial stock markets make two impor-
tant contributions to our understanding of the behavior
of stock prices. First, it enables us to understand what
may cause the price to deviate from rational equilibrium
price or the so-called fundamental value. [42] made the
following observation.

In sufficiently simple cases — with few agents, or
few rules per agent, or a low-variance dividend
stream — the agents converge to an equilibrium
in which price tracks fundamental value (Eq. 15),
volume stays low, and there are no appreciable
anomalies such as bubbles or crashes .... On the
other hand, in a richer environment, there is no
evidence of equilibrium. Although the price fre-
quently stays close to fundamental value, it also
displays major upward and downward deviations
which may be called bubbles and crashes. ([42], p.
272. Ttalics added. )

Both [53] and [9] discussed the effect of momentum
traders on price deviation. [53] found that the presence
of momentum traders can drive the market price away
from the homogeneous rational equilibrium price. [9] had
a similar finding: adding momentum traders to a popula-
tion of empirical Bayesian has an adverse impact on mar-
ket performance, although price deviation decreased as
time went on. [37] inquired whether long horizon agents
can learn to effectively use their information to generate a
relatively stable trading environment. The experimental
results indicated that while the simple model structure
with fized long horizon agents replicates the usual effi-
cient market results, the route to evolving a population
of short horizon agents to long horizons may be difficult.
[3] and [38] found that when the speed of learning (the
length of a genetic updating cycle) was reduced (which

9Furthermore, since stock market experiments with human sub-
jects were also conducted within the double auction framework
([45]), this also facilitates the conversation between the experimen-
tal stock market and the agent-based artificial stock market.

10Gee [41] and [39] for a nice review of the field.



forces agents to look at longer horizon features), the mar-
ket approached the REE.

As to the second contribution, agent-based artificial
stock markets also enhance our understanding of sev-
eral stylized features well documented in financial econo-
metrics, such as fat tails, volatility clusters'', and non-
linear dependence. [38] showed that the appearance of
the ARCH effect and the non-linear dependence can be re-
lated to the speed of learning. [53] found that the inclusion
of momentum traders generates a lot of stylized features,
such as excess volatility, excess kurtosis (leptokurtotic),
lack of serial independence of return, and high trading
volume.

To simulate the agent-based artificial stock market
based on the standard asset pricing model, the AI-ECON
Research Center developed software known as the AI-
ECON artificial stock market (AIE-ASM). The AIE ar-
tificial stock market differs from the SFI stock market in
the computational tool that is employed. The former ap-
plies genetic programming, while the latter has genetic
algorithms. In ATIE-ASM, genetic programming is used
to model agents’ expectations of the price and dividends.
A menu-like introduction to ATE-ASM Ver. 2 can be
found in [26].

[24] contributed to agent engineering by proposing a
modified version of social learning. The idea is to in-
clude a mechanism, called the business school. Knowl-
edge in the business school is open for everyone. Traders
can visit the business school when they are under great
survival pressure. The social learning version of genetic
programming is applied to model the evolution of the
business school rather than directly on traders. Doing
it this way one can avoid making an implausible assump-
tion that trading strategies, as business secrets, are di-
rectly imitable.'? [54] further combined this modified
social learning scheme with the conventional individual
learning scheme in an integrated model. In this integrated
model a more realistic description of traders’ learning be-
havior is accomplished: the traders can choose to visit
the business school (learning socially), to learn exclusively
from their experience (learning individually), or both. In
their experiments, based on the effectiveness of learning,
traders will switch between social learning and individ-
ual learning. Allowing such a competition between these
two learning styles, their experiment showed that it is the
individual learning style which won the trust of the ma-
jority. To the best of our knowledge, this is the only study
which leaves the choice of the two learning styles to be
endogenously determined.

[55] examined another important aspect of agent en-

11 As [40] described, large changes tend to be followed by large
changes - of either sign - and small changes by small changes. In fi-
nancial econometrics, this phenomenon is formalized as the GARCH
process, where “GARCH” stands for Generalized AutoRegressive
Conditional Heteroskedasticity.

12This is known as Harrald’s criticism. For details, see [24].

gineering, i.e., market size (number of market partici-
pants). Few studies have addressed the significance of
market size on the performance of agent-based artificial
markets.!® Instead, the number of market participants
is usually determined in an arbitrary way, mainly con-
strained by the computational load.!* Related to mar-
ket size is population size. In the case of social learning
(single-population GA or GP), market size is the same as
population size. However, in the case of individual learn-
ing (multi-population GA or GP), population size refers
to something different, namely, the number of solution
candidates each trader has. Like market size, population
size is also arbitrarily determined in practice.

[55] studied the effect of market size and population
size upon market efficiency and market diversity under
social and individual learning styles. Their experimen-
tal results obtained can be summarized as two effects on
market efficiency (price predictability), namely, the size
effect and the learning effect. The size effect says that the
market will become efficient when the number of traders
(market size) and/or the number of models (GP trees)
processed by each trader (population size) increases. The
learning effect says that the price will become more ef-
ficient if traders’ adaptive behavior become more inde-
pendent and private. Coming to market diversity, we
observe very similar effects except population size: mar-
ket diversity does not go up with population size. These
findings motivate us to search for a linkage between mar-
ket diversity and market efficiency. A “theorem” may go
as follows: a larger market size and a more independent
learning style will increase the diversity of traders’ expec-
tations, which in turn make the market become more ac-
tive (high trading volume), and hence more efficient (less
predictable). Their simulation results on trading volumes
also supported this “theorem”. They further applied this
“theorem” to explain why the U.S stock market behaves
more efficient than Taiwan’s stock market. Other aspects
of agent engineering studied include search intensity, psy-
chological pressure, and prudence. ([22], [23])

[15] is a study devoted to price deviation. They exam-
ined how well a population of financial agents can track
the equilibrium price in the AIE-ASM. By simulating
the artificial stock market with different dividend pro-
cesses, interest rates, risk attitudes, and market sizes,
they found that the market price is not an unbiased esti-
mator of the equilibrium price. Except in a few extremely

130ne good exception is [4], whose simulation results showed that
the simple tradable emission permit scheme (an auction scheme) can
be the most effective means for pollution control when the number
of participants is small. However, as the number of participants in-
creases, its performance declines dramatically and becomes inferior
to that of the uniform tax scheme. Another exception is [8].

14[1], however, justified the number of participants from the view-
point of search efficiency. She mentioned that the minimal number
of strings (agents) for an effective search is usually taken to be
30 according to the artificial intelligence literature. Nonetheless,
agent-based artificial markets have different purposes and concerns.



bad cases, the market price deviates from the equilibrium
price moderately from minus four percent to sixteen per-
cent. The pricing errors are in fact not patternless. They
are actually negatively related to market sizes: a thin-
ner market size tends to have a larger pricing error, and a
thicker market tends to have a smaller one. For the thick-
est market which they have simulated, the mean pricing
error is only 2.17%. This figure suggests that the new
classical simplification of a complex world may still pro-
vide a useful approximation if some conditions are met,
such as, in this case, the market size.

Another series of contributions made by the AI-ECON
Research Center is the study of emergent properties
within the context of artificial stock markets. Emergence
is about “how large interacting ensembles exhibit a col-
lective behavior that is very different from anything one
may have expected from simply scaling up the behavior of
the individual units” ([35); p.3). Consider the efficient
market hypothesis (EMH) as an example. If none of the
traders believe in the EMH, then this property will not
be expected to be a feature of their collective behavior.
Thus, if the collective behavior of these traders indeed
satisfies the EMH as tested by standard econometric pro-
cedures, then we would consider the EMH as an emer-
gent property. As another example, consider the rational
expectations hypothesis (REH). It would be an emergent
property if all our traders are boundedly rational, with
their collective behavior satisfying the REH as tested by
econometrics.

[25] applied a series of econometric tests to show that
the EMH and the REH can be satisfied with some por-
tions of the artificial time series. However, by analyzing
traders’ behavior, they showed that these aggregate re-
sults cannot be interpreted as a simple scaling-up of in-
dividual behavior. The main feature of AIE-ASM that
produces the emergent results may be attributed to the
use of genetic programming, which allows us to generate
a very large search space. This large space can potentially
support many forecasting models in capturing short-term
predictability, which makes simple beliefs (such as that
where the dividend is an iid series, or that when the price
follows a random walk) difficult to be accepted by traders.
In addition to preventing traders from easily accepting
simple beliefs, another consequence of a huge search space
is the generation of sunspot-like signals through mutually-
reinforcing expectations. Traders provided with a huge
search space may look for something which is originally
irrelevant to price forecasts. However, there is a chance
that such kinds of attempts may mutually get reinforced
and validated. The generation of sunspot-like signals will
then drive traders further away from accepting simple be-
liefs.

Using Granger causality tests, [25] found that dividends
indeed can help forecast returns. Since by their experi-
mental design, the dividend does not contain the informa-

tion of future returns, what happens is a typical case of
mutually-supportive expectations that make the dividend
eventually contain the information of future returns.

As demonstrated in [24] and [25], one of the advantages
of agent-based computational economics (the bottom-up
approach) is that it allows us to observe what traders are
actually thinking and doing. Are they martingale believ-
ers? Are they sunspots believers? Do they believe that
trading volume can help predict returns? By counting
the number of traders who actually use sunspots or trad-
ing volumes to forecast returns, one can examine whether
sunspots’ effects and the causal relation between stock re-
turns and trading volume can be another two emergent
properties ( [16], [17]).

Agent-based artificial markets have a 5-year history.
While their impact on computational finance is increas-
ing, more has to be done before we can prove that they in-
deed deliver an entirely new way of studying finance. We
believe that the challenge waiting for us ahead is to build
a multi-asset agent-based artificial stock market. This ad-
vancement is important for applications to portfolio the-
ory. [13] is moving in this direction. Using the extended
agent-based artificial stock market, they are simulating
the evolution of portfolio behavior, and investigating the
characteristics of the long-run surviving population of in-
vestors.

5 Concluding Remarks

We review the development of agent-based artificial mar-
kets in the AI-ECON Research Center. Related studies
which are not reviewed in this article include dynamic
games, oligopolistic competition, double auction markets,
and evolutionary models of R&D.
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