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Abstract

From a computation-theoretic standpoint, this paper formalizes the notion of unpre-
dictability in the efficient market hypothesis (EMH) by a biological-based search program,
Le., genetic programming (GP). This formalization differs from the traditional notion based
on probabilistic independence in its treatment of search. Compared with the traditional no-
tion, a GP-based search provides an explicit and efficient search program upon which an
objective measure for predictability can be formalized in terms of search intensity and
chance of success in the search. This will be illustrated by an example of applying GP
to predict chaotic time serics. Then the EMH based on this notion will be exemplified
by an application to the Taiwan and US stock market. A short-term sample of TAIEX
and S&P 500 with the highest complexity defined by Rissanen’s minimum description
length principle (MDLP} is chosen and tested. It is found that, while linear models cannot
predict better than the random walk, a GP-based search can beat random walk by 50%.
It, therefore, confirms the belief that while the short-term nonlinear regularities might still
exist, the search costs of discovering them might be too high to make the exploitation of
these regularities profitable, hence the efficient market hypothesis is sustained.
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1. Introduction

Despite its long history, ' the efficient market hypothesis (EMH) has remained
at the heart of much of the contemporary debate in financial economics. Through-
out its entire history, the EMH was mainly formalized and modified based on
the concept of probabilistic independence. Technically speaking, it shows that
the o-algebra generated by the history of the rates of return will tell us nothing
about the present or future rates of return. In other words, the rate of return R,
should be independent of any Borel functions of R, (s < ¢).? Up to the present,
this seems to have been the only way to mathematize the intuitive meaning be-
hind the EMH, i.e., unpredictability, but that is not to say that it is scientifically
sound. The major problem of this formalization is that there is no effective al-
gorithm such that we can construct the evidence of independence by trying afl
Borel functions of R; (s < t). Therefore, the EMH based on this notion of
unpredictability is practically uncomputable, and in practice, the test gradually
proceeds from linear independence to nonlinear independence such as the BDS
test.> While many recent studies based on nonlinear tests* suggest that there
might exist nonlinear dependence in the financial data, these tests alone tell us
nothing about the predictability of the the rates of return;® nor do they indicate
whether we can profit from a better prediction. For example, the rejection of non-
linear tests might suggest that there exist nonlinear regularities to be exploited;
however, the search costs to find such nonlinear regularities may be so high that
the net profits of using this nonlinear regularity might be negative. In this case,
rejecting the non-existence of nonlinear dependence does not mean the rejection
of the EMH. Hence, what we can truly learn from these nonliearity tests is not
clear. In other words, there is a gap between the result of nonlinearity tests and
its implication for the efficient market hypothesis.

This paper contributes to bridging the gap between nonlinearity tests and the
EMH by providing an approach where both the issues of predictability and prof-
itability are taken into account, Thus, if the EMH is rejected in our approach, it
means what it should mean. We shall call this approach a computable approach.
We start this construction by reconsidering the meaning of unpredictability from
a computation-theoretic perspective. In computation theory, the theorem that the
halting problem of the wuniversal Turing machine is uncomputable implies that

"It goes back to Bachelier (1900).
*In the literature, this is called weak-form efficiency.
3 See Brock, Dechert and Scheinkman (1987).

4 See Savit (1988, 1989), Hinich and Patterson (1989), Hsieh (1989), Frank, Gencay and Stengos
(1988). Scheinkman and Lebaron (1989), Peters (1991), and Willey (1992).

3 For example, the tests alone cannot tell us whether low-dimensional chaos is easier to predict than
high-dimensional chaos or whether deterministic chaos is easier to predict than stochastic nonlinearity.
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the decision about whether any sequence is predictable is, in general, not com-
putable (or decidable). Consequently, this paper does not consider formalizing
unpredictability in its absolute sense but rather in its weaker sensec as exempli-
fied by the expressions of hard to predict and very hard to predict.

The intuitive meaning of hard to predict or very hard to predict can be con-
sidered equivalent to (very) hard to find a rule from past experience under
intensive search which can predict the future better than a random walk (RW).
If this 1s the case, to capture the technical meaning of unpredictability and the
EMH, we only need an explicii search program in which the intensity of the
search denoted by a vector x, x € R™, and the chance of success in the search
denoted by 7 can be formalized. Then 7 as a function of x, ie., m(x) can be
considered an objective measure of unpredictability, i.e., an indicator of showing
how hard it is to predict. Given the same level of x, the lower the 7, the harder
it is to predict; or given 7, the higher the level required, the harder it is to
predict.

The explicit search program considered in this paper is the genetic program-
ming paradigm developed by Koza (1992). A simple introduction to genetic
programming is given in the appendix. Genetic programming (GP) extends the
genetic algorithm to the domain of computer programs and is probably the most
general style in evolutionary computation, a biologically based approach to com-
putation. Computation can be regarded as a process of search for solutions. The
search may become extremely difficult when the search space is too large and an
exhaustive search is practically infeasible. Genetic programming, with its appli-
cation of Darwin’s ‘survival of the fittest’ principle, has been shown as a very
efficient paradigm to implement search in such cases.®

The search intensity of GP can be revealed by the set of chosen parameters in
running genetic programming. For example, by increasing the ‘population size’
from 500 to 1000 and/or the ‘number of generations’ from 1000 to 2000 in
Table 1, we are increasing the search intensity. As to the chance of success, it
crucially depends on what we mean by success. We suggest that, whatever the
definition of success, the criterion of fitness used in GP should be consistent
with that definition. For example, if we consider that mean absolute percentage
error (MAPE) should be used to measure the accuracy of a forecast, then MAPE
also should be chosen as the criterion of fitness to run GP. Once the fitness of
criterion is given, various definitions of success can be developed. For exam-
ple, success means MAPE = 0, or MAPE < 1, and so on. In Section 2, this
formalization of unpredictability is illustrated by examples of predicting chaotic

5 Roughly speaking, many examples show that a GP-based search performs more efficiently than
a blind random search. For a delicate discussion of this comparison, we refer to Chapter 9 of Koza
(1992).
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Table 1

Tableau for predicting chaotic dynamic systems

Population size 500
The number of trees created by complete growth 50
The number of trees created by partial growth 50
Functional set {+. —. %, %}
Terminal set {X0. R}
The number of trees generated by reproduction 50
The number of new lives 50
The number of trees generated by mutation 100
The probability of mutation 0.2
The maximum length of the tree 17
The probability of leaf selection under crossover 0.5
The number of generations 1600
The maximum number in the domain of Exp 1704
Criterion of fitness SSE

dynamic systems. Sections 3 and 4 are devoted to the demonstration of how this
notion can be used to test the EMH.

2. An illustration: Predicting chaotic dynamic systems by genetic programming

...whether a chaotic process or a complex nonlinear process generates a
pattern is irrelevant unless one knows the exact functional form generating
the process. Even if tests indicate a high embedding dimension, forecasting
is impossible unless a specific functional form is assumed (Fogler, 1995,
p-16).

In this section we will illustrate our formalization of unpredictability by using
genetic programming to predict chaotic dynamic systems.’ This section also
attempts to show that if the rates of return are generated by a simple deterministic
dynamic system, then GP might actually discover it. If we represent each chaotic
dynamic system by the LISP S-expression depicted as a rooted, point-labeled tree
(GP-tree), the term ‘simple’ refers to the depth of the GP-tree and has nothing
to do with the embedding dimension. This section will also show that knowing
the existence of chaos or nonlinearity might not be as irrelevant as claimed by
Folger. In fact, GP can be considered a second step of the data analysis within
a complete framework. In the first step, we test whether nonlinearity exists. If it
does, we can then initiate GP to see whether we can find it. To illustrate these
points, the following three choatic dynamic systems with the same embedding

7 The details of this section can be found in Chen and Yeh (1995).
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Table 2

Number of generations required to make SSE = 0; n*

Chaotic series Depth of the GP-tree n*

| 4 7,12, 14, 19

2 5 29, 37, 37, 70

3 6 151, NA, NA, NA

dimension are chosen from Devaney (1989) and the depth of their GP-tree is 4,
5, and 6, respectively.

xl+1 :4xl(] AII)’ -x! S [07 1] VI, (1)
X1 =4 = 3x, x €[-1,1] V4, (2)
X = 8% -84+ 1, x, €[-1,1] Ve (3)

By setting the initial value xo =0.213, a time series composed of fifty obser-
vations is generated for Egs. (1)—(3) respectively, i.e., Time Series 1, 2, and 3,
and is shown in Fig. 1. The chosen parameters to run the GP-based search are
given in Table 1. Here, sum of squared errors (SSE) is chosen as the criterion of
fitness; 7 is the chance of SSE being 0. The search intensity is measured by the
parameter number of generations, denoted by n. So, the degree of complexity in
predicting will be measured by n(n).

Four simulations were implemented for Egs. (1)—(3). The number of genera-
tions required to learn each equation is shown in Table 2. While GP succeeded
in all simulations in predicting the future from the past by discovering the un-
derlying model for Time Series 1| and 2, the latter scems to be harder to predict
than the former. This is because the number of generations required to learn
Time Series | to a 100% precision, i.e., SSE=0, is 7, 12, 14 and 19, while it
is 29, 37, 37, and 70 for Time Series 2. Even though the sample n(100) is 1
in both cases, the sample n(n) is different for small n. When 7 is small, n(n)
for Time Series 2 is expected to be smailer than that for Time Series 1. So, if
we set the chance of success to be equal, the search intensity required for Time
Series 2 will be higher than that for Time Series 1. On the other hand, if we set
the search intensity to be equal, the chance of success for Time Series 2 will be
lower than that for Time Series 1. It is in this sense that we say that Time Series
2 is more difficult to predict than Time Series 1. As to Time Series 3, three out
of four simulations failed to rediscover the underlying system. The only one that
succeeded took 151 generations to rediscover Eq. (3). There is little doubt that
Time Series 3 is extremely difficult to predict as opposed to Time Series | and 2.
These simple examples illustrate how genetic programming can provide us with
an explicit search program upon which an objective measure for predictability
can be constructed.
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Fig. 1. Time series of chaotic dynamic systems: (a)l; (b)2; and (c)3.
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3. Choosing data set by the MDL principle

We will now give two examples to demonstrate how this notion of unpre-
dictability can be used to test the EMH. These examples are based on the data
concerning the daily rate of return of the Taiwan Stock Price Index (TAIEX)
and S&P 500 Index, which are available from the EPS database. From 1/5/71
to 1/27/94, there are 6677 observations in the Taiwan dataset and 5831 in the
S&P 500 dataset. Are we going to use all of them? While the efficient market
hypothesis puts no restriction on the sample size, the application of GP to dif-
ferent sizes of sample does require thought. This is because GP aims at finding
the existence of potential nonlinear regularities. The requirement for the sample
size varies with different periodicities. For the time-invariant long-term nonlin-
ear relation, a large sample size is needed. However, the recent studies of the
time series of stock prices, such as LeBaron (1992), seem to indicate that, even
though nonlinear regularities might exist, they are not stable over time. Therefore,
suppose that the stock market encounters a sequence of short-term time-variant
nonlinear relations, a large sample size may average out all these relations. In
this case, a smaller sample size is desirable, and the choice of a small sample
size in this paper is justified by this consideration.

How small should it be then? We do not have a definite answer to this ques-
tion.” Nevertheless, since this example only attempts to demonstrate how to
apply the GP-based search to the test of the EMH, the issue might not be that
important and the length of the training series is arbitrarily set to be 50. However,
out of these 6677 and 5831 observations, there are 6628 and 5782 series with
the length of 50. Testing all of them is too time-consuming and also unnecessary
by the following rules of thumb. Firstly, the series without any turning points, in
general, might be less complex than those with many turning points. Secondly,
the series which has regular patterns of turning points might also be less complex
than those with irregular patterns. In fact, the possibility that not all time periods
are equally hard to predict has been noticed by the recent studies of stock prices
(e.g., LeBaron, 1992). For small sample size such as 50, this inequality might
be prevalent. However, to take advantage of this inequality, the rules of thumb
to judge the degree of complexity must be associated with an objective measure,
and this paper will use Rissanen’s stochastic complexity as the measure.

Rissanen’s minimum description length (MDL) is an approximation for Ko/-
mogorov complexity which measures the complexity of a set of data by the

8 Similar example of the preference for the short data series can also be found in Qakley (1994).

® The answer QOakley {1994) is based on a rule established by Ruelle (1990}, i.e., if the observations
are generated by a chaotic dynamic system, then the expected minimum series from which useful
information could be extracted can be determined by the correlation dimension. In his case, since
the target function to be rediscovered is already known and is Mackey—Glass equation; therefore,
Ruelle’s crietrion can be applied in his case but not ours.
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Fig. 2. The series of stock index with Max MDL(TAIEX).

length of the shortest universal Turing machine program that will generate the
data. The measure is well-defined, but not practically computable. The MDL de-
veloped by Rissanen (1982) is a way to approximate this uncomputable measure
by replacing the universal Turing machine with a class of probabilistic models.
This paper applies MDL to pick out the most complex 50-series observations,
i.e., the sample period with the highest MDL, as our data set.

A detailed description of this procedure and its meaning can be found in Chen
and Tan (1995). Briefly speaking, we first transform the orginal sequence of
{R,} from 1/5/71 to 1/27/94 into a 0-and-1 sequence based on the sign of R,.
Then MDL is computed for each of the 50 consecutive observations in the 0-
and-1 sequence by choosing the Bernoulli class and Markov class as our model
classes. By this criterion, we used the TAIEX from 11/27/90 to 1/30/91 (shown
in Fig. 2)' and used the S&P 500 index from 5/6/77 to 7/19/77 (shown in
Fig. 4). !

Once the length of in-sample data series is given, the next issue is how
to determine the length of post-sample series.'? Since we only consider the

'0The MDL for this period is 37.807. The lowest MDL, which is 12.126, is observed in the period
from 5/23/74 to 6/1/74 and the 50-day price indexes starting backward from 6/1/74 are shown in
Fig. 3.

"1 The MDL for this peried is 37.807. The lowest MDL, which is 30.95, is observed on 10/3/74,
and the 50-day price indexes starting backward from 10/3/74 are shown in Fig. 5.

2 For the prediction of chaotic time series, this question might be unimportant. Because, in the
case when GP can successfully rediscover the underlying model which generates the chaotic series,
the accuracy of prediction will not depend on how far we would like to predict.
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capability of GP to discover the possible existence of short-term nonlinearities,
it is natural not to test its performance by using too many post-sample observa-
tions. We therefore arbitrarily set the in-sample data to be ten times the size of
the post-sample data. So, for the TAIEX, the post-sample period is from 1/31/91
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Table 3

Tableau of the GP-based search

Functional set {+, —, X, %,sin, cos, EXP,R LOG}
Terminal set {R 1, R—2.. .., Ri—10})

The number of generations 200

Criterion of fitness MAPE

to 2/5/91 (shown in Fig. 2.). For the S&P 500 index, the post-sample period is
from 7/20/77 to 7/26/77 (shown in Fig. 4).

4. The empirical results

To implement genetic programming, the program GP-Pascal is written in
Pascal 4.0 by following the instruction given in Koza (1992). A detailed descrip-
tion of this program can be found in Chen et al. (1995). The chosen parameters
to run GP-Pascal are the same as those in Table 1 except for those changes in-
dicated in Table 3. One of the changes is the fitness function. The fact that SSE
is replaced by MAPE is attributed to Makridakis (1993), who suggested a mod-
ified form of MAPE as the most appropriate measure satisfying both theoretical
and practical concerns while allowing meaningful relative comparisons. Based on
these parameters, 72 simulations were executed for TAIEX and S&P 500.

For each of the simulation, the MAPE is calculated for the in-sample period
and the post-sample period. The in-sample MAPEs of the best model chosen by
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Fig. 6. In-sample MAPEs (TAIEX).

each simulation in Generation (Gen) 50, 100, 150 and 200 are ranked from the
lowest to the highest and are shown in Figs. 6 and 7. Since the MAPE of the
RW is 1, GP is said to beat the RW if its MAPE is less than 1. Let n(n) be
the probability that GP can beat the RW in Generation ». Figs. 6 and 7 show
that the sample 7,(n) are 100% in Generations 50, 100, 150 and 200 for both
TAIEX and S&P 500, and when evolution takes longer, improvement can always
be made. For example, for TAIEX, the MAPE in the best and worst case of these
simulations in Generation 50 is 0.749 and 0.924, respectively, and in Generation
200, it is improved to 0.622 and 0.838. For S&P 500, the MAPE in the best and
worst case of these simulations in Generation 50 is 0.792 and 0.934, respectively,
and in Generation 200, it is improved to 0.691 and 0.898. To make a comparsion,
the in-sample MAPES of linear autoregressive models of order p (p = 1, 2,...10})
are shown in Table 4. For both TAIEX and S&P 500, no linear AR model can
beat RW.

After observing these improvements, one cannot help wondering whether the
MAPE will go down to 0 by evolving longer. Can the GP-based search discover
the true underlying model just like the previous illustration in Section 2? The
answers seem to be negative because by examining Figs. 6 and 7 more care-
fully, we notice that the rate of improvement is decreasing, and hence, further
improvement might be very limited.

If the MAPE(#) is unlikely to reach zero when n is large and the underlying
regularities cannot be discovered, then the overfitting problem: commonly seen in
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Table 4
The MAPEs of in-sample and post-sample in TAIEX and S&P 500: Linear autoregressive models
Model TAIEX S&P 500

In-sample Post-sample In-sample Post-sample
AR(1) 1.039 0.904 1.076 1.567
AR(2) 1.035 0.906 1.435 2.671
AR(3) 1.124 1.174 1.437 2,671
AR(4) 1.108 1.274 1.410 2.655
AR(S) 1.230 1.339 1.386 2.559
AR(6) 1.210 1.145 1.901 3137
AR(7) 1.194 1.096 1.899 3.194
AR(R) 1.064 2.148 1.980 3.664
AR(9) 1.088 1.954 1.795 3.562
AR(10) 1.116 1.866 1.827 4.160

inductive inference could happen. In that case, the regularities detected by the GP-
based search cannot be taken too seriously, and hence, no victory can be claimed
by GP over random walks. To overcome this problem, the technique of cross
validation is used. The post-sample MAPEs of the best model chosen by each
simulation in Gen (generation) 50, 100, 150 and 200 are also ranked from the
lowest to the highest and are shown in Figs. 8 and 9. Let no(n) be the probability
that GP can beat RWs in Generation n. Table 5 shows that the chance of beating
RWs is about 50% for both TAIEX and S&P 500 in Generations 50 and 100.
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Table 5
The chance of beating RWs by GP-based search: n;
TAIEX S&P 500
72(50) 5 »
30 41
274 34
m2(200) e Z

? Statistically significantly different from 0.5 at the 5% level.

By this ratio, beating RWs is not as hard as is claimed in the current literature '3
and is much easier as opposed to the linear AR models. '*. However, our results
cannot be directly compared with the existing literature without some caution.
First of all, most of the existing tests for the EMH do not have an explicit
search program such that the search intensity can be objectively measured. In our
case, however, the maximum number of models each generation could possibly
generate 1s 500, and in a simulation with 50 generations, this number can be as

13 See Diebeld and Nason (1990).

14 See Table 5, there are only two linear models that can beat RWs in TAIEX and none can beat
RWs in S&P 500.
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Fig. 9. Post-sample MAPEs (S&P500).

large as 25,000. Therefore, in each simulation, the best model in Generation 50
is the model that is the best among 25,000 candidates, and this number might be
too overwhelming for most existing tests. Secondly, nonlinear regularities might
exist but are not stable over time. Therefore, when different periods of data are
given, the GP-based search will automatically be renewed. Forecasting in this
recursive manner will certainly increase the intensity of scarch, but at the same
time it might also increase the chance of beating the RW even in the long run.
However, as LeBaron (1992) stated, ‘... measuring global forecast improvements
may be misleading and not give a complete picture of how well a forecasting
method is working (p. 392)". Traditional forecasts comparison based on the global
standard might easily underestimate the chance of beating RWs. Nevertheless,
whether the chance of beating the RW has been underestimated is not the
concern of this paper. What we are trying to point out is that the chance of
beating the RW cannot be objectively evaluated without explicitly taking search
intensity into account. Last but not least, since the search directed by genetic
programming is random, what matters is the probability of finding models better
than RWs. If that probability is only 50% or less, the GP-based search still cannot
be considered more efficient than RWs.

What is the significance of beating RWs? Does that imply that regularities
have been discovered? To answer this question, a simple correlation between the
in-sample MAPE and post-sample MAPE in Generations 50, 100, 150 and 200
are run. The result is shown in Table 6. For most of the cases, the correlation is
negative. This signifies more or less the overfitting problem mentioned before. In
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Table 6

The correlation between the in-sample and post-sample MAPE
TAIEX S&P 500

250 —0.282 —0.258

0100 —0.15% 0.00

P150 —0.08 —0.07

200 —0.03 —0.262

? Statistically significant at the 5% level.

Rate of Return

{ ——True Values —4— Equation (4) 1

Fig. 10. The actual and predicted rate of return (TAIEX).

this case, it would be premature to treat ‘beating RWs’ and ‘knowledge discovery’
as two sides of the same coin.

Of course, since the relation is weakly negative, there are still many simulations
that have superior performance in both the in-sample and post-sample period, and
the model or the function chosen from these simulations can be considered a kind
of regularity. For example, the best models for TAIEX chosen from simulations
21 and 24 are written in Eqgs. (4) and (5) and the best for S&P 500 chosen from
simulations 32 and 43 are written in Eqs. (6) and (7). The plots of the actual R,
and the predicted R, calculated from Eqs. (4)—(7) are drawn in Figs. 10-13.

Ri=({(Ri—4 + Rz x(R—7 * Log(((R—a + (Ri—y —(R—2 + R, 7)) %
((Ri—6 — Ri—7) * Log(Ri— 4% Log R;—¢))) + (((Ri—6 * (Ri—6 + Ri—4))
FR2)* R—10)))) + (Ri—3 * (Ri—6 + Ri—g)))- (4)
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Fig. 11. The actual and predicted rate of return (TAIEX).
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Fig. 12. The actual and predicted rate of return (S&P500).
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0.015

0.01

0.005

Rate of Return
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-0.01

-0.015

Time

—o—True Values —a—Equation (7)

Fig. 13. The actual and predicted rate of return (S&P500).

R, = (R;—7 » (Log((({Log SinLog SinR, 19 + R;—10) + (R,—3 — ((Cos Log Sin
Ri_10 % (Ri—5 x 8317340}) — R,—5))) — ((R,—7%(Cos((((Ri—s *
(Ri—g *(Ri—6 + Ri—2))) * Ri—9) + Ri—9g) — Ri—3)} % (Ri—7 * Ri—2))) *
(Ri—g * Ri—s)) * ((Ri—3 — Ri—4) * Log(R,—7 * Ri—6)))) * Ri_s) *
(Ri—a+Ri2))) (5)

Ry =(Ri—o * ((Ri—a * (R, x —8.448746))%((R,—s * (Ri—10 + Ri—s))
% R;-2))) (6)

Ry = (((Log(((((Rr—3 + Ry —4) + 3.034796) + R, 3) * (Ri—a + Ri—5)) ¥ ((R,—5
+R,_4) % 3.034796)) + (((Rr s + (Ri—3 * (Ri—4 + (((R—3 + (Ri—9
W(Ri—9 % Ri—7))) * (Ri—1 * Ri—s5)) + Log Log((Ri—s — R,—7) * Ri—1))
#Ri—5)) = (Ri—3 = Ri—9)))) = ((Ri—a + Ri—5)*%R,—2)) — Exp((((Ri—3
+Ri4) % 3.034796) — R, ¢) * (R,—s%R,5)))) + (((Log((((R-3
+R—4) % 3.034796) + R,_3) * (Ri—6 — ({(R—3 + Ri_4) = 3.034796)
+(Ri g % (R—s * (Ri—s + Ri—4) % 3.034796)))))) — R, )
+Ri9) + Ri10)) * Exp Log((Ri—9 — Rr7) * Ri1)). (7)
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S. Conclusion

This paper explicitly considers the role search intensity could play in estab-
lishing a well-founded understanding of the EMH. This does not mean that tra-
ditional notions based on probabilistic independence neglect the importance of
search. However, due to the lack of a search program, the test of the EMH has
proceeded in an order which almost runs parallel with the development of time
series analysis, e.g., from linear to nonlinear and from stochastic to chaotic. To
some extent, this process can be considered a search, but such a search is not
explicit enough for a measure of search intensity to be objectively constructed.
Consequently, it is difficult to see how search costs and profits can be formalized
in a practical way.

In his article, ‘Efficient Market Hypothesis’, Malkiei (1987) discussed the weak
form of the EMH,

Thus, investors cannot devise an investment strategy to yield abnormal
profits on the basis of an analysis of past price patterns. (p.127)

By our formalization, search intensity implies search costs. A highly intensive
search naturally implies that computation resources are highly involved. Hence,
the costs and the associated profits are explicitly seen in the GP-based search.
Thus, this paper contributes to a better understanding of Malkei’s statement and
the essence of the EMH.

Appendix A. simple description of genetic programming

A.1. The structure of a program

Genetic programming is basically composed of two parts: one, the initializa-
tion to randomly generate an initial population of programs, GPy, and the other,
the dynamics which gives the population of programs for » , ie, {GP,}, n =
1,2,3.... The dynamics of GP works in a pretty similar fashion to that of genetic
algorithms (GAs). They are all done by applying the operation of Darwinian
selection, crossover and mutation. However, there is an essential difference be-
tween GAs and GP which makes GP a generalization of GAs. Unlike GAs whose
population is composed of fixed-length binary strings, the population of GP is
composed of programs. In particular, each program in GP; is written in its LISP
S-Expression and can be depicted as a parse itree. For a nice introduction on
how this actually works, we refer to Abelson and Sussman (1985). Briefly speak-
ing, by appropriately defining the terminal set and functional set, each program
can be written in terms of LISP S-Expression. For example, consider the logistic
map

Xop1 = 4x (1 —x).
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Define the terminal set to be {R,x,} where R is a constant and define the func-
tional set to be { +, -, *, % }. Then the S-expression of the logistic map is

(x40 x (=1 x)))

and the parse tree for this S-expression can be depicted as follows:

A.2. Genetic operators

A.2.1. Reproduction

Reproduction makes the copies of individual parse trees. The criterion used
in copying is the normalized fitness value 7;,. If gp;, is an individual in the
population GP, with the normalized fitness value =;,, it will be copied into the
next generation with probability #; ,. The operation of reproduction does not cre-
ate anything new in the population and the offsprings generated by reproduction
constitute only part of the population GP;,|. As specified in Table 1, reproduc-
tion is performed on only 10% (50 out of 500) of the population. The rest of the
offsprings are generated by the other operators, such as crossover and mutation.

A.2.2. Crossover

The crossover operation for the genetic programming paradigm is a sexual
operation that starts with two parental parse trees which are randomly selected
from population GP, in accordance with the normalized fitness described above.
Next, by exchanging the parts of these parents, two offsprings are produced.
This exchange begins by randomly and independently selecting one point in each
parental parse tree using a uniform distribution described below.

By the syntax of LISP, each point (atom) of a parse tree could be either a leaf
(terminal) or a roof (function). Therefore, the point (atom) selected could either
be a leaf or a root. As specified in Table 1, the probability that the crossover
point is a root or a leaf is the same, i.e., one-half. Given that a root or a
leaf is to be the point chosen for crossover, the probability that any root or
leaf is chosen as the crossover point is uniformly distributed. For example, if
the crossover point is to be a root, and then there are three roots in the parse
tree, the probability that any one of the three roots is chosen for the crossover
point is one-third (1/3). Unlike reproduction, the crossover operation creats new
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individuals in populations. As specified in Table 1, 60% (300 out of 500) of the
new-generation population is created in this way.

A.2.3. Mutation

The operation of mutation also allows new individuals to be created. It be-
gins by selecting a parse tree gp;, from the population GP, based on =m;,. Once
a particular gp;, is selected, mutation is a process of a random change of the
value of a point (atom) within gp, ;. Each point (atom) has a small probability
of being altered by mutation, which is independent of other points (atoms). As
specified in Table 1, the probability used throughout this paper is 0.2. The altered
individual is then copied into the next generation of the population. 10% (50 out
of 500) of the new-generation population is created in this way.

A.2.4. Immigration

The rest 10% of the offspring are immigrants that are created by randomly
generating 50 parse trees. The motivation behind using the operator immigration
is similar to that of using the operator mutation. They are all designed to equip
the system with enough adaptability to avoid being trapped into a local optimum.
The difference between mutation and immigration is that the latter will function
completely independent of the ancestors while the former does not. Hence, im-
migration allows the system to be even more flexible.
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