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Abstract

An agent-based computational modeling of the lottery market is established
in this paper. Gamblers are modeled as autonomous agents with fuzzy logic and
genetic algorithms. Three empirical observations from lottery markets are taken
into account in the model of agents, namely, the halo effect and lottomnia, conscious
selection of betting numbers, and aversion to regrets. The effect of the lottery tax
rate (takeout rate) on tax revenue is studied in this framework. Our results show
the existence of the Laffer curve. The Laffer curve indicates an optimal lottery
tax rate at 40%, which is surprisingly close to the empirical tax rate averaged over
the 25 lottery markets, 42%. The sensitivity of this result to the emergence of the
interdependent preferences is also examined.
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1 Introduction

Agent-based computational modeling has become a very promising new research tool for
economics. One of its main advantages is its encapsulation of the idea of autonomous
agents. Through modern techniques of agent engineering, the researcher is endowed with
rich expressive power of the life of agents. This rich expressive power not only helps
us bridge the gap between the artificial world and the real world, but enables us to
evaluate the consequences of some external interventions when the route from cause to
effect becomes so complicated that it is hard to follow every step of it. Over the past
decade, fresh and interesting insights have been brought to economic analysis in some
active application areas of agent-based computational modeling, such as the artificial
financial market. As an extension of our earlier studies in artificial stock market (Chen
and Yeh, 2001; Chen and Yeh, 2002), this paper addresses an agent-based model of lottery
markets.

*Research Support from NSC grant NO. NSC93-2415-H-004-005 is greatefully acknowledged.




Like the artificial stock markets, the research paradigm based on the representative
agent already existed in the study of the lottery markets before the launch of agent-based
modeling, such as Morgan and Vasche (1979), Morgan and Vasche (1982), Mikesell (1994),
Mason et al. (1997), McConkey et al. (1987), Walker (1998), and Purfield and Waldron
(1999). These earlier studies treated the demand for lottery tickets as an individual
rational choice problem, and used demographic and socioeconomic data to estimate lottery
demand. Nevertheless, our departure from the conventional research device to the agent-

based modeling is motivated by the following two empirical observations.

Table 1: The Lottery Tax Rates

Nation Official Issuer Tax | Commis- | Net Tax
Rate | sion Rate Rate

Austria Austrian Lotteries | 54.6% 9.30% 45.3%
Belgium Lotterie Natlonale | 48.4% 6.60% 41.8%
Brazil Federal 68.4% 8.20% 60.2%
Canada Loto-Quebec 48.7% 6.80% 41.9%
Canada | Ontario Lottery Corp. | 51.2% 7.40% 43.8%
France La Francaise 42.3% 5.00% 37.3%
Germany Westdeutsche 53.0% 8.30% 44.7%
Italy Lottmatica S.P.A. 48.4% 10.00% 38.4%
Italy Sisal Sport Italia 65.4% 7.90% 57.5%
Japan | Dai-Ichi Kangyo Bank | 54.2% 7.40% 46.8%
Spain ONCE 50.4% 16.50% 33.9%
Sweden Svenska Spel 48.8% 9.60% 39.2%
Taiwan Taipei Bank 40.0% 8.40% 31.6%
UK U.K. National Lottery | 53.4% 5.10% 48.3%
USA Ohio State 40.3% 6.40% 33.9%
USA Michigan State 45.4% 7.00% 38.4%
USA Georgia State 45.9% 7.00% 38.9%
USA Maryland State 46.1% 5.70% 40.4%
USA Illinois State 45.9% 5.10% 40.8%
USA Texas State 46.4% 5.20% 41.2%
USA New Jersey State 47.2% 5.40% 41.8%
USA California State 49.3% 6.70% 42.6%
USA New York State 49.4% 6.00% 43.4%
USA Florida State 50.0% 5.60% 44.4%
USA Pennsylvania State | 49.1% 4.70% 44.4%

Firstly, Table 1 surveys the lottery tax rate of 25 lottery markets in the world. We
see a quite wide distribution of the tax rate (the takeout rate).! From the lowest 40%
in Taiwan to the highest 68.4% in Brazil, the difference is almost 30% high. Even in the
U.S., there is a 10% gap from the lowest to the highest. The difference, which is also
reflected in Figure 1, brings us closer to the design issue. But, the tax rate is only one

!The tax rate here refers to the gross tax rate, including what is reserved for bookmakers’ commission.
It is called the takeout rate, to be distinguished from the net tax rate. In this paper, the two terms, tax
rate and takeout rate, will be used interchangeably.



dimension of the complex lottery design. Starting from the numbers offered to be selected,
the matching rules, to the money to be awarded to different prize (such as the jackpot),
one can face a great number of combinations (designs). Nevertheless, in literature, we see
that little effort has been made to evaluate the impact of different designs, such as their
effects upon lottery revenue.?

Since the lottery revenue is a major source for charity funds or education funds, it is
imperative to have a mean to explore an extensive class of “what-if” scenarios. In this
paper, the agent-based modeling, as an effective tool to deal with “what-if” scenarios,
is used to analyze the effect of the tax rate on tax revenue. More specifically, we are
interesting in knowing whether there is a Laffer-curve phenomenon in the lottery market.
Stated slightly differently, is tax revenue globally sensitive to the tax rate? If so, what is
the optimal tax rate? If not, within what range, it is insensitive, and is it wide enough
to justify the empirical range shown in Figure 17

Series: ISSUER

Sample 1 25
Observations 25

6
Mean 42.43600
Median 41.80000

Maximum 60.20000
Minimum 31.60000

Std. Dev. 6.371478
Skewness 1.066326
2] Kurtosis 4.705532

Jarque-Bera 7.767757
Probability 0.020571

30 35 40 45 50 55 60

Figure 1: The Distribution of Tax Rates.

Date source: see Table 1.

The other empirical observation which motivates an agent-based model of lottery
markets is the psychology of the lottery market. The ordinary gamblers seem to be not so
much concerned with the probabilistic calculation of winning odds; instead,they rely on
heuristic strategies for handling the available information. So, despite the fact that the
series of the winning numbers is by all means generated by a random mechanism, they
tend to believe that future predictions can be made on the basis of past history, and they
tend to choose number in a non-random manner, called the conscious selection. There
are even professional people who make a living by detecting “patterns”. Griffiths and
Wood (2002) provides a splendid review of various heuristics and biases involved in the
psychology of lottery, such as the hindsight bias, representation bias (gambler’s fallacy),
the availability bias, etc. These heuristics and biases are, however, not easy to be captured
by the standard rational analysis.> Nonetheless, in agent-based modeling, agents can be

2The only work known to us are Scoggins (1995), Hartley and Lanot (2000) and Paton, Siegel, and
Vaughan (2002). The design of the United Kingdom National Lottery was not maximizing tax revenue
was suggested by Hartley and Lanot (2000). Interesting enough, in October 2001, the U.K government
implemented a dramatic shift in the taxation of gambling, and that results in a substantial decline in
taxes levied on the U.K. bookmakers. An empirical study conducted by Paton, Siegel, and Vaughan
(2002) indicated that the tax reduction caused a one-third reduction in duty receipts.

3A different but a related point is made by Farrel and Hartley (1998). They showed that repeated
purchase of lottery tickets cannot be explained using expected utility functions. To regain the explanation
power of the EU theory, it was assumed that agents are able to get some “fun” from gambling activity.



initialized with various cognitive considerations: the description and design of agents is
basically open-ended.

In this paper, our agents shall be initialized with two heuristics and one psychological
force. The first heuristic indicates agents’ portfolio strategies (betting stake) based on their
perception of the winning odds. The general observation that agents’ betting momentum
increases with the jackpot prize is what can come out of this heuristic. This heuristic,
however, may have nothing to do with the sophisticated calculation of winning probability.
In reality, the grand prize were generally well publicized, which creates an additional
excitement referred as to lottomania (Beenstock, et al, 1999). Lottomania takes possession
of the public, and attract their greater involvement.* The second heuristic reveals agents’
perception of the winning-numbers patterns. No matter how fair or how random the
winning lottery numbers were generated, gamblers tend to believe that some sequence of
numbers are less likely than others. For example, a sequence of consecutive numbers, say,
1,2,...,6, are considered more improbable than other sequences. Finally, a psychological
force added to agents’ initialization is a feeling of regret, or known as the aversion to
regret in the literature (Statman, 2002). Usually, when the mass media intensively report
the winners with their gigantic prize, it may make those people who did not gamble
feel regrettable: had they bet, the prize would have been theirs.> This psychological
force referred as to the regret effect indicates that the interdependence of agents’ utility
function.

The two-above mentioned heuristics and psychology are first randomly generated to
initialize agents’ characteristics. These characteristics will evolve over time as agents
are presumably utility-maximizers. As what has been popularized in the literature of
agent-based economic models, the evolution will be driven by genetic algorithms.

The paper will be organized as follows. Section 2 will introduce an agent-based model
of the lottery market. Section 3 will detail the use of the genetic algorithm. Section 4
outlines the experimental designs. The simulation results with discussion are given in
Sections 5 and 6 respectively. Section 7 wraps up the paper with concluding remarks.

2 An Agent-Based Model of the Lottery Market

2.1 The Lottery Market and Its Design

Typically, an agent-based model comprises of two parts, namely, the environment and
the agent engineering. The environment is characterized by a set of rules of the game,
governing how agents are connected to the system and to other agents in the system.
Here, it concerns a set of rules of a lottery game or a design of a lottery game.® Generally
speaking, a lottery game can be parameterized by two parameters (z, X). In a “z/X”
lottery game, both a gambler and the lottery agency shall pick z numbers out of a total of
X numbers, and then different prizes are set for different number matched. Let y denote
the number matched. Clearly, y = 0,1,...,z. Let S, be the prize pool reserved for the
winners who matched y numbers. A special term is given to the largest pool, S;, the
Jackpot.

4In a way, this observation can be related to the availability bias, as initially proposed by Kahneman
and Tversky (1973).

5Similarly, if the winner is absent, those who did not gamble may now have a degree of comfort as “I
knew it”.

SWe would like to draw readers’ attention to Walker and Young (2001) for an excellent introduction
to the design of a lottery game. They also stimulated the issue of an optimal design.



Each prize pool, Sy, shall be shared by all number of players who match y numbers,
say N,. In the event of N, = 0, S, is added to the next draw. A particular interesting case
is N, = 0. A common feature of lotteries is that, if there are no winners in a given draw,
the jackpot prize pool from that draw is added to the pool for the next draw, referred as
to a rollover. Rollovers usually enhance the attractiveness of the next draw, called the the
rollover draw. The prize pool is defined by the lottery tax rate, 7, which is the proportion
of sales that is not returned as prizes. Thus, the overall prize pool is (1 — 7)S, where S
is sales revenue and 1 — 7 is also called the pay-out rate. The overall prize pool will then
be distributed to each separate pool based on a distribution (g, ..., S5 1 Yo 8y = 1), L.e.,
Sy = s,(1 —7)S. It is anticipated that s, is increasing in y. To recap, a lottery game can
be represented by the following z+4-tuple vector:

L= (z,X,7, S0, Sz),

which is also shown in the control panel of our agent-based lottery software (Figure 2).

A gent-based Lottery Market A gent-based Lottery Market Ed

Run | Run |
Parameters | Lattery Rule | Parameters  Lothery Rule |
Number of 4gents 5000) Pick | 5 Numbers from01 o] 20
Mumber of Formmla b gents o Match I_2 Wumbers for Fourth Prize
Mumber of Btrategies 1o forgca For each draw 10 26 of he sales is allocated as DriZe MOney
Evaluation Cycles U1 forson This money is distributed as follows:
Periods 1000 First Prize 3 g
Crosover Rate 10 second Prize lig
Mutation Rats lg Third Prize 15 g
Toumsment Size 10 Fousth Prize 35 g
Elite Size U Other Settings:
Period Income for L gents 200 Interest Rate 0
Green-Ewe Effect Ratio 0.000001 & [ for Evolve Euns per Pexiod 3

Figure 2: The Setting of Parameters and Environments

A purpose of agent-based simulation of the lottery market is to see how the changes in
the design £ can affect sales revenue, and more importantly, tax revenue. This brings us to
another dimension of the lottery market, i.e., the likely size of the market. The likely size of
the market can be determined by a series of economic and demographic factors. However,
in this paper, we shall restrict our attention to only two factors, namely, population size
and income. Both variables are treated as control variables in our agent-based lottery
market. Let N denotes the number of agents in the market, and each of them are indexed
by ¢ (t =1,2,...,N). For simplicity, one can assume that their income y, is exogenously
given and fixed. In the simplest case, y, is further assumed to be identical among all
agents, y, = 7,Y.. (N X g) gives us only an upper limit of the market size. Lottery
draws take place at regular intervals and, at each draw, agents decide how many tickets
to purchase. Therefore, the actual market size is determined by agents’ participation,
which is the aggregation of the behavior of individual agents.



In literature, there are two approaches to analyze agents’ participation in the lottery
markets. The first approach is to use the empirical data to model the principal features
of the observed aggregate behavior.” The second approach is to start from a rational
model of representative agents, and then aggregate these representative agents.® The
agent-based model is closer to the latter, while not using the devices of rationality and
homogeneity. Agents are initially heterogeneous and boundedly rational, but they are
autonomous and learning over time. Their details are left for the next subsection.

2.2 Agent Engineering

What do motivate agents to gamble, and how much to bet? We do not think that there
is an unique answer or unique approach to this issue. Therefore, there are a number of
possibilities in agent engineering. Nevertheless, a sound principle is to ground agent engi-
neering with theoretical and empirical observations. Doing in this way, one can minimize
the degree of arbitrariness. Our efforts to made in this agent-based model is to capture
the following three “stylized facts” of the lottery market, namely,

e lottomania and the halo effect,
e conscious selection,

e aversion to regret.

2.2.1 Lottomania and the Halo Effect

That the lottery participation level is positively related to the size of the jackpot prize
seems to be one of the most important empirical observations. The phenomenon that sales
following a rollover are higher than sales prior to the rollover is known in the industry as
the halo effect (Creigh-Tyte and Farrell, 1998; Walker and Yang, 2001). The halo effect
is partially due to considerate media attention paid to rollovers, which in turn creates
a bout of lottomania. Therefore, we can start building our agents from a participation
function which relates the participation level to the jackpot size,

/L:,O(J), (1)

where p is the participation function, y is a measure of the participation level, and J is
the size of the jackpot. The exact functional form of p depends on the framework within
which the problem is formulated. In the standard rational analysis, p is related to J via
change in the expected value, or more generally, the ezpected utility, of the lottery ticket
(Hartley and Lanot, 2000). However, here, we take a heuristic approach, and assume that
gamblers base their decision on some heuristics rather than the possibly quite demanding
work on expectations computation.?

"Papers belonging to this category are Farrell and Walker (1999), Farrell, Morgenroth, and Walker
(1999).

8The number of papers in this category is much less. Hartley and Lanot (2000) is the only one known
to us.

9Many details can complicate the computation of the expected value. First of all, the expected value
depends on the expected number of the winning gamblers: the higher the expected number of winners,
the lower the share of the jackpot for each winner. On the other hand, the expected number of winners
depends positively on the participation level, by which the size of jackpot is also positively affected. This
circular phenomenon applies to other non-fixed prize pools. Second, the expected value can differ among
different agents, given their conscious-selection behavior.



By the heuristic approach, Equation (1) can be approximated by a few simple if-then
rules. For example, “if the jackpot is unusually high, then I will spend 10% of my income
to buy lottery tickets,” or “if there is no rollover, I would spend only little.” Notice
that the antecedent or consequent of the rule contains the use of natural language which
may not have concrete numerical meanings, such as the linguistic terms “high” and “only
little” in the above example. While natural language has its ambiguities, people seem to
be able to reason effectively with added vague and uncertain information and very often
the decisions they make are the outcome of their approximate reasoning. Over the last
four decades, we see the development of fuzzy logic as a formal approach to deal with
these ambiguities. In this paper, we propose to represent the function p by a set of fuzzy
if-then rules, which are manipulated by the standard mathematical operations of fuzzy
sets as prescribed by fuzzy set theory.

We proceed as follows. First, let .J; be the jackpot prize updated at the rth day of the
tth issue, where r = 1,2,...,7. 7 denotes the gap between two draws. Suppose that the
lottery draw takes place weekly, then 7 = 7. Furthermore, let the set {.J}; be the time
series of the jackpot prize up to the time of ¢,. Secondly, given the historical data, the
attractiveness of the lottery game can be measured by how unusual of the .J; as compared
to {J}u, , if 7> 1, or {J}(-1),, if r = 1. The agent will then act upon to the degree of
attraction. For example, if the jackpot is “huge,” the agent may react more energetically
by betting greatly. Alternatively, if the jackpot is perceived as “low,” they may be not
interesting in spend a penny.

Technically, each agent gambles with his/her own fuzzy rule-based system, which com-
prises of a number of fuzzy if-then rules. Each fuzzy if-then rule of the system can be
represented as follows,

If J, is A;, then a;. (2)

A; (i = 1,...,k) are fuzzy sets representing k different states of the jackpot prize. For
example, consider the case k = 4, then A;,...,A4 can denote the following four linguistic
descriptions of the size of the jackpot: “low”, “medium’, “high” and “huge.” a; is the
level agent decide to participate given the current state is A;. The participation level can
be measured by the proportion of income which agents would spend to purchase lottery
tickets. Call the vector @ (= (ay, ..., ax)) the participation vector. Then different heuristics
can be captured by different ds. For example, @ = (0.1%, 1%, 5%, 10%) characterizes the
agent whose betting stakes is increasing in the size of the jackpot prize. On the other
hand, @ = (0.1%, 1%, 5%, 1%) indicates that the agent initially increases his betting stakes
with the size of .J, while when .J is too large, he seems to lost the interest. The latter is
particular suitable for the consideration that the expected number of winners increases
with lottery sales, and hence higher sales imply a small likely share in the jackpot if the
winning number is chosen.

Based on our description above, only the input set, A;, of (2) is fuzzy, and the output
set, a;, is a crisp numerical value. This type of fuzzy rule is known as the Sugeno style
of fuzzy rules, as distinguished from the Mamdani style of fuzzy rules, of which the input
and output sets are both fuzzy.!® Fuzzy sets are distinct from the classical sets (crisp
sets) in the sense that the membership in the latter is all or nothing, whereas that in the
former is a matter of degree (more or less). The degree is mathematically characterized

10Tt is, however, interesting to use Mamdani style of fuzzy rules by making the output set also fuzzy.
So, for example, a heuristic can be “If J is huge, then play with huge stakes.”



by a membership function. Formally, the fuzzy set A; can be denoted as follows.

A = Yogent walJd)/Jd, if J ois discrete, 3)
l Jrere #a(J)/ 7, if J is continuous,

where 14,(J) is the membership function, ps, : N*(R*) — [0,1]."" The sign > and [
stand for the union of the membership grade. / stands for a marker and does not imply
division.

LOW MEDIUM HIGH HUGE
1 1 1
1 1 1
H 1 1 1
0.5
1 1 1
1 1 1
1 1 1
0 Q: Q: Qs
Jackpot

Figure 3: The Membership Function.

There are a wealth of membership functions. We, however, see little guidance as
to the selection of them. Therefore, before more research been done on this area, we
have to accept some degree of arbitrariness. For simplicity consideration, we choose the
frequently-used triangular-shaped fuzzy membership function. Specifically, it is shown in
Figure 3. In Figure 3, the domain of J is partitioned into four overlapping intervals by a
sequence of base points Qo, Q1, Q2, @3: [Qo, @1), (Qo, Q2), (Q1,Q3), and (Q2,00). Denote
them by I, ..., Iy respectively. For each fuzzy set A;, pa,(J) > 0 if J € I;; otherwise
pa,(J) = 0. However, unlike the usual fuzzy membership functions, the base points upon
which the membership functions are defined are not fized. This is because all the linguistic
terms have no absolute meaning. What perceived as high or low by agents will depend
on what has happened before. It is the frequency which determines how we describe the
event perceived. So, “huge” should refer to some events which happen more infrequently
than what “medium” may refer to. This justifies the use of sample statistics as the base
points, e.g., quantiles.

Since J will necessary start from zero, and will remain to be zero for all regular draws,
only )y can be fixed at 0. The rest of three base points can be taken as the first, second
and third quantile of the sample {.J}; /0. Here, we only consider the quantiles after
removing “0” from the time series sample {J}; . What concerns us is as follows. Suppose
the game is easy to win, then rollovers are infrequent and .J;, has to start from zero for each
draw. It may turns out that Q)q, Q)o,... are all zero, and the fuzzy membership functions
shown in Figure 3 are, therefore, not appropriately defined.!? The sample quantiles may
converge if {.J}; turns out to follow a stationary distribution; otherwise, they will change
over time.'?

"'While in most lottery markets, J is a discrete integer, it is possible to have a design such that J can
be a fraction or even real number. See Hartley and Lanot (2000).

12Take Taiwan national lottery as an example. The national lottery in Taiwan was introduced in Jan,
2002. Up to Feb. 25, 2003, it already had 127 draws. Out of these 127 draws, 111 were regular, and only
16 of them are rollovers. By these observations, @1, Q2 and ()3 are obviously all zero if 0 is left in the
sample.

131f we further restrict the time-horizon of some agents’ perception to be finite, then even though {J};,



We now have assumed that all agents share the same membership function with the
same way to determine ()(quantile)-statistics. As a corollary, their perception of all the
linguistic states are identical. So, if the jackpot is perceived as “huge” for one agent
in this draw, it is also perceived as “huge” for every other agents. Misunderstandings
among agents on communicating these linguistic states are not allowed. Introducing
heterogeneous membership functions can be computationally very demanding, and the
necessity of doing so is not at all clear given the fact that human indeed are able to
communicate very well with natural language.

The implementation of the fuzzy rules (2) proceeds as follows. For each period of time
t., the agents observe the time series of the jackpot up to the beginning (the first second)
of t., {J},. All @Q statistics can be determined accordingly, and so is the membership
function pa(J)/J. Given J;,, i.e., the jackpot at the beginning of this period, the agent
can then figure out the membership degree of each possible state (each fuzzy set), i.e.,
pa,(J,) (i =1,..., k). In the Sugeno fuzzy model, each corresponding rule is activated to
a of degree pa,(J;,), and the output is a weighted average of all consequent actions a;,
weighted by the membership degree.

k
atr = atr(']tr) = Z ILLAi(']tr)ai (4)
=1

Agents’ involvement in lottery are defined by the fuzzy if-then rules (2) associated with
the participation vectors @. Adaptive behavior can be characterized by changes made in
@. In Section 3, we shall show how @ can be encoded as a bit string and evolve via genetic
algorithms.

2.2.2 Conscious Selection

The second important empirical observations of the lottery market is a general ignorance of
the way probability operates. While all methods of selecting lottery numbers presumably
have an equal probability, some of the general public do not seem to believe that the
probability of the some numbers, say 1,2,3,4,5 and 6, being picked are as equally likely
as any other sequence of six numbers. The phenomenon known as the conscious selection
refers to non-random selections of the combinations of the numbers. What is even more
interesting is that there is even a market for “experts” (like “technical analysts” in the
stock market), who give advice to gamblers (investors) on which numbers to choose.

To take conscious selection into account, let b be a X-dimensional vector, whose entities
take either “0” or “1”. Consider a number z, where 1 < z < X. If “0” appears in the
respective zth dimension, that means the number z will not be consciously selected by the
agent, while “1” indicates the opposite. Therefore, b shows a list of numbers which may be
consciously selected by the agent. If b has exactly x 1s, then one and only one combination
is defined and the agent would select only that combination while purchasing the lottery
ticket(s). If b has more than 2 1s, then many more combinations can be defined. The
agent will then randomly select from these combinations, while purchasing the ticket(s).
Finally, if b has less than z 1s, then those designated numbers will appear in each ticket
bought by the agent, whereas the rest will be randomly selected from the non-designated
numbers.

follows a stationary distribution, the respective finite-sample quantiles may still change over time. For
these agents, what means to them by “high”, for example, changes over time even though the distribution
of J is stationary.



Agent’s betting heuristic, h, is the fully characterized by the vector
h = (a,b).

To make it apparent that h are different over time (evolving) and are different over space
(heterogeneity), we shall denote the heuristic used by the agent ¢ at time ¢ by h, ;. Section
3 shall detail the implementation of the evolution of h,; via genetic algorithms.

2.2.3 Aversion to Regret

The last feature of our model of agents is the utility function. For simplicity reasons, most
ACE models assume an exogenously-given utility function which is homogeneous among
agents. However, we have slightly departed from this tradition mainly motivated by the
following empirical observation, called the aversion to regret. Regret is the pain we feel
when we find, too late, that a different choice would have led to a better outcome. In the
case of the lottery market, regret simply means the utility of not to gamble depends on
whether there are winners. If no body wins, that would make those who do not gamble
feel no regret; however, if someone win, they may feel regret because it could be his had he
given it a try. Lottery promoters capitalize on the aversion to regret when they encourage
lottery buyers to keep on buying. If regret does play an important role, then agent’s
utility function is no longer independent.'*

For simplicity, let us assume that agent ¢ has a simple one-period linear utility function
of consumption:

u(c) =, (5)
with the budget constraint:
c<e—alde+m, (6)

where e is his initial income, « is the proportion of his income spent on lottery, and 7 is
the lottery prize. Since for those agents whose « is zero, their utility depends on whether
there is a jackpot winners. The utility function (5) has to be modified as follows.

(7)

_J 1=0), if a=0 and N, >0,
u(e) = { ¢, otherwise.

The 6 in the utility function (7) measures how regretful the non-gambler would be if
the jackpot is drawn.'® On the other hand, opposite to regret, the non-gamblers may also
derive pleasure from gamblers’ misfortune, in particular when the jackpot is not drawn
(N, = 0). As a result, the utility function (7) can be extended as follows.

(1—0)c, if a=0 and N, >0,
u(c)=< (1+6), if a=0 and N, =0, (8)
c, otherwise.

14Tn spirit, this consideration is line with the regret theory proposed by Bell (1982) and Loomes and
Sugden (1982). Regret theory offers explanations for numerous evident violations of the expected utility
theory axioms. Regret theory says that the agent after making their decisions under uncertainty may
have regret, if their decisions turn out to be wrong even if they appeared correct with information available
ex ante. This very intuitive assumption implies that agent’s utility function among other things should
depend on the realization of not chosen, and in this sense irrelevant, alternatives.

15Certainly, regret may work on the reverse direction as well. Nevertheless, since generally mass media
will only give a large converge on the jackpot winners, and are not interested at all in anything happening
to those non-gamblers, that asymmetric coverage makes the regret in the reverse direction rather negligible
and hence it is assumed away in this paper.



Obviously, the larger the 6, the less independent of agent (’s utility. While we can
treat 6 as an exogenous variable, from a psychology viewpoint, it would be interesting
to see how 0 is determined endogenously. In this way, # is treated as a personal trait,
which indicates how agents experience things and his feeling about it. As a subject of
development psychology, that trait can evolve over time. For example, the agent may
learn to be more independent, and become not so much care about what others have;
or, on the contrary, he may become less independent and would always like to compare
what he has with others.! This evolutionary setting makes agents’ preferences be also
heterogeneous, adaptive and endogenously determined, a feature which is an unexploited
potential of the ACE modeling.

To wrap it up, agents in our artificial lottery markets are fully characterized by the
vector

(hl,,t7 Hb,t) — (('_]:L,t7 gb,t? 9L,t)7 (9)

where 6, ; is the preference parameter of agent ¢ at time period ¢. The vector (h,4,0,,) will
be encoded as a bit string, and then genetic algorithms is applied to evolve a population
of (h.y,0,4), which is to be detailed in the next section.

3 Genetic Algorithms

3.1 Representation

Genetic algorithms (hereafter, GA) are motivated by natural genetics, and are developed
by explicitly mimicking the process of natural genetics. A “chromosome” is the basic unit
of GA. Like natural genetics, chromosomes in GA are strings of “genes’, which define
the characteristics of an individual. The way to represent a chromosome is called the
coding scheme, and there are several coding schemes in GA. The most standard one is
to use discrete values, such as binary, integer, or any other system with a discrete set of
values. Among all the discrete-value coding system, binary coding is the most popular
one. Binary coding represent each chromosome with a string binary digits, 0 or 1, also
called the bit string. Chromosomes only gives the genotype of an individual, but the
corresponding phenotype can be derived from a specified decoding scheme, also known as
the growth function. In our model, binary coding is applied to the vector (d,, gb,t, 0..1),
which fully characterizes an individual ¢+ at time . However, since each component of the
vector is associated with different function. The coding and decoding scheme would be
different.

First, let us start with @, the participation vector is a k-dimensional vector, (ay, ..., ai),
where a; (1 <i < k) lies between 0 and 1. Each q; is first coded by a binary string with
length [,. The decoding is performed in the following way:

la i—1
; 2
a = 72127‘11? 1 , (]_0)

where ¢; is the cth bit counted from the right. So, totally, @ is coded by a k - [, bits,

exemplified as follows.
sub—strings

-~ ™

k
(01..0 ] 10...1 | 11...1)
—~ =

la bits 1o bits 1, bits

16The snob effect or the bandwagon effect well taught in economics are just other examples demon-
strating the interdependence of agents’ preferences.



Figure 4 illustrates a fuzzy inference system (2) with k& = 4 and the corresponding
binary string of @ (with [, = 4), decoded as @ = (0.2,0.6,0.8,1.0). The input .J is
perceived by the agent, and the membership degree of each fuzzy set is calculated as
follows: [pa,(J), ..., ua,(J)] = [0,0,0.75,0.25]. So, by Equation (4), the agent will invest
a =3 pa,(J)a; = 0.95 of his income to purchase the lottery tickets.

16-bit 20-bit 4-bit

Chromosome [0011100111101111{10101101000101000110]1100]
v dn dzy dzn dia

i:0.2i:O.6i:(l).Si:14OE
=0.6/=0.8,=1.0

“ Ol = arr(-/tr):z HalJm)a
Mg =p75 | = al/lA1+ Clz,qu+ a3,uA3+ Ayl
= 0.2x0+0.6x0+0.8%x0.25+1.0x0.75
#A3:0_25 :095
4= U= 0

Jackpot T

Figure 4: Betting Heuristics Based on the Sugeno Fuzzy Inference System

Second, is is straightforward to code the g, the number-picking vector. As what we
mentioned in Section 2.2.2, it is simply a X-bit string. An example of the case X = 20 is
shown in Figure 5.

Total 0l 029 039 04 059 068 078 08 099 109 119 1289 13§ 149 159 168 1789 18§ 199 20

Numbers
cwom2 1 O 1 O1 1 01 O0O001 01000110
%l’fn‘b’fi 03 05 06 08 12 14 18 19

Figure 5: An Example of Agents’ Picking Numbers

In Figure (5), the chromosome shows that the nine numbers 1, 3, 5, 6, 8, 12, 14, 18,
19, are consciously selected by agents. Consider a case of x = 5, i.e., each ticket can have
only 5 numbers on it, then the five numbers shall be randomly selected from the total of
C? (= 126) combinations.!” If the numbers consciously selected by the agent is less than
five, then the rest will be randomly pricked from those unassigned numbers.

Finally, the regret parameter 6, which also lies between zero and one, can be encoded in
a similar fashion as Equation (10) by a lp-string bits. Therefore, the full characterization
is encoded by a string with a total of &k - [, + 20 + [y bits.

3.2 Evolutionary Cycle

Genetic algorithms starts with an initialization of a population of chromosomes (binary
strings), called Generation 1 (GEN 1). The number of chromosomes or the population

"Tn the case of Taiwan lottery, the computer can automatically generate all 126 the (= C2) tickets
cover by the nine selected numbers. So, if the agent have enough budget (participation level), he will be
able buy all of them. In practice, it is called the combination strategies (bao-pai in Chinese).



size, denoted by Pop, is fixed during the whole evolution. Then a fitness criterion (fit-
ness function) is used to evaluate the performance of each chromosomes. Based on the
performance evaluation, the next generation of chromosomes, shall be genetically pro-
duced by the incumbent. The genetic production starts from a selection of a mating pool.
Usually the selection is biased toward the well-performed chromosomes to facilitate the
implementation of the survival of the fittest principle.

There are two major selection schemes in GA, namely, the roulette-wheel selection, and
the tournament selection. While these two selection schemes are well studied in the GA
literature, which one is more suitable for agent-based economic modeling is still an open
issue. This is because some advantages or disadvantages of these two schemes known to
GA theorists may not be so much relevant for social sciences oriented studies.!® Chen
(1997) argued that, for social scientists, it is the network behind the social dynamics the
primary criterion of the selection scheme. Roughly speaking, the roulette-wheel selection
scheme implicitly assumes the existence of a well-connected global network, whereas the
tournament selection only requires the function of local networks. Without further ev-
idences on which network assumption is appropriate, it would be beneficial to try both
selection schemes for the robustness concern. However, to have a better focus, only tour-
nament selection will be tried in this paper. Nevertheless, according to the progress we
make, the other selection scheme will be included at a later stage.

By tournament selection, each individual in the mating pool is determined as follows.
We first randomly select ¢ random chromosomes without replacement, and then take the
best two of it. The parameter ¢ is known as the tournament size, and it is also the mating-
pool size. The two best out of the ¢ is called parents in GA. Two genetic alterations are
operated on them to produce two offspring. The first alteration is crossover.

Crossover mainly exchanges genetic information of the two parents, and it is mainly
through this process that the exchange of information among agents is done. What was
exchanged (acquired and replaced) shows us, in a concrete way, what agents had learned.
It is, therefore, crucial to represent the target which agents may cognitively recognize to
learn. In the bit-string representation, there are two common ways to represent these tar-
gets: first, by single bits of the chromosome, and second, by blocks of bits. Corresponding
to these two different representations, two crossover styles arise in the literature. Uniform
crossover identifies the single bits as targets to learn, whereas point crossover emphasizes
the role of blocks. While the latter has been widely used in economics, discussions of its
decency over the former is not established yet. In this paper, we shall first follow the
convention and use point crossover. However, the alternative will be kept in mind for the
future robustness check.

Point crossover cuts each parent chromosomes into s pieces. The cut-off points are
randomly determined, but are kept in the same position between the parents. Then some
of these pieces are exchanged to each other. It is called one-point crossover when & is set
to 1. Example of one-point crossover is shown in Figure 6.

As what has been shown in Figure 6, a cut-off point, which is same for both parents,
is randomly selected. Then two offspring are formed after exchanging the parts being
cut to each other. Since each chromosome represents altogether three different aspects of
agents’ behavior, the crossover operator is made in a pair-by-pair manner, i.e., to restrict
the exchange only to the paired characteristic, called paired crossover. As what shown

BFor example, from an optimization viewpoint, the roulette-wheel selection has two well-known dis-
advantages. First, it is a danger of premature convergence because outstanding chromosomes may take
over the entire population very quickly. Second, the low selection pressure when fitness values are near
each other.
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Figure 6: The Examples of One-Point Paired Crossover

in Figure 6, if the cut-off point is targeted at the first characteristic (betting strategy),
then only the first characteristic will be cut and exchanged. The rest two characteristics
remain unchanged.

Crossover can generate new genetic materials (new behavior), which may bring some
desirable as well as undesirable features. Therefore, to be able manage or avoid the unde-
sirable feature, a parameter called crossover rate (P,) is introduced to GA. The crossover
rate is the probability of turning on the crossover operator. If the crossover operator is
turned on, the two parents will have two offspring as described above; otherwise, if it
is turned off, then the result will be the two parents themselves. In a social learning
framework, the crossover rate characterizes how quickly or easily agents will “learn” from
others.™

The second genetic alteration is mutation. After crossover, each bit of the resultant
chromosome has a chance of being flipped from “0” to “1”7, or “1” to “0”. Ideally, the
crossover operator enables agents to discover new types of characteristics by recombining
the existing genetic materials, whereas the mutation operator make it possible for agents
to discover something non-existing yet. The probability of being flipping is called the
mutation rate (P,,), and it functions in a similar vein to the crossover rate. Nonetheless,
the mutation operator can be more devastating; so the mutation rate is generally set very
low.

The offspring after the mutation process will then to replace the old generation. There
are two replacement strategies used in GA, namely, generational replacement and steady-
state replacement. The former will complete replace the old generation, while the the
latter will only replace the worst 1 per cent of the old generation. Clearly, the former
is a special case of the latter when n = 100. Replacement is a consequence of survival
pressure, which forces relatively ill-performed agents to change. By the parameter 7, the
agents belonging to the top 1 — n per cent would remain, and the agents belonging to
the bottom 7 per cent would be replaced by offspring.2 One may expect that the higher
the survival pressure, the higher the . While our software can allow users to choose the

9“Learn” is a positive word, but there is no guarantee that crossover will bring to a better result for
agents. So, an alternative term to use is “be influenced” from others. To avoid the disturbing effect from
the alteration of genetic information, Jasmania Arifovic invented the election operator, and applied to
her series of studies. Some limitations of this operator have been discussed in Reiechmann (2002).

20The steady-state replacement is somewhat rigid, because it assumes that agents have a clear-cut
decision on whether they should adjust their strategies, yes or no. Chen and Yeh (2001) introduce
simulated annealing to make this originally crisp decision be a probabilistic one.



n, to focus better, this paper will only consider the case n = 100, which is equivalent to
the generation replacement. So, even the best of the old generation (the elite) will not be
kept.

We wrap up the section with a pseudo program shown in Figure 7. We begin with
generation 1 (Gen = 1), initialize the first generation of population (POP;), an then
evaluate it. After that the evolution cycle starts by iteratively following the step of
selection and genetic alterations until Pop offspring are generated. These offspring (PO P,)
will then replace the old generation (POP;), and we move to Generation 2, followed by
evaluation, selection, genetic alterations, replacement, and moving to Generation 3. This
cycle is going on and on until the termination criterion, which is the number of generations
to evolve, is met.

The control parameter discussed in this section can all be input directly from the
control panel of the software (see the left panel of Figure 2).

begin
Gen := 1;
Pop := Population-Size;

initialize (POP(Gen, Pop));
evaluate (POP (Gen, Pop)):;

while not terminate do

begin
for i := 1 to Pop step 2
Parentl := Tournament-Select-1st (POP(Gen, Pop));
Parent? := Tournament-Select-2nd (POP(Gen, Pop)):;
O0ffspringPOP (Gen, i) := Crossover-Mutation-1lst (Parentl, Parent2);
OffspringPOP (Gen, i+l) :=Crossover-Mutation-2nd(Parentl, Parent2);
next 1

evaluate (OffspringPOP (Gen, Pop));
POP (Gen+l) := OffspringPOP (Gen, Pop);
Gen := Gentl;

end

end

Figure 7: The Pseudo Program

4 Experimental Designs

The agent-based lottery market as introduced in Sections 2 and 3 is summarized by two
sets of parameters, the one associated with the market, and the one associated with the
agents. Parameters associated with the market are encapsulated into the vector M.

M = (z,X,7, S0, e, 82,7, N, J).

Except for the last two parameters, N and g, which is beyond the control of the lottery
administration, the rest parameters are just part of the design of the lottery game. As
far as the optimal design is concerned, one may be interested in knowing whether there
is a set of parameter values,

* * * * k=%
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such that, given N and ¢, an objective function can be optimized, e.g., the tex revenue
can be maximized.?! While this is the most general way one can pose the design issue,
it does not provide us an interesting focus. Being an initial stage of this research line,
this paper chooses 7 as the first direction to move. As what we have briefly surveyed in
Section 1, the lottery tax rate is indeed a point of attraction, not just from the academic
perspective, but more also from the public-policy perspective.

This paper studies the possible relation between the lottery tax rate and the tax
revenue by hypothesizing the existence of a Laffer curve, and hence an optimal interior 7.
To do so, different values of 7 ranging from 0 to 90% are attempted in this paper. The
rest of the market parameters are treated as constants throughout the entire simulation,
and they are listed in Table 2.

Table 2: Experimental Design

Market Parameters

Pick z from X (z/X)

5/16

Lottery Tax Rate (1)

0%, 10%,

sy 90%

50151, 1 55 0%, 0%, 35%, 15%, 12%. 38%
Drawing Periods (7) 3

Number of Agents (N) 5000

Income (y) 200

GA Parameters

Number of Fuzzy States (k) | 4
Number of Bits ({4, l,) 4,4
Periods (Generations) (T') | 500
Crossover Rate 90%
Mutation Rate 0.1%
Tournament Size () 200
Generation Gap (1) 100

Since we are using the current version of the ACE model only as a toolbox for enhanc-
ing our understanding of the lottery behavior, these parameters are not chosen through
calibrating. Nonetheless, the set of prize ratios, so, ..., S5, are chosen to be consistent with
the National Taiwan Lottery. Similarly, the drawing periods of each issue (7) is also mo-
tivated by it, assuming that each period is equivalent to one day, and there are two issues
per week. The most intriguing part, however is the setting of /X . Obviously, the choice
of z and X affects the likely number of winners. If x = 6 and X = 49 then the probability
of a ticket being the winning combination is approximately 1 in 14 million, and if x = 6
and X = 53 then the chance of buying the winning combination is approximately 1 in 23
million.??

Based on this winning probability, the expected number of jackpot winners and their
prize depends on the number of tickets sold, which in turn depends on the size of the
market, i.e., N X y. Given the size, a game design which is sensible for a country A is
likely to be hard for country B, whose population size is relatively smaller, or people are

2n fact, one advantage of the ACE modeling is to make this complex design issue at least computa-
tionally solvable.
22These figures are directly borrowed from Walker and Young (2001).



less wealthy. Therefore, /X cannot be set independently of N and y. In ACE model, we
have a severe restriction to N. To run the simulation in a reasonable fast way, /N can only
be set as a number like from 5,000 to 10,000, which can hardly match the population size
of a real country. This forces us to modify /X in a way such that it can be comparable
to a real market, say Taiwan. This makes us to consider a rather smaller X, which is only
sixteen. A game of 5/16 is then matched to a market size N x y = 5000 x 200.%

The second set of parameters concerns the control parameters of the genetic algorithm.

A = (k,la,lg,T, 2 Pc,PmHP,U)

To have a focus and make our presentation easier, all these parameters are also fixed
during the entire simulation, as given on Table 2. A remark is made to the parameter
@, i.e., the tournament size. This unusually large tournament size (¢=200) allows for
a greater extent of interaction among gamblers, which is to approximate the intensive
attention drawn to lottery results reported by mass media. We do admit the potential
significance of some variations of A. However, the sensitivity analysis will be important
only after we are able to show something interesting with the current fixed design.?*

Models built upon genetic algorithms are stochastic model in the sense that even the
same fixed design may come up with different results. Therefore, to enhance the validity
what we may conclude from the simulation, multiple runs of the same design is inevitable.
Each set of parameters is run 25 times. Depending on the market participation level, the
running time varied from 3 hours to 20 hours under Pentium 4 2.4G Hz.?®

5 Experimental Results

5.1 The Take-out Rate and Tax Revenue

As declared on Table 2, each run lasted for 500 periods, i.e., 500 draws. Tax collected
from each game is indexed by R, (the tax revenue at the tth issue of the tickets). A
time series {R;}?% is observed after each run. To make sense of the results, we further
normalize the revenue series by dividing R; by the total income N X y, and call this new
series {r;};% the normalized taz revenue series. Notice that normalized tax revenue can
be interpreted as an effective tax rate. By convention we took away the first 100 periods
of the data, and calculated the mean for the rest of sample, i.e., {r;}?%%,,. Denote it by
7. Since we have 25 runs for each single lottery tax rate, we, therefore, report the median

of 7 over these 25 runs, and the results are shown in Figures 8.26

23What mainly concerns us is the expected number of jackpot winners. The expectation is based on
the assumption that all income are spent on the lottery market. By that assumption, the expected
jackpot winners are 229 in the artificial market, whereas in the real (Taiwan) market, it would be 381.
The difference seems to be acceptable considering that in the real market there are many other tools for
play gambling, while in our artificial market there is only one way to do so. But, by no means, we are
doing any calibration in a serious way. Instead, we just want to make sure that the game running in our
artificial market is not incredible easy or hard from a real-market perspective.

24In the future, we do plan to take this agent-based lottery market to some sensitivity issues pertaining
to the choice of different selection schemes, market sizes, crossover style,...etc, including their economics
significance and the effect upon the simulation results.

25Usually when the lottery tax rate is low, the associated participation level can be quite intensive,
and hence computational load is very heavy.

26The reason that we report the median instead of the mean is because that the former is a robust
statistics, whereas the latter is sensitive to outliers.
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Figure 8: Tax Revenue Curve and the Associated Box-Whisker Plot

The figure shows that the (normalized) tax revenue first increases with the lottery tax
rate 7, and then decreases with it. The highest tax revenue appears at 7 = 40% with
a 7 of 10.5%. In addition to median, it is also interesting to notice the change in the
uncertainty of tax revenue under different tax rates. This is reflected by the associated
box-whisker plot also shown in Figure 8. The box in the middle of the plot covers 50% of
the simulated tax revenue. The longer the box, the more uncertain the tax revenue. From
Figure 8, the tax revenue is relatively low and stable when the tax rate comes to its two
extremes (7 = 10%, 90%). However, the box starts to inflate when when the tax rate is
away from the two extremes, which signifies the growing uncertainty in tax revenue. The
degree of uncertainty is further compounded by the enlarging whiskers, which extend the
box to the frontier of the sample distribution.

Another way to describe what found in Figure 8 is that the elasticity of changes in
tax revenues with respect to changes in the tax rate is unstable. Tax revenue can be
statistically insensitive to a range of tax rate, say from 7 = 0.4 to 7 = 0.7. This makes
the determination of the optimum tax rate 7% less certain. Given this circumstance, a
rigorous statistical approach must be taken to deal with this policy issue. However, in real
world, it is very difficult to do so because the lottery administration cannot fine-tune the
tax rate too frequently. As a result, it is difficult to get enough observations to support
an estimation job. This limitation shows the potential value of agent-based modeling in
policy analysis.

If one temporary accept the peak of the simulated Laffer curve as the optimum tax
rate, i.e., 7" = 40%, is this number interesting? In Figure 1, we have a survey over 25
lottery markets, the average lottery tax rate is 41.8 as the median, and 42.3 as the mean.
They are surprisingly close to our 7 = 40%. They are surprisingly close because, at this
stage of research, we have not played around with our parameters to fit our results to
the real data. The result is cooked up with only the three empirical properties pertaining
to individual agents as discussed in Section 2.2. All aggregate results emerge from the
interacting autonomous agents whose three imposed-characteristics evolved over time.
These setups, while still simple, are hard enough to forecast what the aggregate results
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Figure 9: Tax Revenue Curve and the Associated Box-Whisker Plot under No Regret
Effect

we may come up with, including a 7* of 40%.

Certainly, that does not mean that the complex adaptive system like this one can
have only one unique solution: 7% = 0.4. Is it possible that different settings of the
parameter values can lead to different results? Or are we, somehow, just by luck simulate
a system with a set of parameters whose optimal solution is consistent with the empirical
observation? This is indeed the robustness issue that one have to face in ACE modeling.
To be honest, there is no end to a full robustness check, as one can always go on and
on. A compromise must be made somewhere, but that can made in an academically
acceptable way. First, one have to make their software publicly available so that it can
be always open to further validation, which we shall do so as what we did in the past.?”
Second, one then can restrict their examination to some non-trivial variations either in
the part of agent engineering or the part of environment. At this point, this paper takes
one interesting aspect to examine, i.e., the regret effect. What does it happen if the regret
effect is assumed away?

Section 2.2.3 introduces the regret effect. It is introduced to the model via the pa-
rameter 6 in Equation (8). € is originally randomly generated between 0 and 0.93, and
is heterogeneous among agents. It then evolves over time. Now, to assume away the
regret effect, we simply fix # to 0. We then re-run the experiments as designed on Table
2, and, as before, 25 runs for each 7. The results of the effective tax revenue and the
associated box-whisker plot is drawn on Figures 9. Figure 9 shows an uni-modular Laffer
curve which peaks at 7=0.6 with a 7 of 7%. As compared to Figure 8, the new Laffer
curve levels down and the peak also moves to the right, which indicates that the regret
factor may not only affect the optimal tax rate 7%, but also the tax revenue.

That the absence of the regret factor can impact the optimal tax rate and tax revenue
is an interesting observation. It has something to do with the endogenous evolution of
the dependent utility function. We shall come back to this issue on Section 5.4.

27See the website: http://aiecon.org/software.htm.



5.2 Rollovers and Sales

In addition to the Laffer curve, a number of interesting observations of the lottery behavior
can also be made from our agent-based simulations. We proposed three analyses in this
paper. The ones to be discussed in the next two sections are behavior of conscious selection
of winning numbers and interdependent preference, and in this section we address the
empirical relation between rollovers and sales.

It is generally assumed that large size of rollovers will enhance the attractiveness of
the lottery game. Statistics also tell us that the mean sales conditional on the rollover
draw is normally higher than that of the regular draw. For example, based on the time
series data of the UK lottery from November 19, 1994 to March 5, 2003, a total of 751
draws, the average sales is 56.0 million pounds over the rollover draws, whereas it is 41.4
millions over the regular draws. Nevertheless, exceptions exists. Among a total of 112
rollover draws of the UK lottery, it happened 25 times that sales actually fell.

To have a general picture of the empirical relation between rollovers and sales, Table
3 summarizes some basic statistics of three lottery markets: UK, Taiwan, South Africa,
Ireland, Swiss, Japan, and Turkey. We first conduct a statistical test for the significance
of the difference between the sales in the rollover draw and the sales in the regular draw.
The t test statistics are shown in the second column. Below each test statistics are the
corresponding p values.?® Second, for those rollover draws, we further regress sales against
the jackpot size as

St,rollover =y + a1 Jio + €. (11)

“Ji_1” is the jackpot size rolled in from the ¢t — 1th issue. Regression (11) is only applied
to the sales in the rollover samples, S} yoiover- Sales in the regular draw are not taken into
account since the jackpot size must starts from 0 for all the regular draws. The values
of the coefficient o; and R? are reported in Columns 3 and 4. Finally, as mentioned
earlier, a surprise is to see that sales may fall in some rollover draws. To acknowledge the
occurrence of this anomalous relation, the fifth column gives the percentage of the rollover
draws whose sales actually declined rather than rose. We consider this statistics important
because it hints that the underlying agents’ behavior, which connects rollovers to sales,
may be more complicated than one may hypothesize from a simple linear regression.

Table 3 shows quite consistent patterns for the seven lottery markets. First, the halo
effect is evident in all markets. This is reflected by the significant positive ¢ statistic (the
second column), which means that sales in the rollover draw are significantly greater than
those in the regular draw. Second, as we expect, the jackpot size significantly prompts
sales. Its positive effect on sales is statistically significant in all markets. The only question
is whether its explanatory power is good enough. In some markets, R? is surprisingly high
up to 90 per cents, whereas in the other two countries, it is only 20 per cents. However,
what should not be hidden from this general expected results is the existence of anomalies.
The anomalous relation between rollovers and sales are prevalent in the two of the three
markets. In South Africa, sales fell in 28 per cents of the rollover draws, whereas in the
U.K. it declined in 22 per cent of them. What may cause these anomalies is an issue
which we would like to pursue in this line of study.?

Based on these references, it is interesting to see whether the similar patterns hold
for our artificial lottery markets. Therefore, we do the same statistics over the simulated
data. What we do here is to pool together all the simulated date under the same tax rate,
and do the statistics by the tax rate. The result is shown on Table 4. Marked contrasts

28Here, a two-tail test is applied.
29Tnteresting enough, we have not seen any literature giving enough attention to this anomaly.



Table 3: Rollovers and Sales: Statistics from the Real Data

Nation/Period t statistic (o7 R? | anomalies
(periods) (p-value) | (p-value)
United Kingdom 4.2231 1.9418 | 0.2126 22.32%
(11/19/94-3/8/03) | (0.0000) | (0.0000)
Taiwan 3.4578 | 10.1766 | 0.9133 0.00%
(1/22/02-5/23/03) | (0.0013) | (0.0000)
South Africa 3.6959 1.3307 | 0.2052 27.78%
(3/11/00-6/4/03) (0.0001) | (0.0000)
Ireland 59171 0.7451 | 0.6371 1.04%
(1/2/02-6/28/03) (0.0000) | (0.0000)
Swiss 5.7976 9.3881 | 0.9227 0.00%
(1/1/03-6/28/03) (0.0006) | (0.0015)
Japan 5.9727 1.1291 | 0.9460 6.67%
(7/4/02-6/26/03) (0.0000) | (0.0000)
Turkey 0.5384 | 12.6762 | 0.6196 0.00%
(6/20/01-7/2/03) (0.3067) | (0.0713)

between Tables 3 and 4 are observed. First, the halo effect disappears. More than that,
all ¢t statistics become now significantly negative. We now have the opposite of the halo
effect, the anti-halo effect. Second, the effect of the jackpot size is by and large positive,
which is consistent with what that observed in the real data. However, its explanatory
power diminishes very fast with the increase in the takeout rate. Given the result above,
it is not surprise to see that “anomalies” now become normal. For all takeout rates, sales
declined in more than 50 per cents of the rollover draws.

The disappearance of the halo effect and the appearance of the anti-halo effect is
certainly astonishing. This is even more so because our agent engineering is based upon
the consideration of the halo effect (see Section 2.2.1). However, to compare what we
have from the real data with what we have from the artificial date provides us a chance to
reflect upon something which we may take it for granted. In particular, what is the essence
of the phenomenon of the halo-effect? Why did the agent-based system built upon GA
fail to deliver this feature? Also, given the halo effect, why are there so many exceptions
(about 20% to 30% in real markets)? Why did the agent-based model is particular good
at producing these “anomalies”? These are the questions to be addressed in Section 6.

5.3 Conscious Selection

Hard empirical statistics on conscious-selection behavior is not available yet in the real
market, while the patterns of the lottery numbers have been analyzed by many “experts”
who advise people how to pick the numbers. In our simulation, the numbers favored by
each agent is observable. The vector g, as detailed in Section 2.2.2, shows the numbers
picked or excluded by the agents. This profile provide us the chance to observe the
behavior of conscious selection. In particular, it enable us to address the question as to
whether the agent essentially believe that winning numbers are randomly selected.

This can be done by asking each agents the following question. Does the agent believe
that each number are equally likely (or unlikely) to be picked by the lottery adminis-



Table 4: Rollovers and Sales: Statistics from the Simulated Data

Tax t statistic o R? | anomalies

Rates | (p-value) | (p-value)

0 -19.3379 0.6014 | 0.1352 49.14%
(0.0000) | (0.0000)

0.1 -23.0334 0.6438 | 0.2996 58.67%
(0.0000) | (0.0000)

0.2 -66.1523 0.5583 | 0.0645 63.63%
(0.0000) | (0.0000)

0.3 -99.0913 0.1093 | 0.0042 63.50%

(0.0000) | (0.0240)
04 | -117.1700 | 0.2144 | 0.0148 | 62.09%
(0.0000) | (0.0000)
05 | -100.7600 | 0.1563 | 0.0093 | 63.36%
(0.0000) | (0.0000)

0.6 “87.8737 | 0.0322 | -0.0001 |  61.58%
(0.0000) | (0.4165)

0.7 ~82.4286 | 0.1121 | 0.0010 |  60.52%
(0.0000) | (0.0462)

0.8 ~49.3922 | 0.0899 | 0.0004 | 57.47%
(0.0000) | (0.0840)

0.9 447909 | -0.2789 | 0.0010 |  56.34%

(0.0000) | (0.0130)

tration? If the agent believes that winning numbers are randomly generated, then all
combinations are available for him to select. Therefore, simply by counting how many
combinations are excluded by the agent or how many combinations are effectively avail-
able for the agent, one can develop a metric to measure how far the agent is away from
the belief of a fail game. Let d be the metric, and

[ G/G) if z<e
d_{ ©)/C).  if 2>w (12)

where z is the number of 1s appearing in b.
When the agent believes that the game is fair and treats all the numbers equally, then
z= X (or 0), and the measure d achieves its maximum d,,;:

o= (3)1(5) =1 (13)

On the other hand, if the agent has exactly = numbers in his mind, then the game for
him is completely deterministic, and d gets to its minimum d,,;,:

yin = 1/<X> ~ 0. (14)

X

So, simply by watching how d is close to 1 or 0, one can have an idea of how the agent is
far or close to a fair-game believer. A time series display of the metric shall shed light on
how well the behavior of conscious selection is developed.
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Figure 10: The Measure of the Belief of Fair-Game

Figure 10 displays the evolution of the metric d at a highly aggregation level. What
shown in the x-axis is time. An observation is taken for every 20 periods. For each
sampling period, we pool together the d of all 5,000 agents over 25 runs under all the tax
rates. So, each d shown here is the average of 5,000 x 25 x 10 individuals’ d. The time
series plot of d basically shows a monotone increasing behavior, which characterizes the
gradual convergence to the belief of fair game. However, it does not converge enough to
1. Instead, it seems to settle around the level of 0.6, which is approximately equivalent
to a z of 14. Therefore, a degree of conscious-selection behavior is weakly observed.

5.4 Aversion to Regret

As mentioned in Section 2.2.3, a positive 6 in Equation (8) intensifies agents suffering’
when they don’t buy the lottery ticket, while later on someone takes away the jackpot
prize. Nonetheless, that intensity is treated symmetrically so that extra comforts can be
gained when there is no match. Given this potential, the agent can learn and develop an
independent preference with 6§ = 0, or to develop a less independent preference with a
positive #. It is interesting to see how a culture of # is formed over the course of evolution
and its implications.

We examine the values of # of all the 5,000 agents in the last period (period 500), and
take an average from this sample. Call the average f. Figure 11 is the box-whisker plot
of # over the 25 runs. The line inside the box shows the median of the 25 runs. If we
just focus on the median, we see that a tendency to regret is cultivated in the market.
Given the dual role of 8, a more appropriate interpretation is that a culture which people
are sensitive to what other people encounter is nursed in this lottery environment. In all
cases, the median of  is high up to 0.8, and even to 0.9 with increase in the takeout rate.

This high value of 6 suggests that agents are taking quite strong reaction to the
lottery outcome. The high value of # indicates two things. First, the room for taking
the advantage of the aversion to regret does exist for the purpose of lottery promotion.
This point was already well noticed in the literature. However, what has been neglected
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Figure 11: Value of the Regret Coefficient 6

is the dual role of #: agents may also tend to decline to gamble with a hidden wish that
no one will match the jackpot, and when that happens, they are just happier with their
“prophesying” capability: “Yes! I just knew it.” It would be interesting to see whether
this trait emerges endogenously as a psychological compensation; after all, winning big
prizes is difficult for most people. So, the hidden wish revealed by 6 provides them a way
to accept not being able to become a millionaire. This may partially explain why 6 is
significantly high for the cases where rollovers happen much more frequently, such as 7=
80%, 90% (see a very narrow box in Figure 11).%°

Now, we can see why the removal of # can enhance tax revenue, as founded in Section
5.1. Mainly, it is because that highly interdependent preferences has been developed, i.e.
the parameter 6 is significantly away from zero. For make the analysis easier, suppose
0 = 1. When there is no match for the top prize, non-performing agents will double
their degree of happiness, from 200 to 400. This high degree of utility may even beat the
winners of small prize, say the winner of the 4th prize. It is so because 35% of the prize
is reserved for the 4th prize (Table 2), which is only 17.5% of sales if the tax rate is 50%.
The winners of the fourth prize can only have 17.5 cents for per dollar purchasing. So, if
20% of the 5000 agents are gamblers, and each spends only one dollar for the ticket, then
they together share the pool of 175 dollars. Given that, even though there is only one
single winner of the fourth prize, there is still a short of 25 dollars to make this winner as
happy as the non-performing agents.?!

The analysis here shows the significance of evolving a positive #: it nullifies the in-
fluence of those small winners. As a result, when the regret effect is removed (6=0), the
influential power of the small winners is brought back, and stimulates the participation
to the market, which in turn levels up tax revenue.

30The findings that rollover frequency increases with the takeout rate will be shown later.

31The phenomenon that winners of small prize feel no better than the non-performing agents is not
totally unrealistic. This can be confirmed from the fact many small-prize winners do not even bother
to cash their reward. We, however, agree that the range of € set here is a little exaggerating. But the
purpose here is to make its effect easier to see.



6 Discussion: What does the GA learning mean?

Given the simulation results displayed above, it is high time to inquire a very fundamental
question: what does the GA learning mean? This is a generic question shared by all kinds
of agent-based simulation using the GA. To answer this question, we have to first notice
that a possible optimal solution for all our agents in the lottery market is to take the zero
function when the jackpot size is not high enough, i.e.,

p=p"(J) =0, (15)

if J is not large enough. The solution is best in the sense that it maximizes the risk-
neutral expected utility as specified in Equations (5) to (8).32 The second thing to notice
is that the fundamental work GA did in a social learning framework is simply to propagate
those well-performed strategies based on the fitness function supplied by the user. If the
fitness function is in line with the the utility function, then it is natural to ask whether
the agents eventually find the optimal solution (15). In term of the discretized version of
p, i.e., the participation vector @ , the optimal solution is

a* = (aj,ay,a3,a;) = (0,0,0,0). (16)

To distinguish this type of agents from other types, we shall call agents with solution (16)
the standard neo-classical agent.®®> Our first question is then whether the solution (16)
was propagated well enough to the entire market. This is a kind of the typical convergence
issue addressed in may ACE simulations with the GA.

It is useful to look at the percentage of agents whose participation is in line with (15).
Let N; be the number of the standard neo-classical agents in the market, then the statistic
N; /5000 measures the density of neo-classical agents in the market. Since we have 25
simulations for each 7, each of which lasting for 500 issues, what drawn on Figure 12 is
the box-and-whisker plot of fZ), = N,,/5000. As before, dots of medians are connected
in a line.

Figure 12 basically indicates the difficulty of propagating behavior (16). The percent-
age fi, is almost down to nil for most simulations when 7 is less than 40%. While the
further increase in 7 does facilitate the propagation of the survival of the neo-classical
agents, their influence is still confined to a rather limited extent. It is until the take-out
gets to its maximum (7 = 80%, 90%), they start to become a large group (one fifth to one
third) of the survival agents. This result drives us to inquire what limits the survivability
and propagation of the neo-classical agents. Or, put the question in the context of GA,
why did the presumably well-performed strategy (16) fail to dominate?

The property that the behavior of the bounded-rational agents may not be able to
converge to that of rational agents has been demonstrated in many ACE studies using
GA. One key contributing factor to the divergence comes exactly from a life of bounded-
rational agents, i.e., the time-horizon upon which agents react. In GA, this time-horizon
is put into effect through the evaluation cycle. If the cycle is short, then the respective

32Walker and Young (2001) showed that when sales are large enough the expected returns of 1 dollar
ticket comes to its maximum which simply equals 1 — 7. Therefore, even in this most favorable case,
expected utility still goes down with the purchase of the tickets. It is true that Solution (15) may no
longer be valid if different utility functions are applied. While this is indeed an interesting direction to
look into further (e.g., Farrel and Hartley, 1998), this paper has not taken this line of arguments into
account.

33In fact, what is needed is simply a; < == = 0.005 for all i = 1,2,3,4. This is so because in our

200
simulation each ticket costs only 1 dollars, and agents’ income is 200 dollars per period.
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Figure 12: The Survival Rate of the Neo-Classical Agents

time-horizon is also short. The shorter the time-horizon, the more myopic the agents tend
to be. Short time-horizons cause a problem well noticed by Lettau (1997), which is to be
restated as follows. Agents in a setting of which the evaluation time-horizon is only one
period are searching for

il = arg{mgx U}, (17)
and Lettau (1997) has shown the non-equivalence between
E(d") = E(arg{mgx U}), (18)
and
a = arg{mgx E(U)}. (19)

Lettau (1997) discussed the the two. That discussion basically applies to this paper.

For convenience, agents in the society can be decomposed into two groups: gamblers
(performing agents) and non-gamblers (non-performing agents). Given the design of the
lottery game, most gamblers will fail with a lower utility as opposed to the non-gamblers.
Since the fundamental work which GA does is to propagate those well-performed strate-
gies, the strategies used by these failed non-gamblers have no influence on shaping the
forthcoming behavior. Nonetheless, a minority of gamblers, in particular those gamblers
with aggressive participation, who are lucky to become the winners, gain utility which are
significantly higher than those non-gamblers. These gamblers alone are persuasive enough
to invite many followers to level up their participation. This explains why gamblers can
well propagate, even though most of them will fail.

Non-gamblers can still exert some degree of influence to those losers, but their effect
will be limited by the influence of the gigantic winners. But, if the gigantic winners do
not show up (rollover), neo-classical agents will then have a better chance to fight back.
Therefore, the frequency of rollovers matters. The more frequently the game rollovers, the
more likely neo-classical agents can survive and propagate. To see this relation, Figure
13 depicts the percentage of rollover draws, or called the rollover ratio. Here, we see that
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the rollover ratio roughly increases with the take-out rate. When 7 comes near to the
maximum, it is about 60% to 70% high, which means most of time the gigantic winners
does not exist. As a result, neo-classical agents face much weaker survival pressure and
can better propagate to a large proportion of market participants.

The explanation above also indicates an asymmetric account given between the minor-
ity of winning gamblers and the majority of the losing gamblers. The learning mechanism
driven by the standard GA makes agents care very little of the losers, whatever strategies
they used, even though they may use the same aggressive strategies of the winners. As
a result, by not taking into account the losers’ strategies, agents tend to give a biased
or over-optimistic judgement of those aggressive gambling strategies. While the behavior
observed is not rational in a strong sense, it is not at all atypical. Consider our experi-
ence with the so-called recipes. Sometimes, we were told and persuaded only when the
recipe worked for some people, while how many times it failed for other people was largely
neglected.

Here, we see the main distinction between the use of GA in engineering and the use of
GA in social sciences. In most engineering applications, the fitness assigned to a specific
strategy is deterministic, whereas in most ACE applications, it is non-deterministic. The
problem of the non-deterministic fitness is usually tackled with by enlarging the evaluation
time-horizon so that it is the average performance over many iterations by which a strategy
is evaluated, as what was done in Lettau (1997).2* However, the case of lottery presents
an extreme situation: the reward for gamblers ranges from zero to gigantically high.
Hence, a few more iterations will not help average out that windfall reward. As a result,
an essentially “hocus-pocus strateqy”, i.e., a strateqy who work purely by luck, can still
survive.

The use of GA enables us to spell out the conditions upon which this property may
sustain. First, human are bounded rational in the sense that they learn in a biased way

34T ettau showed that
lim E(a") = a*. (20)



by only drawing attention to the winners. Second, there is a small probability of having
an extremely high reward of following that “hocus-pocus strategy” strategy. Notice that
the probability can be extremely small. What matters here is that by the law of large
number it will almost surely happens, at least for few people, if there are enough large
number of followers. The case of lottery fit nicely to these two conditions. But, there
maybe some other kinds of gambling or gambling-related behavior, e.g., crime, also fit
these conditions. If so, the property implies these behavior will not die away and may
self-form into a wave of propagation, even though rationally speaking it is not worthy of
such doings.?®

Now, come to the puzzle: why in our simulated data rollovers affect sales negatively,
which contradicts to the most noticeable stylized fact of the lottery market. Again, this
can be accounted by the way GA operated in this paper. Remember that our evaluation
time-horizon is short to a single-period draw. Given the circumstances, this is what will
happen. Suppose there was one and only one jackpot winner in the last issue (hence a
regular draw for this issue). Let us trace his possible influential power in a framework of
tournament selection. Since on each single draw we have a chance of 1/5000 to pick this
jackpot winner, the chance of including at least one copy of the jackpot winner into a tour-
nament is approximately 0.04 (¢200%(1/5000)) if the tournament size is 200. There are 5000
tournaments (one for each individual), so on the average 200 individuals have the jackpot
winner in their tournament and hence are under his influence. Since the jackpot winner
tends to have a more aggressive participation @. The aggressive strategy is, therefore,
propagated to a large group of gamblers. This causes the rise of sales during the regular
draw. On the other hand, the absence of the jackpot winner in the previous issue (rollover
draw for the current issue) hampers the propagation of aggressive strategies. Instead, the
conservative strategies which lead to low participation level dominates. Sales, therefore,
fall in the rollover draw. Similarly, when the rollover draw extends, the jackpot prize
accumulates. Therefore, a large jackpot prize, as a result of non-interrupting rollovers,
also have adverse effect on sales. This explains the significantly negative ¢ statistics and
low R2%s in Table 4.

The explanation above also suggests what may deviate the adaptive behavior in our
artificial market from the adaptive behavior in the real market. First, it is the speed
of learning. 1t is the extremely short time-horizon set in our GA leads to an apparently
negative relation between rollovers and sales. If one extends the time-horizon and modifies
the fast learning into a slow learning such that in every learning horizon regular draws
is observed, then then immediate effect of no-match draw will be weakened, and it will
facilitate the propagation of the aggressive strategies. So, if aggressive strategies tend
to suggest to increase lottery participation with jackpot size, then the halo effect shall
emerge again. This will be a direction for our next-stage simulations.

7 Conclusions

7.1 Remarks on the Findings

This paper introduces an agent-based computational model of lottery markets. In this
model, agents’ decision on lottery participation is not based on sophisticated calculation

35By this property, lottery participation or other similar gambling behavior can be addressed simply in
a bounded-rational framework. Notice that here only standard utility function is used. There is no need
to assume a fun from buying lottery tickets, neither is needed to assume a certain type of risk preference.



of winning odd but simply heuristics. The heuristics considered in this paper captures
the two empirical phenomena known as the halo effect and the conscious selection of
numbers. In addition, the empirical observation called the aversion to regret motivates
an interdependent utility function of agents. The Sugeno style of fuzzy if-then rules are
used to formalize agents’ heuristics. Both the heuristics and preference are evolving over
time via the canonical genetic algorithm.

We accept this simple ACE model as a starting point to conduct some initial evaluation
of the impact of the lottery tax rate upon the the tax revenue. Two observations are made
in this paper. First, the Laffer curve is observed, which suggests an optimal lottery tax
rate, 7*. Second, the 7* can be sensitive to how agents are modeled. Simulations show
that when the regret effect is moved away from agents’ preference, the 7* can go up. If
so, the appearance of the interdependent utility function does have an implication on the
design of the lottery game.

7.2 Direction for Further Studies

A number of interesting ideas on the lottery behavior can be studied following this line of
research. Variations or extensions of this model can also be developed depending on the
questions which we are pursuing. We propose a few directions to enrich our understanding
of the lottery behavior.

First, it is the empirical relation existing between the rollovers and sales. Simple rela-
tion does not exists between rollovers and sales. While it is generally assumed that large
size of rollovers will enhance the attractiveness of the lottery game, designing such a game
may cause it more difficult to win, which in turn discourages the participation at the first
place. As well put by Walker and Young (2001), “designing the game to maximise sales is
a balancing act of making it hard enough to win to overcome the tedium but easy enough
to win to avoid the intertemporal substitution. (p.702)” Alternatively speaking, the fre-
quency and size of rollovers are not control variables (exogenous variables). Instead, they
are endogenously generated simultaneously with sales by the design and other economic
factors given in the vector M. In the ACE model, both rollovers and sales are entirely
endogenously determined. No assumption is needed on their stochastic behavior. We,
therefore, can put the rollovers-sales relation in a more general framework, and examine
how it is affected by different designs.

Second, a design issue which has not been fully explored in this ACE model is the
distribution design (sg, s1, ..., S¢). The simple fact is that practical lottery designs both
large prizes as well as small prizes. The design s, = 1 simply does not exist in the real
world. So, to justify the distribution, it would be meaningful to simulate the our ACE
model with different distribution. Nevertheless, this exploration can be done in a more
meaningful way if we replace the risk-neutral preference with the risk-averse preference,
because the former is only sensitive to mean of the prize distribution, whereas the latter
is also sensitive to the change in the high-order moments, such as the variance, skewness,
etc.

Walker and Young (2001) is probably the only paper which studies the effect of the
distribution of the prizes on lottery sales. They found that the lottery ticket sales depends
positively on the skewness of the prize distribution and negatively on the variance of the
prize distribution. However, whether or not such existence of the distribution effect can
lend support to risk averse preference is a difficult issue for Walker and Young to prove.
Nevertheless, by simulating ACE models with both risk-neutral and risk-averse agents, one
can identify whether the distribution effect has anything to do with gamblers’ preference.
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