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Modeling the expectations of inflation in the OLG model

with genetic programming

S.H. Chen, C.H. Yeh

Abstract In this paper, genetic programming (GP) is
employed to model learning and adaptation in the overlapping
generations model, one of the most popular dynamic economic
models. Using a model of inflation with multiple equilibria
as an illustrative example, we show that our GP-based agents
are able to coordinate their actions to achieve the Pareto-
superior equilibrium (the low-inflation steady state) rather
than the Pareto inferior equilibrium (the high-inflation steady
state). We also test the robustness of this result with different
initial conditions, economic parameters, GP control
parameters, and the selection mechanism. We find that as long
as the survival-of-the-fittest principle is maintained, the
evolutionary operators are only secondarily important.
However, once the survival-of-the-fittest principle is absent,
the well-coordinated economy is also gone and the inflation
rate can jump quite wildly. To some extent, these results shed
light on the biological foundations of economics.

Key words Genetic programming, overlapping generations
models, bounded rationality, agent-based computational
economics, Pareto-superior equilibrium
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Introduction

While there are several approaches to introducing dynamic
general equilibrium structures to economics, the overlapping
generations model (hereafter, OLG), proposed by Allais [1] and
Samuelson [19] and developed by Diamond [10], Shell [21],
Lucas [13], and Gale [11], may be regarded as the most
popular in current macroeconomics. Unlike infinite-horizon
models, the OLG does not assume that agents can live forever.
But, before they all pass away, the new generations are born,
which overlap with the existing generations for a number of
periods. The essence of the OLG is that living individuals are
prevented from trading with the unborn or the dead. This
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feature of the OLG enables us to address all kinds of
macroeconomic issues with an explicit reference to the
demographic structure, which is certainly a key element in

a real economy. Over the last two decades, the OLG model has
been extensively applied to studies of savings, bequests,
demanding for assets, prices of assets, inflation, business
cycles, economic growth, and the effects of taxes, social
security and budget deficits.

Despite its popularity, one of the technical issues which
remain unsolved in the OLG is how expectations and learning
take place in this overlapping-generations structure. In the
early 1980’s the assumptions of perfect foresight and rational
expectations were adopted to simplify the analysis. Recent
research trends tend to relax these assumptions have
contributed to the literature of bounded rationality. While
models of bounded rationality abound, they are not equally
promising in accounting for real observations. By Lucas’
criterion [16], one of the most promising model classes is from
a research group called agent-based computational economics
(ACE) [22], of which Arifovic [2] is a typical example. In
her studies, Arifovic applied genetic algorithms (GAs) to
modeling the learning and adaptation in the OLG. She further
compared the simulation results based on GAs with those from
laboratories with human subjects [17,18] and she concluded
that GAs were superior to other learning schemes, such as the
recursive least squares.

Given the contribution of Arifovic [2, 3] our purpose is to
move one step further, i.e., within the framework ACE, we
attempt to use a more general version of GAs to model learning
and adaptation in the OLG. The technique we use is genetic
programming (GP). The significance of replacing GAs with GP
in the economic context has been documented in [9], but we
would like to review it here in the specific context of the OLG
model.

In many interesting OLGs, “expectations” refer to the
expectations (forecasts) of endogenous state variable in the
future. For example, in [20], the endogenous state variable is
the inflation rate; in [13], it is the exchange rate, and in [5], the
quality of labor. Call these variables expectations variables.
Then a model of bounded rationality should make expectations
of these state variables explicit. However, to our best
knowledge, in almost all applications of GAs to the OLG, this
part is completely missing. Instead, it is other endogenous
variables on which adaptive models are built. For example, in
[2,3], itis the demand for money and foreign assets; in [4], it is
the time spent on training. There is nothing wrong with these
application however, in terms of the distinction made by
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Marimon and Sunder [18], what we learned from these studies
is, at best, learning how to optimize, not learning how to
forecast. If we want to know how agents’ expectations evolve
when the assumption of perfect foresight or rational
expectations is relaxed, then the above works certainly fail to
serve this purpose.

The only exception known to us is [7]. In that paper, GAs
were applied to modeling the expectations of the inflation
rate. However, in their model what learning agents learn is
a just a number of the inflation rate rather than a regularity
about the motion of the inflation rate, which is a function. We
consider it too restrictive to learn just a number. By
Grandmont [12], if the equilibrium of an OLG is characterized
by limit cycles or strange attractors rather than by fixed points,
then what agents need to learn is not just a number but
a functional relationship, such as x,=f (x,_ 1, X, ... ).
Moreover, in this situation, if agents are restricted to learning
only a number, then it is likely that the learning process will fail
to converge to any Pareto optimum. Therefore, in this paper,
we would like to generalize Bullard and Duffy’s evolution of
“beliefs” from a sequence of populations of numbers to
a sequence of populations of functions, and genetic
programming serves as a convenient tool to make this
extension.

To be comparable with the existing literature we employ the
inflation model studied in [2]. Briefly speaking, this model has
two stationary equilibria associated with two inflation rates.
The welfare implication of these two equilibria is also different.
The inflation rates observed in the experiment with human
subjects converged to the low-inflation stationary equilibrium.
We want to check whether GP-based agents can replicate this
result and the robustness of this replication.

The rest of this paper is organized as follows. Sect. 2 gives an
agent-based version of a simple OLG of a monetary economy.
Sect. 3 illustrates how to use GP to model the learning and
adaptation in this model. Experimental designs are described
in Sect. 4, followed by the analysis of simulation results in Sect.
5 and suggestions of some further explorations in Sect. 6.
Concluding remarks are given in Sect. 7.

2
The overlapping generations model

2.1
The main model
The analytical model employed in this paper is based on a very
simple OLG of a monetary economy. This model was first
introduced by Allais [1] and Samuelson [19], and later on was
used extensively to study issues of inflationary finance, e.g.,
Bryant and Wallace [6]. Arifovic [2] and Bullard and Duffy
[7, 8] applied GAs to extending this simple model into an
agent-based version and simulated plausible processes of
adapting to out-of-equilibrium behaviour. The model
presented in this paper is very similar to Arifovic [2] and
Bullard and Duffy [7,8]. However, in order to facilitate
computer simulation, we also make some slight modifications,
and we will come back to this point later.

Our model can be described as follows:

e It consists of overlapping generations of two-period-lived
agents.

e At time t, N young agents are born. Each of them lives for
two periods (t, £+ 1). At time ¢, each of them is endowed
with e' units of a perishable consumption good, and with &
units at time t+1 (e' >¢”>0). Presumably e' is assumed to
be greater than ¢’ in order to increase the likelihood (not
ensure) that agents will choose to hold money from period
1 to 2 to push value forward.

e An agent born at time ¢ consumes in both periods. ¢} is the
consumption in the first period (¢), and ¢’ the second period
(t+1).

o All agents have identical preference given by

U(c;, ¢2)=In(c}+1) +1In(ci+1). (1)

The reason to add the constant here is to avoid evaluating
In(0), which can happen in the first period when agents
choose to save all e'.

o In addition to the perishable consumption good, there is an
asset called money circulated in the society. The nominal
money supply at time ¢, denoted by H,, is exogenously
determined by the government and is held distributively by
the old generation at time ¢. For convenience, we shall define
h, to be H,/N, i.e., the nominal per capita money supply.

This simple OLG gives rise to the following agent’s
maximization problem at time t:

max In(c},+1) +In(cl,+1) (2)
(coci)

m;
’t:el) sz,t:ez'f'—) (3)

t t+1

st ¢+

where m; , represents the nominal money balances that agent
i acquires at time period t and spends in the time period t+1,
and P, denotes the nominal price level at time period ¢. Since
P, is not available at period t, what agents actually can do is
to maximize their expected utility E(U(c;, c?)) by regarding
P,,, as a random variable, where E(-) is the expectation
operator. Because of the special nature of the utility function
and budget constraints, the first-order conditions for this
expected utility maximization problem reduce to the certainty
equivalence form (4):

C},z:% (el+eznz€,t+1+nz€,t+171)) (4)
where 77, is agent ©’s expectation of the inflation rate

7, +1(=P,;,/P;). This solution tells us the optimal decision of
savings for agent i given her expectation of the inflation rate,
Tt

Suppose the government deficit is all financed through

seignorage, then we can derive the dynamics (time series) of
nominal price {P,} and inflation rate {r,} from Eq. (4). To see
this, let us denote the savings of agent i at time ¢ by s; ,. Clearly,

St = e' —Cise (5)
By Eq. (3), we know that
mi,tzsi,tpz) VI, L. (6)

In equilibrium, the nominal aggregate money demand must
equal nominal money supply, i.e.,
N

Z mi,t:Ht:Ht—1+drPt) Vt. (7)

i=1



The second equality says that the money supply at period ¢ is
the sum of the money supply at period t—1 and the nominal
deficit at period ¢, d,P,. This equality holds because we assume
the government deficits are all financed by seignorage.
Furthermore, let us assume that government spending is

a fixed proportion p of the aggregate savings and, for reasons
clarified below, the government is assumed to have a constant
revenue k, or simply

N
d=p ) s,—k (8)

Summarizing Egs. (6)—(8), we get

N

N N
2 siuP=) Si,t—lpt-1+Pt<p > si,t—k>. 9)

i=1 i=1 i=1

Hence, the price dynamics are governed by the following
equation:

p N s,
= _ LimiSun . (10)
Pt—l (I_P)Zizlsm"'k
Now suppose that each agent has perfect foresight, i.e.,
n,=m, Vit (11)

Then by substituting the first-order condition (4) into Eq. (9),
we can have

N 1 2
(I_P)Epr((e —Te)+1—1,y,)

N
=5Pt_1((e1—nte2)+l—n,)—P[k. (12)

With Eq. (12) rearranged, the paths of equilibrium inflation
rates under perfect foresight dynamics are

(1—=p)N((e' =7, 4,€°) +1—17,4,)

N —re)+1—m)—k. (13)

t

At steady state (7,4, =m,), Eq. (13) has two real stationary
solutions (fixed points), a low-inflation stationary equilibrium,
n, and a high-inflation one, 3%, given by

A— /A —4(1—p)(1+e') (1+¢)N?
2(1—p)(1+€)N

=

, (14)

At /A —4(1—p)N(1+€) (1 + )N’
2(1—p)(1+ )N

, (15)

ny=
where A=(1+¢€ )N+ (1—p)(1+e")N+2k.

2.2

Discussions

Before proceeding further, we would like to make comments
on parameters p and k appearing in the model presented
above. Instead of the nominal deficit, this paper chooses the

deficit ratio (p =deficits/aggregate savings) as a policy
parameter. This choice distinguishes this paper from Arifovic
[2] and Bullard and Dufty [7,8], where the nominal deficit
is chosen to be the policy parameter. The reason for this
different choice is two-fold. Firstly, from the perspective of
computation efficiency, using the deficit as the policy
parameter may cause the run-off of the simulation when the
deficit is greater than aggregate savings. When this happens,
both Arifovic [2] and Bullard and Duffy [7,8] forced the
algorithm to be reinitialized and the simulation to begin anew.
We consider this design quite inefficient, particularly, when the
chance of reinitialization can be even higher in using GP.
This is because GP is searching for a larger space than the GA
used by Arifovic, Bullard and Duffy. Secondly, as far as
economic interpretation is concerned, these two different
parameters make no difference given that the economy can
converge to the same equilibrium, and as we shall see later, this
is indeed the case. Moreover, in terms of policy making, the
deficit ratio can be more practical and more informative. For
example, one of the theories to explain the recent crisis of Thai
Baha is that Thai’s deficit ratio is higher than 8%. Due to these
considerations, the deficit ratio p is chosen to be the policy
parameter in this paper.

Also, by Eq. (10), the reason to add a parameter k in Eq. (8)
is quite clear. Without a positive k, it is possible that 7, can go
to infinity if aggregate savings are 0. However, adding the
constant k is harmless. First, k has a simple economic
interpretation, i.e., the non-tax revenue. Second, if 7, can
converge to either one of these two equilibria for all values of k,
then we can well approximate the economy studied by Arifovic
(1994) and Bullard and Dufty [7] by choosing a sufficiently
small k. For example, k is set to be 0.1 in this paper for most
simulations.

23

Multiple equilibria in the model

The result of multiple equilibria, the existence of two stationary
solutions, in this class of models is well known. These two
stationary solutions differ not only in the inflation rate but also
in the welfare implication. Agents’ welfare under the high
inflation rate 7§ is inferior to that under the low inflation rate
nf, ie., U< Uy, To see the difference, pairs of (n¥, Uy)

and (7, UY) are listed in Table 1 with respect to different
values of k. Due to this difference, the steady state corres-
ponding to the high inflation rate is called the Pareto-inferior
equilibrium, and the steady state corresponding to the low
inflation rate is called the Pareto-superior equilibrium. Given
these equilibria with different welfare implications, will
learning agents be able to pick up the good one rather than be
trapped in the bad one? Put in a more general way, are
decentralized agents able to coordinate intelligently to single
out the best outcome? Issues like this have motivated Arifovic
[2], Bullard and Duffy [7,9], and this paper.

In those earlier studies, GAs-based agents are shown to be
able to select the Pareto-superior equilibrium. The only
difference between Arifovic [2] and Bullard and Duffy [7], is
the speed of convergence. As Bullard and Duffy [2] asserted,
“Our initial impression is that the learning how to forecast
version of genetic algorithm learning converges faster than the
learning how to optimize implementation studied by Arifovic”

55



56

Table 1. Stationary inflation rates and utilities under different values
of k

k 0.1 1.0 10 20 50

T 1.2495 1.2450 1.2036 1.1630 1.0646
T 2.5010 2.5100 2.5964 2.6870 2.9354
Uy 2.4205 2.4217 2.4333 2.4456 2.4795
U 2.3026 2.3026 2.3029 2.3039 2.3090

For all cases of ks, e' =4, ¢?=1, and p=0.2. Uy refers to the utility of
agents in the low-inflation steady state, whereas Ujj refers to the utility
of agents in the high-inflation steady state

(p. 21). In this paper, we shall conduct three series of
experiments to answer the following questions:

1. Are GP-based agents able to coordinate well enough to
select the Pareto-superior equilibrium?
2. Is the result obtained robust?

Before discussing the design of experiments, let us first
illustrate how to modeling agents’ adaptive expectation in the
OLG with GP.

3
GP-based Agents in the OLG

3.1

Coding and decoding of expectations

This section provides a brief description of the way we apply
genetic programming to modeling the expectations of the
inflation rate in the OLG model. Let GP,, a population of trees,
represent a collection of agents’ expectations of the inflation
rate at time period t. The agent i born at time ¢, i=1, ... , N,
makes a decision about savings using the forecasting function,
gpi. (gp;; € GP,), a parse tree written over the function set and
terminal set given in Table 2. In this paper, all simulations
conducted are based on the terminal set which includes the
ephemeral random floating-point constant R ranging over the
interval [—9.99, 9.99] and the inflation rate lagged up to 10
periods, i.e., m,_y, ... , W,_1. Thus, the forecasting functions
that agents may use are the linear and nonlinear functions of
T—1> --- » T—1o- Clearly, this specification of terminal set limits
the GP to fining forecasting rules that are functions only of
a fixed finite number of lagged inflation terms. But, extending
this terminal set by allowing agents to make use of current and
past values of the money supply is straightforward and is left
for future study.

The decoding of a parse tree gp;, gives the forecasting
function used by agent i at time period, ¢, i.e., 7} ,,(Q,_,)
where Q,_, is the information of the past inflation rates up to
7,_,. Evaluating 77, | (Q,_,) at the realization of Q, _, will give
the inflation rate predicted by agent i at time period t+1, i.e.,
7; ;+1. The fitness of a parse tree gp;, is determined by the value
of the agent’s utilities gained at the end of her life based on
Eq. (1), ie., U,,=Ul(ci,, 63 ))-

Each fitness value Uj, is then normalized. The normalized
fitness value /;, is given in Eq. (16).

Ui

YU (16

A=

Table 2. Tableau of GP-based adaptation

Number of agents born in 250
each period

Number of trees created by
the full method

Number of trees created by
the grow method

Function set

25 (Y), 25 (0)
25 (Y), 25 (0)

{+, = %, %, Exp,
Rlog, sin, cos}

Terminal set {m—1, Mg .. 510, R}
Number of trees created by prx250
reproduction

Number of trees created by %250
crossover

Number of trees created Pm %250
by mutation

Probability of mutation 0.0033
Maximum depth of tree 17
Probability of leaf selection 0.5
under crossover

Number of generations 1000
Maximum number in the 1700
domain of Exp

Criterion of fitness Utilities

“Y” stands for the initial young generation and “O” stands for the
initial old generation. The number of trees created by full method or
grow method is the number of trees initialized in Generation 0 in cases
where the depth of tree is 2, 3, 4, 5, or 6. For details, see Koza [14]

It is clear that the normalized fitness is a probability
measure. Moreover, 4,, is greater for a better parse tree gp;,.
Once 4;, is determined, GP, ., is generated from GP, by three
primary genetic operators, i.e., reproduction, crossover, and
mutation. These three operators are described below.

3.2

Genetic updating of expectations

(1) Reproduction: Reproduction makes copies of individual
parse trees. The criterion used in copying is the
normalized fitness value 4;,. If gp;, is an individual in the
population GP, with normalized fitness value 4,,, then in
each run of the reproduction operator, gp;, will be copied
into the GP,,, with probability /;,. Reproduction is
performed on only a specified share, p,, of the population.
The rest of the offspring are generated by the other two
operators, crossover and mutation.

(2) Crossover: The crossover operation for the genetic
programming paradigm is a sexual operation that starts
with two parental parse trees which are randomly selected
from population GP, in accordance with the normalized
fitness described above. Next, by exchanging the parts of
these parents, two off spring are produced. This exchange
begins by randomly and independently selecting one point
in each parental parse tree using a uniform distribution
described below.

By the syntax of LISP, each point (atom) of a parse tree
could be either for that matter, a leaf (terminal) or an inner
code (function). Thus, the point (atom) selected could
either be a terminal or a function. As specified in Table 2,
the probability of the crossover point being a terminal, or
a function is 50-50. Given that a terminal or function is to



be the point chosen for crossover, the probability of any
terminal or function being chosen as the crossover point is
uniformly distributed. For example, if the crossover point
is to be a terminal, and there are three terminals in the
parse tree, the probability of any one of the three terminals
being chosen for the crossover point is one-third (1/3).
(100p.)% of the new generation is created in this way.
(3) Mutation: The operation of mutation also allows new
individuals to be created. It begins by selecting a parse tree
gp;, from the population GP, based on /;,. Once
a particular gp; , is selected, mutation is a process of
arandom change of the value of a point (atom) within gp; ,.
Each point (atom) has a small probability of being altered
by mutation, which is independent of other point (atoms).
As specified in Table 2, the probability used throughout
this paper is 0.0033. To be a syntactically and semantically
valid LISP S-expression, terminals can only be altered by
the member from the terminal set and functions can only
be altered by the member with the same number of
arguments from the function set. The altered individual is
then copied into GP, ,. (100p,,) % of the new generation is
created in this way.

33

Discussion

The genetic updating procedure described above is quite
standard except that newborn agents (GP,) inherit ideas from
their grandparents (GP,_,). This special feature, called the
non-overlapping information structure in [8], is due to the fact
that parent’s fitness values are not available when newborn
agents are young. Therefore, in the OLG, learning occurs
between non-overlapping generations of grandparents to
grandchildren.

In the 2-period OLG, this non-overlapping genetic updating
procedure may not be too troublesome. But, as noticed by
Sargent (1993, p. 102), “When we extend the horizon beyond
two periods, it becomes increasingly inconvenient to model
learning in this way because we have to wait longer for the
consequences of life-time savings behaviour to be known”.
Nevertheless, the long waiting problem that Sargent refers to is
not difficult to solve. To do so, simply replace the utility
function by some statistical loss functions, such as the sum of
square errors. Unlike the utility function, which can be
evaluated only at the end of agent’s life statistical, loss function
can be evaluated at each period of the agent’s life span, and this
information can be immediately used to form next generation’s
expectations. However, the premise to follow this line is to
model agents as forecasters not optimizers. Since most GA
applications fail to address the forecasting aspect of agents’
behaviour, it is not surprising that this line has not been taken.
Interestingly enough, Bullard and Duffy [8] addressed this
problem by augmenting the genetic algorithm with an
emulation procedure. This procedure, to some extent, attempts
to incorporate the forecasting aspect. However, since the
forecasting aspect is not directly coded in their GAs, this
procedure is not adaptive and, in fact, is limited to only three
prespecified forecasting functions.

While, at this stage, we only restrict our attention to the
2-period OLG and still take the utility function as the fitness
function, we would like to modify our GP in the direction

suggested above when we extend our simulations to the
N-period OLG in future research.

4

Experimental designs

The parameters of most of the OLGs simulated in this paper are
based on the setup: e' =4, e’=1, p=0.2, k=0.1. By this set of
parameters, ;" =1.2495, and nf=2.5010. These values are also
shown in the second column of Table 1.

To see whether or not GP-based agents can coordinate to
converge to the Pareto-superior equilibrium, the OLG is
simulated by feeding it with four sets of initial values of
{m_y, ... ,m_1}. These four sets of initial values are chosen
so that {m_,, ... ,m_,,} are randomly distributed over the
ranges (1.10, 1.20), (1.25, 1.35), (3.30, 4.30) and (4.50, 5.50).
Clearly, the first two sets, Sets 1 and 2, are chosen to be
neighborhoods of 7¥; Set 1 is below 7, and Set 2 above it. Sets
3 and 4 are chosen far higher than n{. This design enables us to
check both the local and global stability of ;. We number
the experiments corresponding to these four different sets of
initial values as Experiments 1—4.

A related test for the global stability is to conduct
a perturbation test. We first run the OLG model under the
original chosen parameters. If it converges to n*, we shall
perturb 7 by changing the values of some parameters, and see
whether or not the new 7 will be selected again. In this paper,
we consider the case in which k is changed from 0.1 to 10. This
perturbation test shall be numbered as Experiment 5.

Experiments 1-5 are designed to test the global stability of
nf. However, a typical question frequently raised is whether or
not these results are sensitive to the genetic operators used. To
answer this question, we consider four sets of (p,, p,, p,,). For
Experiments 1-5, p,=0.12, p.=0.68, and p,,=0.20. We then
consider the significance of each genetic operator in
Experiments 6-8. In Experiment 6, only reproduction is used,
ie., p,=1, p.=0, and p,, =0. Similarly, p,=1 in Experiment 7,
and p,,=1 in Experiment 8.

5
Simulations results
For each design, five runs were implemented. Since results are
quite similar among the five simulations for each design, we
only report one of the results for each design here and leave the
full details in the appendix (Tables 5-7). The basic statistics of
each simulation are summarized in Table 3 and the plot of the
whole time series of 7, is exhibited in Fig. 1-8.

From Table 3, we can make the following conclusions.

o GP-based agents are able to coordinate with each other to
converge to the low-inflationary stationary equilibrium. The
evidence shows that in all the simulations, except the one
with structural change, m, converges to a small
neighborhood of nf (7=1.2495).

— As a corollary, the evidence also shows that the convergence
to 7 is insensitive to the initial condition. The initial rates of
inflation in Experiments 3 and 4 are quite far away from
7} and are closer to m;f. However, this does not make
7, converge to 7, and n¥, being one of the stationary
equilibria in the perfect foresight setup, can hardly be
reached in this ACE setup. Bounds on rationality do change
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equilibria in economic systems. In our case, the equilibrium
with high inflation and low utilities is eliminated.

— Furthermore, GP-based agents are capable of converging to
the new low-inflationary stationary equilibrium after the
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perturbation. In Experiment 5, 7=1.2036, which is exactly
the nff under k=10. From Fig. 5, we can also see that the
transition speed from the old equilibrium to the new one is
very fast.
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e Whether or not 7, will converge to a niche of 7 does not
depend on the choice of the pair (p,, p.> Pm)
(p,+p.+pn=1), as can be seen from Experiments 6—8.
Using only one of these genetic operators is sufficient to
achieve the same result (see Table 3). Nevertheless, there is
a difference between the reproduction and crossover
operators and the mutation operator. From Fig. 6 and 7 or
the corresponding J, in Table 3, we can see that if only the
reproduction or crossover operator is employed, then the
convergence to n is strict in the sense that n,=nVt as ¢
is large enough. But, this strict convergence result
disappears when only the mutation operator is applied. This
can also be seen from Fig. 8 and the corresponding ¢, in
Table 3. In fact, setting p,, =1 results in the highest value of
0, among other setups. Therefore, the fluctuations of
7, observed in most of the experiments are due to the
mutation operator.

This result was also noticed by Arifovic [2], who
introduced an operator, called election, to offset the effect of
mutation on population diversity and the resulting
fluctuations. Nevertheless, unlike us, she did not go further
to separate the effect of each operator and to check whether
it is necessary to introduce additional operator to obtain the
convergence result.

6

Further exploration

That the GP-based agents were remarkably able to select the
Pareto-superior equilibrium inevitably leads to the question:
where does the “magic” come from? Is it easy to get this
convergence result? To solve this puzzle, we conducted
more simulations using the same GP-based agents described
above with the exception that the proportionate selection
mechanism was replaced by uniform selection (selection
with the uniform distribution). The purpose of doing so is to
see the role of the survival-of-the-fittest principle implemen-
ted in these simulations, we reran all the simulations in

the same order, and the results are presented in Table 4 and
Fig. 9-16.

From Fig. 9-16, we can see that 7, in all the simulations
fluctuates quite dramatically. In many cases, we see the
appearance of super inflation, which is not observed in
Experiments 1-8. From Table 4, we can also see that 7s are
generally biased upwards. Furthermore, the agents are worse
off in that they have lower utility. In sum, the GP-based agents
with uniform selection perform much worse than those with
proportionate selection in terms of converging to the Pareto-
superior equilibrium.

Table 3. Results of Experiments 1-8

Experiment 7 O, U oy

1 1.2495 0.0018 2.4205 0.0006
2 1.2495 0.0020 2.4204 0.0008
3 1.2495 0.0021 2.4204 0.0008
4 1.2495 0.0018 2.4205 0.0006
5 1.2036 0.0047 2.4332 0.0012
6 1.2495 0.0000 2.4205 0.0000
7 1.2495 0.0000 2.4205 0.0000
8 1.2495 0.0093 2.4201 0.0033

7 =the mean inflation rate of a simulation (from Generation 501 to
1000)

J, =the standard deviation of 7, of a simulation (from Generation 501
to 1000)

U=the mean welfare of a simulation (from Generation 501 to 1000),
where U,=Y; U, /250

Jdy=the standard deviation of U, of a simulation (from Generation 501
to 1000)

- - Theoretical low inflation rate — Actual inflation rate

Inflation rate
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Fig. 9. Equilibrium inflation rate in each generation
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Fig. 10. Equilibrium inflation rate in each generation
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Fig. 11. Equilibrium inflation rate in each generation
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Fig. 12. Equilibrium inflation rate in each generation

From the perspective of optimization, such outcomes are not
surprising, but from the perspective of simulating social
phenomena, these outcomes are important in that they show
how human intelligence can be incorporated into the design of
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Fig. 13. Equilibrium inflation rate in each generation
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Fig. 14. Equilibrium inflation rate in each generation
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Fig. 15. Equilibrium inflation rate in each generation

artificial societies. While we do not know how human subjects
in the laboratory actually learn, there is little doubt that
converging to the Pareto-superior equilibrium is an intelligent
outcome. In other words, this result cannot be replicated
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Fig. 16. Equilibrium inflation rate in each generation

Table 4. Results of Experiments 9-16

Experiment 7 Or U oy

9 1.3640 0.6024 2.3214 0.0817
10 1.2672 0.2148 2.3878 0.0780
11 1.2621 0.1883 2.3495 0.0704
12 1.2738 0.2509 2.2303 0.0778
13 1.2542 0.3791 2.3778 0.1048
14 1.3954 0.6427 2.3028 0.3348
15 1.2739 0.2487 2.4057 0.0895
16 1.3592 0.5365 2.2934 0.1727

7=the mean inflation rate of a simulation (from Generation 501 to
1000)

0, =the standard deviation of 7, of a simulation (from Generation 501
to 1000)

U=the mean welfare of a simulation (from Generation 501 to 1000),
where U,=Y; U; /250

Oy =the standard deviation of the U, of a simulation (from Generation
501 to 1000)

without any constraints. Of course, these artificial constraints
may have nothing to do with the constraints which make
humans behave “intelligently”, but they enable us to form
hypotheses about what makes humans collectively behave
intelligently. In this paper, the contributing factor is found to
be the survival-of-the-fittest principle which is explicitly
implemented through proportionate selection. As long as this
principle is kept, the importance of the combination of the use
of genetic operators is only secondary.

7

Concluding remarks

In this paper, we provide a concrete example to demonstrate
how genetic programming can be applied to modeling learning
and expectations in the OLG. Our simulations indicate that
the main feature observed in the laboratory with human
subjects, namely, agents being able to coordinate their actions
to achieve the Pareto-superior equilibrium, can be replicated
by these GP-based agents. The agent-based approach suggested

Table 5. Simulation results: Experiments 1-8

Experiment 7 Or U Oy

Sim 1-1 1.2495 0.0018 2.4205 0.0006
Sim 1-2 1.2495 0.0014 2.4205 0.0006
Sim 1-3 1.2495 0.0013 2.4205 0.0005
Sim 1-4 1.2495 0.0019 2.4205 0.0005
Sim 1-5 1.2495 0.0049 2.4204 0.0013
Sim 2-1 1.2495 0.0020 2.4204 0.0008
Sim 2-2 1.2495 0.0031 2.4204 0.0010
Sim 2-3 1.2495 0.0031 2.4204 0.0013
Sim 2-4 1.2495 0.0033 2.4204 0.0009
Sim 2-5 1.2502 0.0417 2.4178 0.0144
Sim 3-1 1.2495 0.0021 2.4204 0.0008
Sim 3-2 1.2495 0.0071 2.4204 0.0020
Sim 3-3 1.2495 0.0017 2.4205 0.0007
Sim 3-4 1.2498 0.0209 2.4198 0.0064
Sim 3-5 1.2495 0.0071 2.4202 0.0016
Sim 4-1 1.2495 0.0018 2.4205 0.0006
Sim 4-2 1.2495 0.0046 2.4204 0.0017
Sim 4-3 1.2495 0.0023 2.4204 0.0009
Sim 4-4 1.2495 0.0052 2.4203 0.0025
Sim 4-5 1.2495 0.0015 2.4205 0.0007
Sim 5-1 1.2036 0.0047 2.4332 0.0012
Sim 5-2 1.2036 0.0028 2.4333 0.0008
Sim 5-3 1.2041 0.0131 2.4328 0.0044
Sim 5-4 1.2036 0.0063 2.4332 0.0021
Sim 5-5 1.2036 0.0049 2.4332 0.0018
Sim 6-1 1.2495 0.0000 2.4205 0.0000
Sim 6-2 1.2495 0.0000 2.4205 0.0000
Sim 6-3 1.2495 0.0000 2.4205 0.0000
Sim 6-4 1.2493 0.0237 2.4205 0.0064
Sim 6-5 1.2495 0.0000 2.4205 0.0000
Sim 7-1 1.2495 0.0000 2.4205 0.0000
Sim 7-2 1.2495 0.0071 2.4204 0.0020
Sim 7-3 1.2495 0.0000 2.4205 0.0000
Sim 7-4 1.2495 0.0000 2.4205 0.0000
Sim 7-5 1.2495 0.0000 2.4205 0.0000
Sim 8-1 1.2495 0.0093 2.4201 0.0033
Sim 8-2 1.2496 0.0084 2.4201 0.0030
Sim 8-3 1.2495 0.0056 2.4202 0.0020
Sim 8-4 1.2496 0.0105 2.4199 0.0030
Sim 8-5 1.2497 0.0116 2.4196 0.0037

here is more general than those used in the earlier studies and
may be considered as a basis for studying other OLGs where
learning and adaptation play a crucial role for the
determination of equilibrium.

Appendix

Softwares

The program to implement the simulations in this paper can be
downloaded directly from the website:
http://econo.nccu.edu.tw/ai/staff/csh/Software.htm

Simulations results

In this appendix, the basic statistics of all simulations are
reported in Tables 5 and 6. Since five runs are implemented for
each design, we code them by “X —x” where X=1, 2, ..., 16
andx=1,2, ... ,5. For example, “3-5” indicates the fifth run of
the third experiment design. In Table 7, we summarize the five
runs of each design by averaging all statistics reported in
Tables 5 and 6.
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Table 6. Simulation results: Experiments 9-16

Experiment i O U Oy
Sim 9-1 1.3640 0.6024 2.3214 0.0817
Sim 9-2 1.3604 0.5808 2.2913 0.1721
Sim 9-3 1.2748 0.2593 2.3885 0.0944
Sim 94 1.2730 0.2421 2.3711 0.0682
Sim 9-5 1.3333 0.4713 2.2835 0.1845
Sim 10-1 1.2672 0.2148 2.3878 0.0780
Sim 10-2 3.9493 5.0740 2.1491 0.3282
Sim 10-3 1.2960 0.3543 2.3587 0.1288
Sim 104 1.2655 0.1985 2.3880 0.0935
Sim 10-5 1.3461 0.5047 2.3420 0.1723
Sim 11-1 1.2621 0.1883 2.3495 0.0704
Sim 11-2 1.2713 0.2337 2.3252 0.1286
Sim 11-3 1.2828 0.2926 2.2587 0.1163
Sim 114 1.2557 0.1192 2.3132 0.0555
Sim 11-5 1.2897 0.3246 2.3571 0.0609
Sim 12-1 1.2738 0.2509 2.2303 0.0778
Sim 12-2 1.2773 0.2687 2.3435 0.1526
Sim 12-3 1.2919 0.3353 2.3816 0.0539
Sim 124 1.2727 0.2461 2.3931 0.0735
Sim 12-5 1.2663 0.2040 2.4089 0.0536
Sim 13-1 1.2542 0.3791 2.3778 0.1048
Sim 13-2 1.2047 0.0356 2.4298 0.0127
Sim 13-3 1.2224 0.1605 2.3710 0.0728
Sim 13-4 1.2078 0.0543 2.4258 0.0272
Sim 13-5 1.2177 0.1294 2.3434 0.0810
Sim 14-1 1.3954 0.6427 2.3028 0.3348
Sim 14-2 1.2892 0.3178 2.3830 0.1313
Sim 14-3 1.3819 0.5978 2.4025 0.1582
Sim 144 1.2545 0.1073 2.4140 0.0393
Sim 14-5 1.2771 0.2762 2.3648 0.1344
Sim 15-1 1.2739 0.2487 2.4057 0.0895
Sim 15-2 1.2699 0.2277 2.3029 0.1311
Sim 15-3 1.3117 0.4031 2.2898 0.2045
Sim 154 1.2847 0.2997 2.3582 0.1566
Sim 15-5 1.2881 0.3172 2.3468 0.1681
Sim 16-1 1.3592 0.5365 2.2934 0.1727
Sim 16-2 1.4549 0.8406 2.2658 0.1925
Sim 16-3 1.3003 0.3668 2.2925 0.2156
Sim 164 1.2899 0.3370 2.3030 0.1182
Sim 16-5 1.2771 0.2679 2.2534 0.1404
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