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Abstract

The relevance of risk preference and forecasting accuracy to the survival of investors is
an issue that has recently attracted a number of recent theoretical studies. At one extreme, it
has been shown that risk preference can be entirely irrelevant, and that in the long run what
distinguishes the agents who survive from those who vanish is just their forecasting accu-
racy. Being in line with the market selection hypothesis, this theoretical result is, however,
established mainly on the basis of Pareto optimal allocation. By using agent-based com-
putational modeling, this paper extends the existing studies to an economy where adaptive
behaviors are autonomous and complex heterogeneous, and where the economy is notori-
ous for its likely persistent deviation from Pareto optimality. Specifically, a computational
multi-asset artificial stock market corresponding to Blume and Easley (1992) and Sandroni
(2000) is constructed and studied. Through simulation, we present results that contradict
the market selection hypothesis. Among the eight types of agents considered in this model,
only log-utility agents survive, and the rest are driven out, including even those who have
superior forecasting accuracy. Nevertheless, when all the agents are of the same type, the
wealth share is positively correlated to forecasting accuracy, and the market selection hy-
pothesis is sustained, at least in a weak sense.
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1 Introduction

Agent-based computational economic (hereafter ACE) modeling is distinguished
from the conventional economic modeling by its great flexibility in terms of agents’
heterogeneity and the associated population dynamics. This advantage may be very
helpful in studying the survivability of different types of agents, specifically when
they are placed in a complex interactive environment. In this paper, the ACE ap-
proach is applied to address a debate which can be related to the market selection
hypothesis, according to which markets favor rational traders over irrational traders.

The debate, if we trace its origin, started as a result of the establishment of what
become known as the Kelly criterion (Kelly, 1956), which basically says that a
rational long run investor should maximize the expected growth rate of his wealth
share, and therefore should behave as if he were endowed with a logarithmic utility
function. In other words, the Kelly criterion implicitly suggests that there is an
optimal preference (rational preference) which a competitive market will select and
that is logarithmic utility. The debate on the Kelly criterion has a long history, and
so not surprisingly, there is a long list of both pros and cons with regard to it as the
literature develops. 1

A possible implication of the Kelly criterion is that an agent who maximizes his
expected utility under the correct belief may be driven out by an agent who max-
imizes his expected utility under an incorrect belief, simply because the former
does not maximize a logarithmic utility function, whereas the latter does. Blume
and Easley (1992) were the first to show this implication of the Kelly criterion in
a competitive asset market. In their seminal study, they questioned the survivabil-
ity of rational investors. In a nutshell, they showed that rational investors who are
characterized by their selection of a portfolio that maximizes their expected utility
with respect to the correct belief may not be good enough to survive. To enhance
their survivability, their preference over risk (utility function) must also be “opti-
mal”. If not, an even more striking result is that these rational agents may be driven
out of the market by those agents who base their decisions on incorrect beliefs, but
have a “nearly optimal” preference. 2

The market selection hypothesis, therefore, fails because agents with accurate
beliefs are not necessarily selected. A consequence of this failure is that asset prices
may not eventually reflect the true value of the asset, and may fail to converge to
the rational expectations equilibrium.

Nonetheless, a series of recent studies indicates that the early analysis of Blume
and Easley (1992) is not complete. Sandroni (2000) shows that, if the saving behav-
ior is endogenously determined, then the market selection hypothesis is rescued,

1 See Sciubba (1999) for a quite extensive review.
2 Other similar findings can also be found in Sciubba (1999).
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and in the long-run, only those optimizing investors with correct beliefs survive.
The surviving agents do not have to be log-utility maximizers, and they can have
diverse preferences over risk. Sandroni’s analysis is further confirmed by Blume
and Easley (2001) in a connection of the market selection hypothesis to the first the-
orem of welfare economics. They show that in a dynamic complete market Pareto
optimality is the key to understanding selection for or against traders with correct
beliefs: in any optimal allocation the survival or disappearance of a trader is deter-
mined entirely by beliefs, and not by risk preference.

Sandroni (2000)’s and Blume and Easley (2001)’s studies are largely analyti-
cal. They both take a Pareto optimal allocation as a starting point to work with.
The dynamic process converging to a Pareto optimal allocation itself is, nonethe-
less, beyond the scope of their analysis. Issues related to the dynamic process are
two-fold. First, there is individual dynamic optimization. A Pareto optimal allo-
cation rests upon the optimization of all individuals. In this specific context, this
requires that all agents are able to solve the infinite-time stochastic dynamic opti-
mization problem facing them, regardless of their preferences over risk or utility
functions. However, analytical solutions known to us are severely restricted to cer-
tain classes of preferences. In general, one has to rely on numerical approximation,
which means that Pareto optimality may not always be attainable.

What makes this problem even more complex is, however, the second issue:
trading at an equilibrium consistent with price expectations. Notice that what we
study here is not a simple representative-agent optimization problem, but a mar-
ket composed of heterogeneous agents. Each one of them, upon maximizing his
expected utility, has to know the prices of assets in the future. These prices are,
nonetheless, endogenously generated by agents’ own perceptions. As a result, a
typical fixed-point problem occurs. The market, as a distributed decentralized pro-
cessor, may fail to coordinate its participants to such a fixed point. 3 In general, it
will depend on agents’ forecasting rules and the associated learning schemes, and
it is likely that agents will trade at prices that are inconsistent with their ex-ante
expectations of the prices. In this case, Pareto optimality is also not attainable.

Both of the two issues discussed above are directly related to the attainability of
Pareto optimality. However, Pareto optimality per se was only taken by Sandroni
and Blume and Easley as a convenient starting point for their analytical work. To
facilitate their further analysis, the learning dynamics concerned with the updating
of agents’ beliefs also be needed to be simplified. Sandroni, for example, did not
deal with learning dynamics directly; instead, he assumed that there will be a day
when some agents can eventually make accurate predictions or eventually make

3 In contrast to the agent-based bottom-up approach, there is a top-down way to avoid this
issue by using the design of a Walrasian auctioneer and simply equating demand to supply.
However, deriving the aggregate demand function for each asset under different sets of
prices itself is a daunting task.
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accurate next period predictions, and started his major analytical work from there.
Nevertheless, a plausible process to show the appearance of these sages was absent.
It is, therefore, not entirely clear whether these types of agents will ever emerge. 4

What happens when no trader has correct beliefs? 5

Blume and Easley (2001) do recognize that the market selection hypothesis
would be of little interest if it were to address only selection for traders with cor-
rect beliefs. Their delicate analysis of learning leads to two major findings as to the
superiority of Bayesians. First, a Bayesian almost surely survives for almost all pos-
sible truths in the support of her prior. Second, in the presence of a Bayesian trader,
any traders who survive are not too different from Bayesians. We admire the beauty
of the analysis of the Bayesians, but are not entirely easy about traders being just
Bayesians. For us, being a Bayesian is only one way of representing human learn-
ing behavior. It has its mathematical rigor, but when cognitive and computational
constraints are presented, it is not clear whether Bayesian learning is the most ef-
fective way of describing observed learning behavior. The experimental evidences
certainly not always in favor of Bayesian learning. 6 Therefore, this consideration
does not stop us from asking: what happens when no traders are Bayesians?

This review and discussion of the early literature now seems to indicate clearly
where we are moving. Needless to say, the above-mentioned analytical work on the
market selection hypothesis has already provided us with an interesting benchmark
to reflect upon, namely, the irrelevance of risk preference. However, since the con-
clusive statement is very interesting, it would be useful to see how strongly we can
put it by relaxing some tight constraints. In this paper, we do not assume Pareto
optimality, the emergence of the sages, or the Bayesians. This relaxation allows
for a more extensive class of bounded-rational behaviors, and we examine whether
the irrelevance of risk preference still holds with this enlargement. Furthermore,
given the popularity of experimental economics, this enlargement will also enable
us to clothe the debate with some empirical or experimental content, on which a
laboratory design or an empirical study can actually be based at a later stage.

Concretely speaking, what is proposed here is a computational model, namely,
an agent-based computational version of Blume-Easley-Sandroni’s model. This

4 These sages are rigorously described by Sandroni using concepts from probability the-
ory, such as merging or weakly merging. However, these conditions are not easy to verify
empirically when we would like to know whether the history of mankind has ever experi-
enced such sages.
5 Sandroni (2000) does consider the case when no one has correct beliefs. His proposition
3 basically compares two kinds of agents: one persistently forecast more accurate than the
other, while both do not have correct beliefs. He then shows that the former will drive out
the latter. In Section 5.2, we shall design a specific experiment to test some related aspects
of this proposition.
6 Feldman (1962) is one of the famous early examples, and many more can be found in
the survey articles by Rabin (1998) and Barberis and Thaler (2002).
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ACE platform enables us to examine the survivability of a type of agents when they
are interacting with other types of agents in a real-time competitive environment.
If the type of the agents happens to be an “incarnation” of an economic hypothesis,
then the use of the ACE model can become a survival test, as an alternative to the
econometric test and the laboratory test, for the hypothesis. Over the last few years,
this survival test has been applied to different levels of economic behavior, such
as different trading strategies, different forecasting models, different decision vari-
ables, but all under the given objectives. Here, we shall extend the survival test to
a higher level, i.e. to examine the significance of the risk preference in determining
survivability.

The rest of the chapter is organized as follows. Section 2 briefly reviews the
Blume-Easley-Sandroni model. An agent-based computational version of the model
is provided in Section 3, which can be regarded as an extension of the single-asset
artificial stock market to its multi-asset version. The debate then proceeds with the
experimental designs given in Section 4. The simulation results and analysis are
provided in Section 5, followed by the concluding remarks in Section 6.

2 The Blume-Easley-Sandroni Model

Our agent-based artificial stock market is built upon the analytical model which
was first initiated by Blume and Easley (1992) and was later extended by Sandroni
(2000). The Blume-Easley-Sandroni (hereafter, the BES) model is briefly reviewed
in this section.

Consider a complete securities market. Time is discrete and indexed by t =
0, 1, 2, ... There are M states of the world indexed by m = 1, 2, ..., M , one of which
will occur at each date. States follow a stochastic process. Asset m pays dividends
wm > 0 when state m occurs, and 0 otherwise. At each date t, the outstanding
volume of each asset is exogenously fixed at one unit, so that the total wealth in the
economy at date t, Wt, will simply be the dividends paid at date t, i.e. Wt = wm.
The wealth will be distributed among the investors proportionately according to
their owned share of asset m. The distribution received by each agent, Wi,t, can
be used to consume and re-invest. Following the discussion of Sciubba (1999), we
assume that there is aggregate uncertainty so that wm �= wv , for m �= v.

There is a finite number of agents with heterogeneous temporal preferences in
this economy, indexed by i ∈ {1, 2, ...I}. Each agent i has his subjective beliefs
about the future sequence of the states. Each of these subjective beliefs is charac-
terized by a probabilistic model, denoted by B i. Since Bi may change over time,
the time index t is added as B i

t to make such a distinction. The agent’s objective
is to maximize his life-time expected utility, and there are two decisions that are
involved in this optimization problem. First, he has to choose a sequence of saving
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rates starting from now to infinity, and second a sequence of portfolios to distribute
his saving over M assets. Let us denote these two sequences of decisions by

{{δi
t+r}∞r=0, {αi

t+r}∞r=0},

where δi
t is the saving rate at time t, and

αi
t = (αi

1,t, α
i
2,t, ..., α

i
M,t)

is the portfolio comprising the M assets. The two sequences of decisions will be
optimal and are denoted by {δi,∗

t+r}∞r=0 and {αi,∗
t+r}∞r=0, if they are the solutions to

the following optimization problem.

max
{{δi

t+r}∞r=0,{αi
t+r}∞r=0}

E{
∞∑

r=0

(βi)rui(ci
t+r) | Bi

t} (1)

subject to

ci
t+r +

M∑
m=1

αi
m,t+r · δi

t+r · W i
t+r−1 ≤ W i

t+r−1, ∀r ≥ 0, (2)

M∑
m=1

αi
m,t+r = 1, αi

m,t+r ≥ 0, ∀r ≥ 0. (3)

In Equation (1), ui is agent i’s temporal utility function, and β i, also called the
discount factor, reveals agent i’s time preference. The expectation E( ) is taken
with respect to the most recent belief B i

t . Equations (2) and (3) are the budget
constraints. By combining constraint (3), constraint (2) can also be written as (4),

ci
t+r ≤ (1 − δi

t+r)W
i
t+r−1, (4)

where ci
t denotes consumption. These budget constraints do not allow agents to

consume or invest by borrowing.

Given the saving rate δi,∗
t , agent i will invest a total of δi,∗

t ·W i
t−1 in the M assets

according to the portfolio αi,∗
t . In other words, the investment put into each asset m

is αi,∗
m,t · δi,∗

t · W i
t−1. By dividing this investment by the market price of asset m at

date t, ρm,t, one derives the share held by agent i of that asset, qi
m,t.

qi
m,t =

αi,∗
m,t · δi,∗

t · W i
t−1

ρm,t
, m = 1, 2, ..., M (5)

The equilibrium price ρm,t is determined by equating the demand for asset m to
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the supply of asset m, i.e.,

I∑
i=1

αi,∗
m,t · δi,∗

t · W i
t−1

ρm,t
= 1, m = 1, 2, ..., M. (6)

Rearranging Equation (6), one obtains the market equilibrium price of asset m:

ρm,t =
I∑

i=1

αi,∗
m,t · δi,∗

t · W i
t−1. (7)

Agents’ shares of assets will be determined accordingly by Equation (5). After-
wards, state m happens, and is made known to all agents at date t. The dividends
wm will be distributed among all stockholders of asset m in proportion to their
shares, and their wealth will be determined accordingly as W i

t = qi
m,t · wm. The

date moves to t + 1, and the process then repeats itself as shown in Figure 1.

3 The Agent-Based Multi-Asset Artificial Stock Market

The agent-based artificial stock markets share two generic features of the general
ACE models, namely, complex heterogeneity and bounded rationality. In princi-
ple, agents can be heterogeneous in all of their characteristics, their decision rules,
their beliefs and their preferences. However, these characteristics are not neces-
sarily fixed as exogenously given. Agents’ cognitive limits naturally bring about
a trial-and-error process. Those characteristics may, therefore, be endogenously
determined, and continuously change via learning and adaptation. The resultant
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“biography” of agents has such potential to be very rich that Leigh Tesfatsion de-
scribed it as the artificial life. The machinery used to grow the life of agents is
termed agent engineering.

3.1 Agents’ Cognition

Like all agent-based computational economic models, we shall first begin with a
description of a typical agent, including his cognition and adaptive behavior. Let us
first start with the problem presented to our agents. Agents in our model behave like
normal investors who try to maximize their lifetime discounted expected utility by
appropriately choosing their investment strategy. The investment strategy is mainly
composed of two parts, namely, saving and portfolio.

At each point in time, say, t, investor i observes a time series (history) of the
realization of the states, namely, St−1 ≡ {ms}t−1

s=0 (ms ∈ {1, 2, ..., M}). Based on
this realization St−1, he makes his decisions on a sequence of investment strategies:

{{δi
t+r}∞r=0, {αi

t+r}∞r=0},
where δi

t is the saving rate at time t, and αi
t is the portfolio comprising the M

assets. Given investor i’s temporal utility function ui, it is hoped that this sequence
of investment strategies is rational in the sense that his lifetime discounted expected
utility can be maximized (see Equations 1, 2, 3).

The discrete-time stochastic optimization problem defined by Equations (1), (2),
and (3) may be analytically solvable when one considers some specific types of util-
ity functions with some other necessary simplifications. However, since the purpose
of this paper is to examine the relevance of risk preference to survivability, we place
little in the way of restrictions on the types of risk preference. In fact, in this paper
we even allow for the risk preference to be randomly generated, as long as it is
well-behaved. This causes the optimization problem, when generally posed, to be
difficult to solve analytically, not to mention the further complications arising from
their beliefs or the conditional expectations. 7 Therefore, we assume that all agents
in our model are computational. They cope with the optimization problem with a
numerical approximation method, and the specific numerical method used in this
paper is the genetic algorithm.

7 For the purpose of providing an existential proof, there is no such need to solve this
generally-posed problem. Instead, it is sufficient to assume the existence or the emergence
of these optimizing agents (Blume and Easley, 1992; Sandroni, 2000). However, for us,
even though the problem can be solved analytically, the agents may still be not optimizing,
since they may misperceive the future prices of assets m {ρm,t+r}∞r=0 and that may cause
their ex-ante (planned) shares of assets, {qit+r}∞r=0, to be different from their ex-post (real-
ized) ones. Spear (1989) has shown that for markets composed of complex heterogeneous
agents, the rational expectations equilibria may not even be computable.
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Over the last few years, the genetic algorithm has been the most active tool in
agent-based computational economics. It is mainly used to deal with either the cog-
nitive limit of optimizing, or the cognitive limit of forecasting. Very few studies use
the GA to conduct multi-level evolution. In this paper, we use the genetic algo-
rithm to evolve both agents’ investment strategies and beliefs simultaneously. The
two-level evolution proceeds as follows:

• At a fixed time horizon, investors update (evolve) their beliefs of the states com-
ing in the future.

• They then evolve their investment strategies based on their beliefs.

The two-level evolution allows agents to solve a boundedly-rational version of
the optimization problem (1). First, the cognitive limit of investors and the resultant
adaptive behavior free them from an infinite-horizon stochastic optimization prob-
lem, as in Equation (1). Instead, due to their limited perception of the future, the
problem effectively posed to them is the following:

max
{{δt+h}H−1

h=0
,{αt+h}H−1

h=0
}
E{

H−1∑
h=0

(βi)hui(ci
t+h) | Bi

t} (8)

Here, we replace the infinite-horizon perception with a finite-horizon perception
of length H , and the filtration (σ-algebra) induced by St−1 with Bi

t , where Bi
t is

investor i’s belief at date t. In a simple case where mt is independent (but not
necessarily stationary), and this is known to the investor, then B i

t can be just the
subjective probability function, i.e.

Bi
t = (bi

1,t, ...b
i
M,t), (9)

where bi
m,t is investor i’s subjective probability of the occurrence of the state m

in any of the next H periods. In a more general setting, B i
t can be a high-order

Markov process. With the replacement (8), we assume that investors have only a
vague perception of the future, but will continuously adapt when approaching it.
As we shall see in the second level of evolution, B i

t is adaptive.

Furthermore, we assume that investors will continuously adapt their investment
strategies according to the sliding window shown in Figure 2. At each point in time,
the investor has a perception of a time horizon of length H . All his investment
strategies are evaluated within this reference period. He then makes his decision
based on what he considers to be the best strategy. While the plan comes out and
covers the next H periods, only the first period, {δi,∗

t , αi,∗
t }, will be actually imple-

mented. The next period, {δi,∗
t+1, α

i,∗
t+1}, may not be implemented because it may no

longer be the best plan when the investor receives the new information and revises
his beliefs.

With this sliding-window adaptation scheme, one can have two further simplifi-
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 Fig. 2. A Sliding-Window Perception of the Investors

cations of the optimization problem (1) – (3). The first one is that the future price of
the asset m, ρm,t+h remains unchanged for each experimentation horizon, namely,
at time t,

ρi
m,t+h = ρm,t−1, ∀ h ∈ {0, H − 1}, (10)

where ρi
m,t+h is i’s subjective perception of the h-step-ahead price of asset m. Sec-

ond, the investment strategies to be evaluated are also time-invariant under each
experimentation horizon, i.e.

δi
t = δi

t+1 = δi
t+2 = ...δi

t+H−1, (11)

αi
t = αi

t+1 = αi
t+2 = ...αi

t+H−1. (12)

With these two simplifications, we replace the original optimization problem,
(1) – (3), that is presented to the infinitely-smart investor, with a modified version
which is suitable for a boundedly-rational investor.

max
{{δi

t},{αi
t}}

E{
H−1∑
h=0

(βi)hui(ci
t+h) | Bi

t} (13)

subject to

ci
t+h +

M∑
m=1

αi
m,t · δi

t · W i
t+h−1 ≤ W i

t+h−1, ∀ h ∈ {0, H − 1}, (14)

M∑
m=1

αi
m,t = 1, αi

m,t > 0, ∀m, (15)

ci
t+h = (1 − δi

t)W
i
t+h−1, ∀ h ∈ {0, H − 1}. (16)
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3.2 Autonomous Agents

One of the mainstays of agent-based computational economics is autonomous
agents (Tesfatsion, 2001). The idea of autonomous agents was initially presented
in Holland and Miller (1991). Briefly, these agents are able to learn and to adapt
to the changing environment without too much external intervention, say, from the
model designer. Their behavior is very much endogenously determined by the en-
vironment with which they are interacting. Accordingly, sometimes it can be very
difficult to trace and to predict, and is known as emergent behavior.

In this paper, we follow what was initiated in Holland and Miller (1991), and
equip our agents with the genetic algorithm to cope with the finite-horizon stochas-
tic dynamic optimization problem, (13) – (16). The GA is applied here at two dif-
ferent levels, a high level (learning level) and a low level (optimization level). First,
at the high level, it is applied as a belief-updating scheme. This is about the B i

t

appearing in (13). Agents start with some initial beliefs of state uncertainty, which
are basically characterized by parametric models, say, Markov processes. However,
agents do not necessarily confine themselves to just stationary Markov processes.
Actually, they can never be sure whether the underlying process will change over
time. So, they stay alert to that possibility, and keep on trying different Markov
processes with different time frames (time horizons). Specifically, each belief can
be described as “a kth order Markov process that appeared over the last d days and
may continue”. These two parameters can be represented by a binary string, and a
canonical GA is applied to evolve a population of these two parameters with a set
of standard genetic operators. Details are given in Section A.2.

Once the belief is determined, the low-level GA is applied to solve the stochas-
tic dynamic optimization problem defined in (13) – (16). Basically, we use Monte
Carlo simulation to generate many possible ensembles consistent with the given
belief and use them to evaluate a population of investment plans composed of a
saving rate and a portfolio. GA is then applied to evolve this population of candi-
dates. Details are given in Section A.1.

In sum, the high-level GA finds an appropriate belief, and under that belief the
low-level GA searches for the best decisions in relation to savings and portfolios.
This style of adaptive design combines learning how to forecast with learning how
to optimize, a distinction made in Bullard and Duffy (1999). These two levels of
GA do not repeat with the same frequency. As a matter of fact, the belief-updating
scheme is somewhat slow, whereas the numerical optimization scheme is more fre-
quent. Intuitively, changing our belief of the meta-level of the world tends to be
slower and less frequent than just fine-tuning or updating some parameters associ-
ated with a given structure. In this sense, the idea of incremental learning is also
applied to our design of autonomous agents.
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3.3 The Behavior of CAPM Believers

Investors whose behavior is governed by the procedure described in Sections
A.1 and A.2 above are autonomous, which may not come to any stereotype fa-
miliar to us. To make sense of the evolution going on in the artificial markets, it
would be useful to include some familiar types of investors as well, for example,
those investors, no matter what happens, who just follow a guideline which is ex-
ogenously given. These investors are not autonomous. We shall call them formula
investors. The GA procedure will not be applied to these formula investors. Instead,
their behavior is prespecified by a formula. As an illustration of the idea of formula
investors, we follow Sciubba (1999) to introduce CAPM believers into the market.

The CAPM believers are investors who base their portfolio rule upon the well-
known capital asset pricing model (CAPM). In the spirit of the CAPM, they first
find out the market portfolio and the risk-free portfolio. Then, according to their
risk preference (degree of risk aversion), they choose a weighted combination of
the two. We index CAPM traders by means of κ, and let γκ be the associated
risk aversion coefficient, which is randomly determined by the uniform distribu-
tion U(0,1). At date t, each investor κ invests in asset m a portion α

CAPM(κ)
m,t of his

savings such that

α
CAPM(κ)
m,t = γκαF

m,t + (1 − γκ)αM
m,t, m = 1, ..., M, (17)

where αF
m,t ≡ ρ̂m,t/wm∑M

m=1
ρ̂m,t/wm

and αM
m,t ≡ ρ̂m,t∑M

m=1
ρ̂m,t

. 8

This way of defining the CAPM investment strategy is proposed by Sciubba
(1999). It is straightforward to show that the vector αM

t is in effect the weighted
average of all market participants’ portfolios in the previous period. So, it is in-
tuitively consistent with the idea of the market portfolio. Furthermore, it can be
shown that the vector αF

t is a weighted average of the price-earnings ratio, and
with this portfolio the agent can expect to earn the same rate of return regardless
of the occurrence of the state. As a result, it can be taken so as to approximate the
idea of the risk-free rate.

Similarly, one can come up with a respective saving rate for the CAPM investor
as follows:

δ
CAPM(κ)
t = γκδF

t + (1 − γκ)δM
t (18)

where δF
t ≡ 0 and δM

m,t ≡
∑I

i=1(
W i

t−2∑
W i

t−2
) · δi

t−1.

The CAPM believers’ adherence to the CAPM portfolio rule (17) is not affected
during the entire course of evolution.

8 For simplicity, we may assume that they have static expectations as other autonomous
agents do, i.e. ρ̂m,t = ρm,t−1, ∀ m = 1, ...,M .
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Fig. 3. A Summary of Agent-Based Artificial Stock Markets

3.4 Summary

Figure 3 is a summary of the agent-based artificial stock market.

4 Experimental Designs

Two experiments are conducted in this agent-based artificial stock market. In the
first experiment, the autonomous agents are identical in all respects except for their
preferences over risk. The purpose of this design is to see whether the survivability
of investors has anything to do with their preferences. In the second experiment, we
further distinguish each type of agent by their belief formation processes which, un-
der some circumstances, are pertinent to forecasting accuracy. Obviously, the sec-
ond design is to examine the relevance of forecasting accuracy to survivability. We
believe that these two designs together will contribute to the resolution of the de-
bate of the irrelevance of risk preference or the dominance of forecasting accuracy
in a rich empirical context.
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4.1 Market and Participants

In both experiments, the market is composed of 40 agents (I = 40). Five out
of the 40 are CAPM believers. Since their portfolio and saving decisions are deter-
mined by (17) and (18) and are irrelevant to their preferences over risk, their prefer-
ences will not be specified here. The remaining 35 agents are all autonomous. Their
behavior is mainly driven by what has been detailed in Sections A.1 and A.2. For
these agents, the specification of their preferences is required, and they are detailed
in Table 1.

In total, we consider seven types of autonomous agents, and each type is as-
signed to five agents. Type one has the logarithmic utility function. We are very
much interested in knowing whether this type of agent has any advantage over oth-
ers in terms of the long-run wealth share. As to types two to six, they are also
frequently used in economic analysis. 9 Among them, type four is the well-known
CARA (constant absolute risk aversion) utility function. In addition to these six fa-
miliar types of utility functions, we also consider any arbitrary utility function. By
using Taylor expansion, an arbitrary analytical utility function can be approximated
by a finite-order polynomial function. Here, we consider the approximation only up
to the sixth order.

Notice that types 3 to 7 refer to a class of parametric utility functions. Parameters
of these types of utility functions, namely, α1, ..., α4, β1, ..., β3, γ3 and a0, a1, ..., a6,
can in principle be randomly or manually generated as long as they satisfy the
regular first- and second-order conditions: u

′
> 0 and u

′′
< 0. Since each type of

utility function is assigned to five agents, parameter values are generated for each
agent of each type separately. So, agents of type 3 may have different values of
(α1, β1), agents of type 4 may have different values of (α2, β2), and so on and so
forth.

There are 5 assets available in the market (M = 5), corresponding to 5 states.
Asset m pays dividends 6−m (m = 1, 2, ...5). Two stochastic processes are consid-
ered in the experiments, namely, iid and the first-order Markov. Each is employed
for one half of the total number of runs. Parameters of these two stochastic pro-
cesses are also randomly generated in such a way that the axioms of the probability
function are satisfied.

4.2 Parameters related to Autonomous Agents

At each point in time, agents have a perception of a time horizon with length
H = 25. To solve the optimization problem (8), agents simulate 5 25-horizon en-

9 See, for example, Huang and Litzenberger (1988), pp. 27-33.
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Table 1
Types of the Utility Function u(c)

Utility Type RRA

Type 1 u(c) = log(c) 1

Type 2 u(c) =
√

c 0.5

Type 3 u(c) = α1 + β1c 0

Type 4 u(c) = α2
β2

exp {β2c} −β2c

Type 5 u(c) = 1
(γ3+1)β3

(α3 + β3c)γ3+1 − β3γ3
α3
c

+β3

Type 6 u(c) = c − α4
2 c2 α4

1
c
−α4

Type 7 u(c) = a0 +
∑6

i=1 aic
i − 2a2c+6a3c2+12a4c3+20a5c4+30a6c5

a1+2a2c+3a3c2+4a4c3+5a5c4+6a6c5

sembles (L = 5) of the states based on their belief in order to evaluate the fitness
of their investment strategies (A.4).

The design for the agents’ adaptation is composed of two parts. For the low-
level evolution, the architecture is a population GA. The population size N (number
of investment strategies) for each agent is 100. The genetic parameters applied to
evolving this population are as follows. The crossover rate (pl

cross) is set to be 1,
while the mutation rate (ph

mutate) is set to be 0.03. Tournament selection with a
tournament size of 4 is applied. The number of generations that the low-level GA
runs in one period, G, is set to be 50.

As to the high-level evolution, the architecture is also a population GA, and the
population size J (number of beliefs) maintained by each agent is one hundred.
The crossover rate and the mutation rate are the same as those of the low-level
evolution, as is the tournament size used for the tournament selection. The belief
set will be renewed after every 2 periods (∆ = 2).

Table 2 provides a summary of the design. Two experiments are conducted based
on this common design. The two experiments mainly differ in the parameter v,
which is the size of the data used to validate the model. In Experiment 1, our focus
is on the role of the utility function. As a result, the v is fixed for all autonomous
agents, which is 100. Nonetheless, since the stochastic process simulated in this
market is stationary, it is expected that a larger v will help validate the model and
enhance the forecasting accuracy. Therefore, to see how significant the forecasting
accuracy can be (Sandroni’s main argument), in Experiment 2 we let autonomous
agents have different values of v, starting from the very small one, 10, increasing
it to 15, 25, 50, and finally to the largest one 100. To not mix the results of the
two experiments, we let these five values of v be evenly distributed among each
type of agent, i.e. one for each agent of each type. With this distinction, the two
experiments together can help us see better which factor is more important for the
survivability of agents, namely, the preference or forecasting accuracy.
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Table 2
Experimental Design

Market and Participants

Number of market participants (I) 40

Number of types of agents 8

Number of each type of agent 5

Number of assets (states) (M ) 5

Dividends paid by asset m 6 − m

Stochastic processes iid or 1st-order Markov

Number of market periods (T ) 100

Discount rate (β) 0.45

Autonomous Agents

Agents’ perception of the time horizon (H) 25

Number of ensembles (L) 5

Population size (number of strategies) (N ) 100

Number of generations (G) 50

Population size (number of beliefs) (J) 100

Frequency of running GA on the belief set (∆) 2

Crossover rate (pl
c, p

h
c ) 1

Mutation rate (pl
m, ph

m) 0.05, 0.03

Tournament size 4

Number of bits for beliefs (τ1 + τ2) 10

The eight types refer to the seven types of autonomous agents whose utility functions
are specified in Table 1 plus the CAPM believers.

Both experiments are run 100 times, and each run lasts for 100 market periods
(T=100). The simulation is conducted through the software AIE-ASM Version 5.0.
The software is written with Delphi, Version 6.0. Usually, it takes 3 hours for a
single run on a Pentium III 1000 with 256 MB RAM personal computer.

The γ values exogenously given to 5 CAPM believers are 0.1, 0.2, 0.3, 0.4 and
0.5, respectively.
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5 Experimental Results

In each single run, we generate a series of artificial data. At the micro level, it
includes the dynamics of agents’ beliefs, investment behavior, and the associated
wealth

{Bi,∗
t , δi

t, α
i
t, W

i
t }100

t=1, i = 1, ..., 40.

At the aggregate level, we observe the asset price dynamics

{ρm,t}100
t=1, m = 1, ..., 5.

Since the main concern of this paper is with which types of agent survive, our
focus is on the wealth share dynamics. In addition, in order to understand what
makes surviving agents survive, agents’ belief dynamics and investment behavior
also attract our attention. So, the result presented in this section will be pretty much
based on the micro-level data. Little will be said of the price dynamics. 10

5.1 Experiment 1

5.1.1 Wealth Share Dynamics

Figure 4 shows the wealth-share dynamics of the eight types of investors. No-
tice that each line is based on the average of 100 simulations. The results clearly
demonstrate the strong dominance of the type-one investors. While in some cases
type-two investors are still hanging in there till the end of the 100-period simulation,
their shares, in all of our 100 simulation runs, are smaller than those of the type-one
investors, and many of them are declining toward zero. 11 It is also interesting to
notice that the type-one investor has a constant relative risk aversion coefficient that
is one. Therefore, our findings can lend support to Blume and Easley’s main argu-
ment: the market selects those investors whose coefficient of relative risk aversion
is nearly one. 12 In fact, if we consider the family of the CRRA utility functions,
namely,

10 Some preliminary time series analysis of price dynamics can be found in Chen and
Huang (2004).
11 One may suspect that if the number of iterations (T ) is long enough, say T=500, then the
type-1 agents are the only type of survivors. Actually, in a separate experiment, we have
found that this is indeed the case. (Chen and Huang, 2004)
12 See Blume and Easley (1992), Theorem 5.4, pp. 23-24. The italics shown in the main
text are not the exact quotation of that theorem, which was originally based on controlling
saving rates. Since saving rates are treated endogenously in our paper, our finding suggests
that the theorem can still be true even though the assumption regarding saving rates is
relaxed. Theorem 5.4 also rests upon forecasting accuracy, which we will address later.
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Fig. 4. Time Series Plot of the Wealth Share of Eight Types of Investors: Experiment 1

u(c) =




cρ/ρ, if −∞ < ρ < ∞ and ρ �= 0,

lnc, if ρ = 0,
(19)

Type-2 investors u(c) =
√

c = c
1
2 also has a constant RRA coefficient of 0.5 (1-ρ),

but it is not close enough to one. 13

5.1.2 Forecasting Accuracy

Sandroni, however, considered forecasting accuracy to be the sole important
factor in determining who may survive. Since the design of Experiment one equip
all autonomous agents, regardless of their types, with the same learning scheme,
namely, genetic algorithms, intuitively it would be hard to attribute the survival of
type-one agents to their proficiency in forecasting. Nevertheless, in this section, we
shall take a closer look at the forecasting performance of different types of agents.

The Kolmogorov-Smirnov statistic (KS statistic hereafter) is chosen to measure
the forecasting accuracy of agents. The KS statistic is a metric, or more precisely
the sup norm, for two distribution functions. Formally, let F and G be two distri-

13 In a separate study (Chen and Huang, 2004), we simulated the cases with different ρs
from 0 to 0.9 with an increment of 0.1. It was found that the agents’ share of wealth posi-
tively related to their relative risk coefficients, 1 − ρ. The wealth share dynamics of agents
with a ρ of 0.1 is very close to that of type-1 agents considered here. Both survive to the
end of the 100-period simulations.
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Table 3
Performance Measurements

Forecasting Accuracy (K-S statistics)

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7

0.05219 0.05220 0.05233 0.05228 0.05222 0.05226 0.05220

Portfolio Performance

Mean Rate of Return

2.38024 2.83639 2.80554 2.79910 2.80125 2.92166 2.78132

Standard Deviation of Return

7.28998 8.10897 8.33604 8.91320 9.56133 10.91684 8.12857

Sharpe Ratio

0.32651 0.34978 0.33656 0.31404 0.29298 0.26763 0.34217

bution functions
KS(F, G) = sup

x
| F (x) − G(x) | . (20)

Using the KS statistic, we can measure the forecasting error by the difference
between the true distribution function and the subjective distribution perceived by
agents. The results are shown in Table 3 (the top panel). The statistical test cannot
reject the null hypothesis that the forecasting accuracy among different types of
autonomous traders is equally good. As already mentioned, this test result is not
surprising given the fact that all autonomous agents are supplied with the same
adaptive scheme to update their beliefs. Therefore, forecasting accuracy, at least, is
not the sole important factor in the determination of survivability.

5.1.3 Saving Rates

Since forecasting accuracy cannot necessarily guarantee agents’ survival, there
are only two decision variables left for us to see the uniqueness of type-1 agents,
namely saving and portfolio. Notice that in Blume and Easley (1992), the saving
rate is exogenously given, and it is found that the saving rate can play an important
role in determining who survives. 14 However, its impact becomes implicit when
the saving decision is endogenized (Sandroni, 2000). 15 It is therefore useful to

14 For example, see Blume and Easley (1992), proposition 3.2, p.16.
15 In his illustrating example on p. 1311, Sandroni (2000) compared two agents with dif-
ferent preferences: the one with the square-root utility function had the correct prediction,
whereas the other with the log utility function did not have the correct prediction. On p.
1313, he then showed that the former with a higher saving rate drove out the latter with a
lower saving rate, and the difference in their saving rates was endogenously generated as a
part of the equilibrium.
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Fig. 5. The Box-and-Whisker Plot of the Lifetime Saving Rates of the Seven Types of
Agents (Experiment 1)

examine the saving behavior of different types of agents, if one desire to know the
survival of type-1 agents.

Figure 5 is a box-whisker plot of the saving rates among the seven types of
agents. Each plot shows the life-time distribution of the saving rate δt associated
with a specific type of agent. To generate each plot, we first take an average of the
saving rate of the five agents of the same type. This is done period by period. Then
we have a time series of the saving rate δt (t = 1, 2, ..., 100) for each type of agent.
To have an idea of the distribution (dispersion) of the saving behavior, the mini-
mum, the first quantile, the medium, the third quantile, and the maximum of {δ t}
are recorded for each type of agent. Furthermore, we then derive sample statistics
for these order statistics by taking an average over the entire 100 simulation runs.
These statistics are depicted in the form of a box-whisker plot for each type of agent
as shown in Figure 5.

The line appearing in the middle of the box indicates the median saving rates for
a specific type of agent. While higher saving rates, as Blume and Easley suggested,
will place agents in an advantageous position to survive, we find that the saving
rate of type-1 agents is in fact the lowest among all seven types of agents. This is
evidenced by the lowest median of the type-1 agents. What, however, makes type-1
agents unique is their very stable saving behavior. This is revealed by comparing
the boxes and whiskers of the plots. As opposed to other types of agents, type-1
agents obviously have a very narrow box with a very short whisker, which features
a very stable saving behavior. Not only is it stable, but it is also stable around 0.45,
which is exactly the discount rate β set in Table 2.
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From an analytical viewpoint, Blume and Easley (1992) have already showed
that δt = β for log-utility agents. In other words, the optimal saving rate for type-
1 agents is just a constant and is independent of beliefs, wealth and asset prices.
Our genetic algorithm (the low-level GA) just confirms this property numerically.
We think that this property has an important implication for the survival of type-1
agents, and our reasons for this follow.

In general, the saving decision is made jointly with the portfolio decision, which
means that when agents are equipped with a GA, the low-level GA actually works
with the high-level GA. While an agent uses the low-level GA to make the sav-
ing and portfolio decision, the quality of that decision also depends on the belief
(forecasting accuracy) supplied by the operation of the high-level GA. Hence, any
imperfection in the high-level GA may compound the imperfection of the low-level
GA in the usual sense of error propagation. Nevertheless, since for type-1 agents
the saving decision is independent of their beliefs and hence forecasting accuracy,
it separates the performance of the low-level GA from that of the high-level GA. It
behaves like this. The low-level GA first learns that β is the only relevant factor for
the saving decision, and simply works with β. Furthermore, since β is a noise-less
constant, the saving decision associated with the low-level GA is well-grounded. In
the end, it helps type-1 agents come up with a quality decision on the saving rate,
that is almost exact.

The same story above unfortunately does not apply to other types of agents. In
general, their saving decisions are not independent of their beliefs. Even though
these agents are equipped with the same kind of GA used by type-1 agents, their
low-level GA is operated under the belief determined by the high-level GA, which
may suffer from some degree of inaccuracy all the time. This will in turn have
an adverse effect on the quality of the saving decision. From what we have seen
in Figure 5, this happens in terms of the appearance of the large fluctuation in
saving rates. In addition to the unstable saving behavior, type-3 to type-7 agents
have suffered further from the extremely low down-side saving rates, which may
contribute to the fast decline in their wealth share. Type-2 agents do not share this
feature of down-side saving rates. Obviously they perform better, but their unstable
saving behavior eventually causes a threat to them. 16

It is worth noting that the significance of a stable saving behavior was not a
focus of Blume and Easley’s original analysis, when they treated the saving rate
as an exogenously-given constant. It is also hard to address this in Sandroni’s dy-

16 In this general equilibrium setting where almost everything is endogenously determined,
error can propagate in a quite complex fashion. For example, when the saving rate is in-
correctly determined, it may impact the asset holding of the agents, and further impact the
associated dividends received and then wealth. The resultant wealth may distort the saving
decision further since the latter in general depends on the former. In addition to wealth,
error can also propagate through the endogenously generated price, e.g., a very fluctuating
price which may make the saving decision even more difficult.
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namic equilibrium framework, where the learning dynamics is absent. 17 Hence,
our agent-based simulation provides a new idea to ponder over as to why prefer-
ence matters or, more specifically, why log-utility agents can drive out all other
agents. The evidence brings our attention to the quality of saving behavior and its
contributing factors in the light of learning dynamics.

Stable saving behavior is not new in economic analysis. It has already drawn the
attention of economists in the recent studies on the lock-up savings. 18 However,
the implied stable saving behavior observed in our simulation provides a different
insight.

5.1.4 Portfolio Performance

The second decision is regarding portfolio. The log-utility (type-1) agents, as
described by Blume and Easley (1992), are the kind of agents who maximize their
expected growth rate of wealth, also known as the Kelly criterion. This observa-
tion naturally raises a question: would type-1 agents survive because their portfolio
performance is superior to that of other types of agents? To answer this question,
we can start with two different performance measurements: one is ex ante, and the
other is ex post. The former evaluates the agents’ investment based on its (prob-
abilistic) expected value, while the latter evaluates it on the basis of its realized
value. In this paper, we consider the ex-post approach to be more pertinent. There
are two reasons for us to think so.

First, agents in the ACE model are not optimizing agents; instead, they are adap-
tive agents. The adaptation scheme, be it GA or not, is generally driven only by
realized returns rather than by the expected returns. It is well known that such a
discrepancy can deviate agents’ behavior from that of expected-utility maximizers
(Lettau, 1997). This leads us to the second point: in the real world, what is used to
evaluate or rank the performance of mutual fund managers certainly is the histori-
cal returns and not the hypothetical expected returns. Having said that, we suggest
calculating the rate of return as follows. We first calculate ri

m,t, the realized rate of
return of agent i on the investment in the asset m at time t, as

ri
m,t =

wm(
δiW i

t−1αi
m,t

ρm,t
) − δiW i

t−1α
i
m,t

δiW i
t−1α

i
m,t

=
wm

ρm,t
− 1. (21)

Weighting ri
m,t over all assets (m = 1, ..., M) by its associated portfolio, one then

17 However, one important observation in Sandroni’s analysis, when he endogenized the
saving decision, is that the consequence of forecasting accuracy should not just be limited
to the portfolio decision, but also the saving decision. This is by and large consistent with
our analysis above.
18 See, for example, Laibson (1998).
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Fig. 6. The Efficient Frontier

derives the rate of return of agent i for period t

ri
t =

M∑
m=1

αi
m,tr

i
m,t. (22)

Let r̄i and var(r)i denote the sample mean and the respective sample variance of
the series {ri

t}. Table 3 shows these two statistics, which are averaged over the en-
tire 100 simulation runs and are further averaged over the five agents of the identical
type.

From Table 3, we learn that the type-1 agents do not survive because of their
superior performance in the expected rate of return. As a matter of fact, among all
the seven types of agents, it is they that have the lowest rate of return (2.38), which
is different from what one may expect from the Kelly criterion. Nonetheless, the
column “standard diviation of return” indicates that these agents are under different
exposure to risk, and it is the type-1 agents who are exposed to the lowest risk.
This result is not totally unanticipated given the fact that the type-1 agents are the
most risk-averse. 19 Motivated by this finding, we go further to examine the risk-
adjusted return, also known as the Sharpe ratio, and we find that type-1 agents do
not perform particularly well in terms of the Sharpe ratio.

19 This can be seen from the relative risk aversion (RRA) coefficient revealed from Table 1.
It is not straightforward to compare the RRA coefficient of the type-1 agents with those of
the type-4 to type-7 agents, which are not constant and change with consumption. However,
in the particular case when their consumption gets closer to zero, their RRA coefficients
also converge to 0. Since this case indeed applies quite frequently to our simulations, effec-
tively speaking their RRA coefficients are also lower than that of the type-1 agents.
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Fig. 7. Time Series Plot of the Wealth Share Per Capita: Experiment 2 (Type-1 vs Others)

Especially, one may suppose that every investor whose performance is situated
at the efficient frontier has an equal chance to survive. 20 Therefore, we see no
particular reason to attribute the survival of the type-1 agents to their portfolio
performance.

5.2 Experiment 2

In Section 5.1.2, we already saw that agents with identical capabilities of fore-
casting do not survive equally well. This result is already evidence that forecasting
accuracy is not the primary force in the determination of survivability. Instead,
preference plays a dominating role. However, since all agents forecast equally well
(Table 3), the result obtained in Experiment 1 does not lend strong support to the
evidence that shows that forecasting accuracy does not matter at all. Therefore, to
see whether we can consolidate the argument that forecasting accuracy does not
matter, a different experimental design is proposed in this section.

Experiment 2 assigns different values of v, i.e. different horizons of the vali-
dation sample (see Equation (A.10)). Since the underlying dividends series is sta-
tionary, doing this will normally lead those agents using a long validation horizon
to outperform those agents using a short validation horizon. 21 Now, given the dif-

20 To see this, the risk-return plot is drawn in Figure 6. The continuous frontier line is
constructed by smoothly connecting the three points on the frontier. The three points on
the frontier correspond to type-1, type-2 and type-6 agents. While the other four types of
agents do not lie exactly on the frontier, they are not far away from it.
21 This result is confirmed by the K-S statistic. The K-S statistic of the five validation
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Fig. 8. Time Series Plot of the Wealth Share Per Capita: Experiment 2 (Across Validation
Horizons)

ference in their forecasting accuracy, it is time to ask whether agents, regardless
of their preference types, with superior forecasting accuracy can survive better as
opposed to those agents with inferior forecasting accuracy, which is also the main
issue addressed in Sandroni’s proposition 3. What is particularly relevant to our
concern is whether agents of Types 2 to 7 who have long validation horizons can
drive out those Type-1 agents who have short validation horizons.

In Figure 7, we classify agents with different preferences into two groups, namely,
agents of type one alone, and agents of types 2 to 7 together, and plot the time series
of the wealth share dynamics of these two different groups of agents. Additional
restrictions are added to these two groups. For type-1 agents, only those whose
validation horizons are short (to be specific, v = 10, 15) are included, and the re-
spective time series plot is denoted by diamonds. For the remaining two groups of
agents, we only consider those with long horizons (v = 50, 100), and the time se-
ries plots are denoted by squares. These contrasting plots help elucidate the effect
of forecasting accuracy on survival.

From Figure 7, we can see that, even though the validation horizon is length-
ened to enhance the forecasting accuracy of agents of types 2 to 7, this group of
agents do not perform well: their wealth share per capita continues to decline to-
ward nil. Therefore, it is clear that forecasting accuracy does not help them much to
survive. Nonetheless, if we restrict our attention to agents with different validation

schemes, v=10, 15, 25, 50 and 100 are 0.0757, 0.0695, 0.0623, 0.0551, and 0.0497, respec-
tively. The ANOVA analysis shows that they are significantly different with an F statistic
of 26.41.
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horizons, then the significance of forecasting accuracy is revealed. Figure 8 shows
the wealth dynamics per capita by polling agents with the same validation horizon
together. While the wealth dynamics fluctuates quite severely, the general tendency
indicates that, regardless of their risk preference, agents with better forecasting ac-
curacy tend to have higher wealth shares than agents whose forecasting accuracy
is worse. Nevertheless, a lower wealth share is certainly not good enough to sat-
isfy the market selection hypothesis, which actually predicts that those agents with
worse forecasting accuracy will vanish.

Therefore, forecasting accuracy, as our conventional wisdom may suggest, does
matter for the prosperity of agents. It is significant when agents share the same
risk preference. Nevertheless, when agents have heterogeneous risk preference, its
importance is only secondary, and the effect of risk preference may dominate. 22

6 Concluding Remarks

Normally, if we deviate from the original theoretical assumptions, for example,
by introducing bounded-rational behavior, we may expect some different results.
This is not surprising, since the learning literature over the past decade has accu-
mulated much evidence of this kind. It would be interesting, though, if the new
result is strikingly different from the previous findings. We believe that to be the
case here. Earlier theoretical studies have already shown the irrelevance of risk
preference to survivability. They have also shown that what matters is forecasting
accuracy. After introducing bounded-rational behavior, we have almost the oppo-
site: risk preference matters and it is even more important than forecasting accuracy.

Why does risk preference matter? The paper examines three interdependent
possibilities: forecasting accuracy, portfolio and saving among different types of
bounded-rational agents. While being bounded rational, all of these agents are at
least potentially equally smart in the sense that they are all equipped with the same
adaptive search scheme, namely, the genetic algorithm. The neutrality of GA, in
that GA does not make one type of agent smarter than the others, is also supported
in Sections (5.1.2) and (5.1.4). Therefore, the forecasting accuracy and portfolio
performance are excluded, and what is left is only the saving behavior. Therefore,
the significance of risk preference is manifested by the saving behavior.

While earlier studies did recognize the importance of saving behavior to this
issue, the attention has been restricted to the rational-equilibrium path. Various

22 One certainly can pursue this further by asking whether we can reverse the result by
allowing for a larger degree of difference in forecasting accuracy, and, if so, how much
larger a difference is required. We can definitely test for this in a further study, but, for the
purpose of negating the absolute importance of forecasting accuracy, this is not necessary.
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moments of saving behavior are not a concern as long as they are on the rational-
equilibrium path. However, when they are not, this paper shows that moments do
have strong implications for survivability. In addition to the first moment, which
has already been explicitly noticed by Blume-Easley and Sandroni, we also find
the significance of other high-order moments, which are summarized by the box-
and-whisker plot. Downside saving rates as well as the dispersion of saving rates
can both be important.

Since the saving decision in general is dependent upon the belief, errors in fore-
casting accuracy can propagate through the saving decision, and manifest them-
selves in moments of saving. This observation generally applies to all types of
agents, except type-1 agents, the log-utility agents, whose saving decisions are in-
dependent of their beliefs and are only determined by the exogenously-given dis-
count rate. That is what makes the log-utility agent so different from other agents.
The conventional wisdom characterized by the Kelly criterion also works on this,
but has not successfully established its validity, in particular, in the general equilib-
rium context. This paper shows that incorporating learning dynamics is one way of
demonstrating its validity.

It is well said that there is only one way to be rational, but an infinite number
of ways to be bounded rational. How generally can our findings be extended to
other bounded-rational ways, e.g., different learning algorithms, different control
parameters, and so on and so forth? This is the type of question frequently asked
in this kind of paper. Unfortunately, our knowledge of this is limited. While the
idea of error propagation presumably should be shared quite generally by many
other learning algorithms, the exact details of implementation may make complete
evaluation very difficult, if not impossible.

Nevertheless, we do hope to make a correct claim in relation to our contribu-
tion. Our contribution is not to provide a general validity of the relevance of risk
preference in a bounded-rational environment, which we have not achieved so far.
Rather, our contribution can be considered to be just a point, a starting point maybe,
to reflect upon the empirical plausibility of the theoretical result in regard to the
irrelevance of risk preference. Agent-based computational modeling is one way
of doing this. Would the theoretical result be too strong when applied to the real
world? Should risk preference be neglected in further economic analysis of similar
issues? Given the findings of this paper, the quest for answers to these topics may
have only just begun.
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A Appendix

A.1 Evolution at the Low Level: Investment Strategies

A.1.1 Coding and Initialization

The implementation of the genetic algorithm starts with a representation (cod-
ing) of solutions. Here, we employ the real coding (the direct coding). The saving
rate (δi

t) and the portfolio (αi
t) are coded as real-valued numbers:

{δi
t | αi

1,t, α
i
2,t, ..., α

i
M,t} (A.1)

To solve (13), an initial population of investment strategies with population size
N is first generated for each investor i,

GEN i
t,0 ≡ {δi

t,n(0), αi
t,n(0)}N

n=1.

The number inside the parentheses refers to the generation number in the GA cycle.
Population GEN i

t,0 is generated as follows:

• δi
t,n(0) is randomly generated from the uniform distribution U(0, 1).

• To generate a portfolio αi
t,n(0), a set of numbers

(Q1, Q2, ..., QM)

are randomly generated from U(0, 1). Then, to make sure that their sum is equal
to 1, they are rescaled as follows:

(
Q1∑M

q=1 Qq

,
Q2∑M

q=1 Qq

, ...,
QM∑M
q=1 Qq

) (A.2)

A.1.2 Fitness Evaluation: Eval { GEN i
t,g }

Corresponding to (13), the fitness measure f is simply the H-horizon discounted
expected utility:

ft(n, g) ≡ f(δi
t,n(g), αi

t,n(g)) ≡ E{
H−1∑
h=0

(βi)hui(ci
t+h) | Bi

t}, (A.3)

where ft(n, g) refers to the fitness of the nth investment strategy in the population
GEN i

t,g (i.e. the gth generation of the GA cycle). The Monte Carlo simulation
technique is used to evaluate the fitness (A.3). The way to do so is to simulate a
certain number, say L, of H-horizon histories of the states based on investor i’s
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belief, Bi
t . For each simulated history l (l ∈ [1, L]), we can obtain a realization of

(A.3), i.e.
H−1∑
h=0

(βi)hui(ci
t+h | l), l = 1, 2, ...L.

Then, we estimate ft(n, g) by taking the sample average,

f̂t(n, g) =

∑L
l=1

∑H−1
h=0 (βi)hU i(ci

t+h | l)

L
. (A.4)

A.1.3 Genetic Operation: GEN i
t,g → GEN i

t,g+1

Once the procedure Eval { GEN i
t,g } is completed, all investment strategies are

associated with a fitness which is the output of (A.4).

Eval : {δi
t,n(g), αi

t,n(g)}N
n=1 → {ft(n, g)}N

n=1 (A.5)

Based on their fitness, we shall revise and renew these investment strategies
based on investor i’s belief Bi

t . This revision and renewal procedure involves the
use of four standard genetic operators, namely, selection, crossover, mutation and
election.

Selection: The tournament selection with tournament size 4 is employed. For
each selection, four investment strategies are randomly selected from GEN i

t,g. Of
them, the best two will be chosen as the parents (mating pool). We denote them by

Ix ≡ {δi
t,x(g), αi

t,x(g)},

and
Iy ≡ {δi

t,y(g), αi
t,y(g)},

where x, y ∈ [1, N ].

Crossover: With probability pcross (crossover rate), the two parents chosen
above will generate an offspring by taking a weighted average of the two invest-
ment strategies, and the weights will be determined by the relative fitness of the
two strategies.

Iz ≡ (δi
t,z(g), αi

t,z(g)) (A.6)

=
ft(x, g)

ft(x, g) + ft(y, g)
(δi

t,x(g), αi
t,x(g)) +

ft(y, g)

ft(x, g) + ft(y, g)
(δi

t,y(g), αi
t,y(g))

Mutation: The offspring Iz will then have a small probability (mutation rate)
to mutate. If mutation happens, it will proceed as follows. For the saving rate, a
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Fig. A.1. Flowchart of the Low-Level GA

number randomly selected from the U [0, 1] will be used to replace δ i
t,z(g). For the

portfolio, a set of numbers,

ε ≡ (ε1, ε2, ..., εM),

randomly generated from U(0, 1), will replace αi
t,z(g). Then the rescaling technique

described in (A.2) will be applied. We call the resultant strategy Iz′ .

Election: The use of the election operator examines whether the new investment
strategy is expected to perform better than the one it replaced. In election, we shall
use (A.4) to evaluate the potential fitness of Iz′ , and compare it with the fitness
of the two parents, Ix and Iy. Then, only the one with the highest fitness will be
retained for the next generation, GEN i

t,g+1.
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Fig. A.2. The Flowchart of the Investment Optimization

A.1.4 Loops

Once a new investment strategy is generated, a loop (Figure A.1) leads us back
to selection, which is then followed by crossover, mutation and election and then
the next new investment strategy is generated. The loop will continue until all N
strategies of GEN i

t,g+1 are generated. GEN i
t,g+1 will be evaluated based on the

Eval procedure, and based on the evaluation, genetic operators will be applied to
GEN i

t,g+1 to generate GEN i
t,g+2. This loop will also be repeated over and over

again until a termination criterion is met, e.g., when g reaches a prespecified num-
ber G.

When the renewal and revision process is over, the investor will select the best
strategy from the last population of investment strategies, say, GEN i

t,G.

(δi,∗
t , αi,∗

t ) = arg max
GEN i

t,G

{ft(n, G)}N
n=1 (A.7)
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A.2 Evolution at the High Level: Beliefs

At the low level of evolution, the investor revises and renews his investment
strategies with respect to a specific belief selected from a population of beliefs
{Bi

j,t}J
j=1. In other words, at each point in time, the investor may have more than

one model of uncertainty in the world. The idea that each agent can simultaneously
have several different models of the world, which are competing with each other in
a co-evolving process, is a distinguishing feature of the population learning models
([12], [2], [23], [8], [1]). Of course, these models are not equally promising, and
the investor tends to base his decision (investment strategies) on one of the most
promising ones. However, as times goes on, his beliefs of the world will be revised
and renewed in light of the newly incoming information. In this section, we shall
describe how genetic algorithms can be applied to modeling the beliefs updating
process.

A.2.1 Coding and Initialization

In the Blume-Easley-Sandroni model, each investor’s perception of the uncer-
tainty (finite-state stochastic process) of the market can be characterized by two el-
ements: first, the dependence structure (k), and, second, the sample size (d). Based
on this characterization, the investor believes that the market over the last d days
follows a kth-order Markov process. According to this belief, he would use a part
of the historical data {mt−s}v+d+1

s=v+1 , referred as to the training period, to estimate
the Markov transition matrix, and the rest of the data {mt−s}v

s=1, referred to as the
validation period, to validate the estimated model. As a result, each belief can be
represented by a binary string, of length τ1 + τ2,

a1a2...aτ1︸ ︷︷ ︸
τ1bits

aτ1+1aτ1+2...aτ1+τ2︸ ︷︷ ︸
τ2bits

, ai ∈ {0, 1}, ∀ 1 ≤ i ≤ τ1 + τ2

that has the following interpretation: the states follow a Markov process of the order

k = (
τ1∑

i=1

2τ1−iai) (A.8)

over the last

d = (
τ1+τ2∑

i=τ1+1

2τ1+τ2−iai) + c (A.9)

days. To facilitate estimation, d cannot be too small, and that demands an additional
constant of c. In our current model, we simplify and limit the dependent structure
(k) to 0 or 1, that is, we only assume the stochastic process to be iid or first-order
Markov.

At the initial date (t = 0), all investors are endowed with a population of J
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beliefs, which are randomly generated. Then every ∆ days, this population of be-
lief will be reviewed and revised based on the fitness function, which is a kind of
likelihood function to be specified below.

A.2.2 Belief Updating Scheme

Agents in our model follow the practice of machine learning. They are supposed
to care about the risk of over-fitting, and hence use data in the validation period to
perform model selection. One way of ensuring that our agents behave so is to set
the fitness function as the fitting error in the validation set, rather than the training
set. The belief updating scheme is outlined in Figure A.3.

The essence of the belief updating scheme is to maintain a style of on-line learn-
ing, while not to overload the computational intensity. As we can see from this
figure, at each time t agents retain the most recent v days as the validation period.
They use the data before the validation period, that is, the data of the training pe-
riod, to estimate the parameters of each belief. Then a fitness measure for a belief
Bi

j,t is its associated likelihood, evaluated by the validation set {mt−s}v
s=1,

Li
j,t = L({mt−s}v

s=1 | Bi
j,t), (A.10)

Equation (A.10) is the likelihood of the observations {mt−s}v
s=1 in the validation

period under the belief Bi
j,t. Every ∆ periods, after they finish the evaluation of

each belief’s fitness, they apply the genetic operation to update their belief set (see
Section A.2.3), and the belief with the highest fitness will be chosen. Even in the
period that the genetic operation is not applied, say when t ∈ [∆ + 1, 2∆− 1], they
evaluate the fitness of beliefs in their current belief set using the newest data and
choose the best from it.
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A.2.3 Genetic Operation

Once the procedure of evaluating each belief’s fitness (Eval {Bi
j,t−1}J

j=1) is com-
pleted, all beliefs are associated with a fitness which is the output of (A.10).

Eval :{Bi
j,t−1}J

j=1 → {Li
j,t−1}J

j=1 (A.11)

Based on this fitness evaluation, we will revise and renew investor i’s beliefs by
using the following four genetic operators: selection, crossover, mutation and elec-
tion.

Selection: A tournament selection with tournament size 4 is adopted. The best
two beliefs will be chosen as the parents (mating pool).

Crossover: With probability pcross, the two parents chosen above will generate
an offspring by the uniform crossover. With this crossover, each bit position of
the offspring will be taken randomly either from the father or the mother with a
one-half chance for each. For an illustration, let us consider the pair of parents to
be Bi

x,t−1 = 0010101010, corresponding to a belief of (kx, dx) = (0, 170), and
Bi

y,t−1 = 0111110010, corresponding to (ky, dy) = (0, 498). Then, an offspring,
Bi

z, can be
Bi

z = 0011100010 → (kz, dz) = (0, 226).

Mutation: There is a small probability pmutate(mutation rate) by which each bit
of Bi

z may encounter a change. For example, the mutation which changes the fifth
bit from “1” to “0”, and the last bit from “0” to “1” will result in a new string:

Bi
z′ = 0011000011 → (kz′, dz′) = (0, 195).

Election: Finally, Bi
z′ will also be evaluated by the observations {mt−s}v

s=1, and
the likelihood will be figured out. We will then compare the likelihood from B i

z′

with the likelihood from the parent models, and the best one will be passed to the
next generation, {Bi

j,t}J
j=1.

A.2.4 Loops

Once a belief is generated, a loop in Figure A.4 will lead us back to selection,
which is then followed by crossover, mutation and election before the next belief
is generated. The loop will continue until all J beliefs of {B i

j,t}J
j=1 are generated.

One of the beliefs, Bi,∗
j,t , will be chosen based on the likelihood criteria,

Bi,∗
t = arg max

j
L({mt−s}v

s=1 | Bi
j,t), (A.12)

The belief set will remain unchanged for the next ∆ periods, when another loop of
revision and renewal process is conducted, and B i,∗

t+∆ is brought about.
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