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Abstract. Agent-based Methodology (ABM) is becoming indispensable
for the inter-disciplinary study of social and economic complex adaptive
systems. The essence of ABM lies in the notion of autonomous agents
whose behavior may evolve endogenously and can generate and mimic
the corresponding complex system dynamics that the ABM is studying.
Over the past decade, many Computational Intelligence (CI) methods
have been applied to the design of autonomous agents, in particular,
their adaptive scheme. This design issue is non-trivial since the chosen
adaptive schemes usually have great impact on the generated system dy-
namics. Robert Lucas, one of the most influential modern economic theo-
rists, has suggested using laboratories with human agents, also known as
Experimental Economics, to help solving the selection issue. While this
is a promising approach, laboratories used in the current experimental
economics is not computationally equipped to meet the demands of the
selection task. This paper attempts to materialize Lucas’ suggestion by
establishing a laboratory where human subjects are equipped with the
computational power that satisfies the computational equivalence condi-
tions.

1 Introduction

The use of agent-based simulation to study complex adaptive systems has be-
come increasingly popular. Its significance has been well demonstrated by a
series of recent conferences and journals exclusively devoted to this subject. One
of the major issues in agent-based simulation is agent engineering. In the agents
literature, many have reported that the simulation results are highly dependent
upon how agents are designed and how agents learn and adapt, i.e. agent en-
gineering does matter. Hence, many work have been devoted to the research of
agent engineering.

One important topic that agent engineering addresses is the robustness of
agent-based simulation results. This is normally done by evaluating whether dif-
ferent learning algorithms used in the simulation would lead to different impli-



cations. While the famous KISS principle1 has provided a simple approach, e.g.
reinforcement learning, for agent engineering, other sophisticated approaches,
e.g., genetic algorithms, are also very popular in the agents literature. In fact,
many techniques within the field of computational intelligence have been used for
agent engineering. Given such a wide variety of techniques, there is a great need
for a guideline on how to select an appropriate technique for agent engineering.

Recently, there is a guideline for techniques selection based on empirical
observations. This guideline gives two possibilities. The first one uses data from
field studies, surveys or census, while the second one uses data from laboratories
with human subjects. In economics, laboratories data are becoming increasingly
available from the study of Experimental Economics and Behavioral Economics.
Since data from field studies, surveys or census are becoming difficult to obtain,
it is inevitable for economists to use the second type of data to conduct research.
This approach is known as Lucas criterion ([21, 5]). Lucas’s criterion suggests
that a comparison of the behavior of adaptive schemes with behavior observed
in laboratory experiments involving human subjects can facilitate the choice of
a particular adaptive scheme.

There are already many studies that grounded their agent engineering in
the spirit of Lucas’s criterion. For example, [1] used two versions of genetic
algorithm (basic GA and augmented GA) to implement agent engineering [1].
She reported that the simulation results from basic GA give individual quantities
and prices exhibited fluctuations over the entire duration and did not result in
convergence to the rational expected equilibrium values, which was inconsistent
with the experimental results involving human subjects. In contrast, the results
of the augmented GA showed convergence to the rational expected equilibrium
values, and were able to capture several features of the experimental behavior
of human subjects better than other simple learning algorithms. According to
Lucas criterion, the augmented GA was justified as an appropriate adaptive
scheme. For more application of the Lucas criterion to justify the use of the GA
or some of its specific versions, please refer to [2] and [3].

In addition to Lucas criterion, empirical evidence from experiments has been
used to examine if reinforcement learning adequately describes the way people
behave. For example, [13] gives an evaluation of reinforcement learning versus
some of its competitive alternatives, such as direction learning and belief learning,
in experimental asymmetric-information games.

The purpose of this paper is to answer the following question:
To what extent experimental economics or behavioral economics can help build

agent engineering? Does the proposed guideline really have a solid foundation?
Our hypothesis is that experimental economics and behavioral economics

have their limits and can not solve the foundation issue of agent engineering. The
published guideline therefore requires revision. We shall use scientific method to
prove the hypothesis in this research.

1 The KISS principle was first proposed in [4]. It stands for “Keep it simple, stupid.”



2 Computational Equivalence

Our hypothesis is based on the rationale that different learning algorithm re-
quires different computational resources and that difference, to the best of our
knowledge, has not been addressed in the experimental design including human
subjects. As a result, the claim that an adaptive scheme (generated by one type of
learning algorithm) is superior over others (generated by other types of learning
algorithm), based on their simulation results, is not always valid. One scenario
can be that the adaptive schemes become unavailable to human subjects due
to the lack of high-performance computing facilities required by the adaptive
schemes. Another scenario is for on-line transaction experiments where a very
limited amount of time is allocated to the agents (human subjects) to process
the data before making a decision. Such constraint makes it impossible for the
human agents to carry out computationally-intensive adaptive schemes, such as
genetic programming or fuzzy neural networks. Without considering the issue of
computational resources, any comparative study based on experimental results
is meaningless.

Let’s take the double-auction experiment as an example. In this auction, both
sellers and buyers submit bids which are then ranked from the highest to lowest
to generate demand and supply profiles. Based on the profiles, the maximum
quantity exchanged can be determined by matching selling offers (starting with
the lowest price and moving up) with demand bids (starting with the highest
price and moving down). Experiments based on double auction have a long
history in experimental economics ([29]). While the experiments involving human
subjects started 40 years ago, serious work on agent engineering is only just
beginning. The zero-intelligence (ZI) trader was introduced by [15]. It was then
extended into the zero-intelligence plus (ZIP) trader by [10]. More sophisticated
agents based on human-written programs were considered by [26] and [27], which
also motivated [7] to use genetic programming to make traders autonomous.
Another related study is that by [12] who used the genetic algorithm to evolve
traders. Given such a variety, can we answer which one provides better agent
engineering in light of the experiments conducted by [29]? Can the experimental
economics of the 1970s and 1980s resolve the selection issue?

Clearly not. ZIP, GA and GP differ in their required computational resources.
Consequently, as mentioned above, in a computationally-poor environment, it
is not surprising to see that the behavior of human subjects is quite similar to
the agent-based simulation using simple heuristics, such as the ZIP Plus scheme,
and may be quite distinctive from the one using genetic programming. However,
that result alone cannot effectively lend support to the superiority of ZIP Plus
over GP. Without knowing this critical relation, experiments involving human
subjects would simply be too arbitrary to be a foundation of agent engineering.
Unfortunately, this subtle point has not received sufficient attention on the part
of either experimental economists or agent-based computational economists.

Experimental economics was developed in an age where decision supports
provided by intensive computation was not available, whereas agent-based com-
putational economics was cultivated in an era accompanied by increasing effi-



CE Lab 

Fig. 1. A Web of the CE Lab
In the CE laboratory, each human participant will be connected to the “society”
through a personal computer (client) and the server. The interactive dynamics of all
participants then takes place through the web.

ciency in terms of both software and hardware. This sharp difference in compu-
tational background does not make the use of the former as the foundation of
the latter as obvious as one might have thought initially. To address the pivotal
questions, such as whether genetic algorithms (or any other CI tools) represent
an essential learning process on the past of humans, the laboratory involving
human subjects must be upgraded to such a degree that GA (or any other CI
tool) can be effectively executed for human subjects. We shall call this condition
computational equivalence. In other words, unless the condition of computational
equivalence is satisfied, experimental economics cannot serve as a way of defining
a principle of agent engineering. It is misleading to claim the superiority of one
adaptive scheme over another simply by citing the experimental results observed
in the laboratory which are not computationally equivalent.

Given this discussion, we propose a computer laboratory which is built in line
with the condition of computational equivalence. In this laboratory, all human
subjects can choose to follow any adaptive scheme (CI tool) which is already
installed in the lab and is made available to the end users. Of course, they
can also choose their own preferable ways of making decisions, e.g., relying on
their simple heuristics, if they fail to see the benefits of using the sophisticated
adaptive schemes. The whole idea is depicted in Figures 1 to 3.



 

Fig. 2. Menu of Adaptive Schemes (CI Tools)
CI tools are made available for each human agent. From the computer screen, each
human agent can choose his/her favorite adaptive scheme to learn from and adapt
to the surrounding environment. The screen is presented to them in a very friendly
manner. In this case, different classes of CI tools are grouped in an organization chart.

The whole laboratory is webbed by a network as shown in Figure 1. This web
provides the basic platform for running experiments involving human subjects.
Each human subject (real agent) is connected to at least one computer (client).
The participation of the real agents in the experiments, e.g., through submitting
a limit order in a stock market experiment ([30]), proceeds via the client to the
server and further to the whole web. Figure 2 is an expanding picture of what the
human subject can see from his/her computer screen. Via this client machine,
the real agent can acquire all the information pertinent to the experiment. The
real agent may not have direct eye contact with other real agents since these
clients are not necessarily located in the same room. Nonetheless, in the case
where these clients are distributed in different places, real agents may still have
eye contact with other participants via the attached camera.2

The idea of computational equivalence is exemplified in Figures 2 and 3.
In addition to the basic information providing by the experiment, the client
also provides real agents with a computationally-rich environment such that the

2 To the best of our knowledge, experiments relying on eye contact are very limited.
One of the examples is the famous ultimatum game.



agents are able to perform some non-trivial computation before they finalize
their decision. Here, real agents can make their choice of the adaptation scheme
that they would like to follow. For example, in the context of the double auction
experiment, they can follow the GA to submit a bid or ask. If they all make
such a choice, then the market dynamics will be pretty much similar to what
[12] predicted. They can also follow the GP to learn a trading strategy first, and
based on that strategy submit a bid or ask. Again, if they all make such a choice,
then the market dynamics will be close to what [7] predicted. Of course, there
is no reason why they should all choose the same adaptive scheme, as each can
make a choice independently from the menu shown in Figure 2.

One recent research trend in computational intelligence involves the extensive
use of hybrid systems, in which many tools work synergetically together as a
multi-agent system. The CE lab also allows participants to organize their own
hybrid systems from a set of CI tools. For example, a genetic neural fuzzy system
([24]) is shown in Figure 3.

Now, we can define what computational equivalence means. For an agent-
based computational model, if each of the human agents behaves by choosing
exactly the same form of agent engineering as the model suggests, then the
experimental results, either individual or aggregate, will be the same as the
agent-based simulation results, at least in a statistical sense. In other words, in
a way quite different from the current directional relationship between exper-
imental economics and agent-based computational economics, we are not only
interested in replicating experimental results based on agent-based simulations,
but what we have also said here is that agent-based simulation results can also
be replicated by experiments if the “right” form of agent engineering is chosen
by the human subjects in the experiment. This is the essence of computational
equivalence.

The contributions of computational equivalence to complex adaptive eco-
nomic systems are two-fold. First, it provides a competing explanation for the
failure of some adaptive schemes to replicate the experimental results. In the
past, such failures would usually be largely attributed to the irrelevancy of the
chosen adaptive schemes. However, a competing explanation nowadays is that
the laboratory is not well designed to satisfy the CE condition. Had it been
so, those adaptive schemes might have proved their relevance in describing how
humans behave. Second, through the CE lab, we can see that the agent-based
computational economic model is no longer just a theoretical representation of
the reality, but it can also serve as a blueprint for an economic system to be
realized in the future. For example, [18] is not just an agent-based simulation of
the fish market. If the fish market somehow becomes automated one day in the
future and all market participants can get access to a computationally-rich en-
vironment to form their decisions, then [18] can be considered to be a blueprint
of the real fish market.

Let us elaborate on the first point above using the example of genetic pro-
gramming, one of the very popular CI tools. The following is a list of criticisms
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Fig. 3. Advanced Menu of Adaptive Schemes (CI Tools)
A human agent may combine several different CI tools into a hybrid system to learn
and adapt. For example, a genetic neural fuzzy system is shown here.

voiced by the journal referees on several of the authors’ submissions. For the
convenience of discussion, they are numbered as follows:

1. One can see why genetic programming (an extension of genetic algorithms)
might work for computer problem-solving. However, genetic programming is
not well grounded in considerations of human behavior.

2. There just isn’t sufficient justification in the paper to support the view that
what we have is a model for a population of agents learning over time (if
they seriously wanted to push this view they would, for instance, need to
tell readers how to interpret the cross-over operation).

3. The regular GP representation and presence of operators often lead to overly
complex and unreliable solutions. Such solutions, comprised of complex com-
binations of functions and indicators, have often been difficult to understand
and interpret. Deciphering the winning programs might be an impossible task
in many applications. It might be impossible to use these rules in order to
understand the process by which humans behave. The usefulness of the GP
method for fundamental research thus seems quite restricted a priori.

As we shall argue here, none of these arguments is true when computational
equivalence is imposed. Objection (1) is the most general type of criticism. It



is true that, up to the present, genetic programming is not well grounded in
considerations of human behavior, but the main reason for this is that we do not
have a lab which can make it easier for human subjects to use GP in forming
decisions. As was discussed before, GP is a highly computationally-demanding
CI tool. How can we expect human subjects to seriously base their decisions
on GP without first reducing their computational load to a reasonable degree?
So, clearly, Objection (1) cannot be valid because it violates the computational
equivalence condition.

Objection (2) is also similar to Objection (1), but is more technical-oriented.
This kind of comment is frequently made in relation to other CI tools. In general,
this means that a CI tool cannot be regarded as a sensible human learning
and adaptation process if its major operator, e.g., the cross-over operator in
GP, is empirically not analogous to human behavior. Without acknowledging
computational equivalence, this argument is also misplaced. Whether or not a
CI tool can be an effective description of human behavior has nothing to do
with whether the society has an innate sense of that operator. On the other
hand, managers who use GP to make predictions may not need to be convinced
that its technical operators have empirical social meaning. As long as human
behavior is concerned, the key issue is whether they would believe that GP can
enhance their quality decisions. This is an empirical question, and can only be
solved with a lab based on computational equivalence. A full understanding of
its technical details may be neither a necessary nor a sufficient condition for the
formation of this belief.

Just as in the case of Objection (2), Objection (3) proposes another possible
reason why people may not use GP. This criticism is commonly shared in re-
lation to other CI tools characterized by complex and nonlinear behavior. Our
response to Objection (3) is similar to that to Objection (2). Whether or not a
comprehensive understanding is crucial for humans to accept a state-of-the-art
technology can only be answered empirically. It is quite common in behavioral
economics for human choices to not necessarily be rational or scientific. Various
biases have been well established empirically in behavioral economics.

In summary, the relevance of computational intelligence to human adaptive
behavior cannot be appropriately studied without a CE laboratory (a lab that
satisfies the computational equivalence condition). The first step of this research
is, therefore, to build a CE lab, and then start to run subsequent experiments.

3 Complex Systems Comprising Human and Software
Agents

The CE lab described above not only serves as a starting point toward a founda-
tion of agent engineering but also function as a platform to study the behavior
of electronic markets. In this type of markets, all decisions are either made by
humans aided by software or are automated completely. The former is exactly
the architecture depicted in Figure 4, whereas the latter is equivalent to a CE



lab where all human agents are replaced by software agents as shown in the same
figure.

There are already many economic and financial applications of these two ar-
chitecture. For example, in Internet auctions, software agents, such as esnipe and
auctionblitz, support human bidders with routine task to improve performance
precision ([23, 25]). Another example is in financial markets where programmed
trades on the computerized trading platform can be used to help day traders in
determining their bid and ask decisions ([32]). Our CE lab can be viewed as a
simple model of these complex adaptive systems, and, via agent-based simula-
tion, can be used to enrich our understanding of this type of systems.

However, our CE Lab is not designed only for specific applications, such
as electronic markets. Its framework is very general so that we can use it to
address a very fundamental question: What will happen when the participated
human agents are equipped with CI tools complex adaptive system? We try to
answer this question using a picture. Figure 4 gives four different types of agent-
based models. On the left of the top row, we have an agent-based model that is
completely composed of human agents. On the right of the top row, we have a
model that is purely composed of software agents. Two models on the bottom
are agent-based models that are composed of both human and software agents.
The difference between the two is that human agents on the left model are aware
of the existence of software agent while the human agents on the right model
are not.

Most experimental economic models only consider human agents, whereas
most agent-based computational models only have software agents. While the
original motivation of agent-based models has been to understand the equivalent
systems composed of human agents, human participation and interface with
the system and with the artificial agents have been excluded. In other words,
human agents have been completely replaced by artificial agents.3 Recently, the
literature has started to look at the issue of interaction between software agents
and human agents in complex adaptive systems, such as auction games ([11, 17,
16, 28, 33]), oligopoly games ([22]) and the stock market ([19]). Nonetheless, in
these setups, human agents are only exposed to limited computational resources,
and are not equipped with high-performance computing; therefore, the potential
feedback relation between human agents and the system, including the artificial
agents, has not been greatly exploited. We believe that the CE lab is the first
step toward a formal study of the fundamental question posed above.

Our CE lab enables us to conduct experiments based on the four different
types of agent-based models and hence makes it possible for us to perform a
comparative study on the complex dynamics of the four agent-based models.
Moreover, in addition to the comparative study, the CE lab also allows us to
examine the possible structural changes or regime changes when a society that

3 Having said that, we would like to point out that the modern definition of artificial
intelligence has already given upon the dream of replicating human behavior. Now, a
more realistic and also interesting definition is based on the team work cooperatively
performed by artificial agents and human agents ([20]).



 

Fig. 4. Complex Systems Composed of Human and/or Software Agents

is solely composed of human agents is gradually or suddenly transforming itself
into a society with a mixed population of software agents and human agents.
The main points of interest are as follows:

– First, in general, how do humans react to the nonlinear complex dynamics?
Would they tend to behave in a more complex manner when situated in such
a complex environment?

– Second, if they do behave in a more complex manner4, what are the con-
sequences of such behavior? Will the aggregate dynamics become more (or
less) complex and nonlinear?

– Third, what are the additional impacts of the inclusion of artificial agents
(human agents) on an already-existing society composed of only human
agents (artificial agents)? Do artificial agents on markets influence human
behavior? ([16])

4 For example, they incorporate some of the CI tools into their decisions.



Regarding question (1), an interesting hypothesis is that humans may not
necessarily respond to a complex environment with complex behavior. On the
contrary, they may just follow a rule of thumb. This simplicity hypothesis is
partially supported by some theoretical and empirical work.5 For example, the
winning strategy in trading tournament involving many agents is simple ([26,
27]). In trading, the simple trading strategy buy-and-hold was found to exhibit
superior performance to many other sophisticated strategies. In making predic-
tions, the simple predictor random walk was also shown to predict more accu-
rately than other sophisticated predictors. Nonetheless, these findings are not
strong enough to discourage people to devote a great deal of effort to develop
sophisticated nonlinear predictors as well as trading strategies. Therefore, what
determines people’s search intensity for a “best” perception (representation) of
complex nonlinear phenomena remains an interesting issue.

Through these experimental designs and the associated agent-based simu-
lations of the CE lab, we can watch and study how human agents react to a
complex nonlinear environment. In particular, it helps us to understand under
what circumstances human agents tend to behave in ways that are more complex
than simple.6 More generally, can we find an effective characterization or implicit
constraint of agents’ choices of adaptive schemes? For example, we need to ask
whether they tend to prefer qualitative schemes over quantitative schemes, lin-
guistic schemes over crisp schemes, and simple (comprehensible) but sub-optimal
schemes over complex (incomprehensible) but accurate schemes,..., etc. Needless
to say, these are important questions that need to be addressed before we can
lay a solid foundation for agent engineering.

One important recent development in agent-based social simulation has oc-
curred in the use of natural language ([17, 31]). People frequently and routinely
use natural language or linguistic values, such as high, low, and so on, to describe
their perception, demands, expectations, and decisions. Some psychologists have
argued that our ability to process information efficiently is the outcome of apply-
ing fuzzy logic as part of our thought process. Evidence on human reasoning and
human thought processes supports the hypothesis that at least some categories
of human thought are definitely fuzzy. Yet, early agent-based economic models
have assumed that agents’ adaptive behavior is crisp. [31] made progress in this
direction by using the genetic-fuzzy classifier system (GFCS) to model traders’
adaptive behavior in an artificial stock market. [31] provided a good illustration
of the non-equivalence between the acknowledgement of the cognitive constraint
and the assumption of simple agents. It is well-known that the human mind
is notoriously bad at intuitively comprehending exponential growth. However,
there is no evidence that traders on Wall Street are simple-minded. [31] recog-

5 This hypothesis can be loosely connected to the famous Occam’s razor or the parsi-
mony principle.

6 While [8] simulates the evolving complexity of software agents in the artificial stock
markets, the empirical counterpart of human behavior is not available in the litera-
ture due to the lack of an appropriate lab, such as the CE Lab.



nized the difference, and appropriately applied the GFCS to lessen the agents’
reasoning load via the use of natural language.

The thing that concerns the second issue is the casual relation between the
complexity of macro dynamics and the complexity of micro- dynamics, or sim-
ply the emergent phenomena. While a series of studies regarding the emergent
phenomena were conducted in the past in the ACE context ([14, 9, 6]), there is
also no empirical evidence in relation to experimental economics.

A particularly interesting thing is that the micro behavior can sometimes be
quite different from the macro behavior. Both the work done by [14] on the cob-
web model and by [9] on the asset pricing model has shown that the time series
of the market price (an aggregate variable) follows a simple stochastic process.
However, there is no simple description of the population dynamics of individual
behavior. The simple stochastic price behavior was, in effect, generated by a
great diversity of agents whose behavior was constantly changing. [9] proposed a
measure for the complexity of an agent’s behavior and a measure of the diversity
of an agent’s complexity, and it was found that both measures can vary quite
widely, regardless of the simple aggregate price behavior.

In addition, using micro-structure data, [6] initiated an approach to study
the emergent property. By that definition, they found that a series of aggregate
properties, such as the efficient market hypothesis, the rational expectations hy-
pothesis, the price-volume relation and the sunspot effect, which were proved by
rigorous econometrics tests, were generated by a majority of agents who did not
believe in these properties. Once again, our understanding of the micro behav-
ior does not lead to a consistent prediction of the macro behavior. The latter
is simply not just the linear scaling-up of the former. Conventional economics
tends to defend the policy issues concerned with the individual’s welfare, e.g.,
the national annuity program, based on the macroeconometrics tests, e.g., the
permanent income hypothesis. Agent-based macro-economics may invalidate this
approach due to emergent properties.

By using the CE lab, one can vary the computational resources under dif-
ferent experiments. For example, in one experiment, human agents are exposed
only to simple adaptive schemes, whereas in the other they can gain access to
sophisticated adaptive schemes. In this way, we can examine whether a society
of naive agents will tend to result in less complex aggregate dynamics than a
society of sophisticated agents.

The third issue in a sense concerns the effects of the appearance of software
agents on human agents. When human agents are explicitly informed of the pres-
ence of anonymous software agents in the system, would they behave differently
as compared to the case where such a presence is uncertain ([16])? Furthermore,
when human agents are provided with more detailed information regarding how
software agents behave, such as their adaptive schemes, would that affect their
own choice of adaptive schemes? This question is particularly relevant for elec-
tronic trading systems, such as ebay. In a sense, this question can be viewed in
terms of the socio-psychological impact on human behavior in the presence of



interacting machine intelligence. An equally important issue is concerned with
the associated market dynamics and efficiency ([7]).

4 Concluding Remarks

This paper has two aims. The first is to build a laboratory with human sub-
jects, which satisfies the computational equivalence condition. The second is so
that the lab, referred as the CE lab, can then serve as a platform to integrate
the current research in experimental economics, behavioral economics (finance)
and agent-based computational economics. These three fields share a common
research goal with regard to the relevance and significance of adaptive behavior
to economic dynamics. While, from the agent-based computational economics, it
is now quite clear that aggregate dynamics can crucially depend on the learning
dynamics (the so-called agent engineering has not been effectively resolved. In
particular, it cannot be resolved solely on the basis of experimental economics
in the way Robert Lucas suggested. This is because most labs in which exper-
iments involving human subjects are conducted do not provide subjects with
high-performance computing facilities. Consequently, many adaptive schemes
studied in agent-based computational economics are virtually impossible for hu-
man agents to compute, and the empirical relevance of adaptive schemes such
as fuzzy logic, neural networks, and genetic algorithms is beyond the current
research capacity of experimental economics.

Computational equivalence is about replictability. It basically requires that
the lab have the same computational power as ACE generally has. To achieve
this goal, software agents are introduced to and work with human agents in the
lab, as suggested by the MIT approach (to artificial intelligence). By means of
computational equivalence, what is done by the software agents (autonomous
agents) in ACE may in principle be replicated by human agents in this lab.
Only when replictability is guaranteed, can one ground the foundation of agent
engineering in experiments involving human agents.

Leaving aside ACE, the failure to incorporate these computational intelli-
gence techniques into the current experimental economics naturally limits the
computational complexity of human decision rules. This limitation can be a real
concern when the human behavior which experimental economics tries to study
is largely inspired by a computationally-rich environment. Specifically, in an era
of electronic commerce, when more and more automated trading techniques are
being made available to human agents, questions regarding the dynamics and
the efficiency of different auction designs may no longer be properly answered by
the experiments conducted in the conventional lab. However, the use of the CE
lab would help. Furthermore, more intriguing questions may arise when human
agents do not only interact (play, compete) with human agents, but also with
the possible presence of software agents, as is often seen in the case of eBay or
Nasdaq. What are the impacts of software agents on human agents? What is
the effect on market dynamics and efficiency when autonomous agents are in-
troduced to the markets? More generally, how do human agents adapt to their



digital surroundings and what are the consequential dynamics? The CE lab,
by effectively integrating ACE and experimental economics, provides us with a
starting place to explore the richness of the nonlinear complex digital economy.
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