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Abstract
This paper models adaptive learning behavior in a simple coordination game

that Van Huyck, Cook and Battalio (1994) have investigated in a controlled
laboratory setting with human subjects. We consider how populations of arti-
ficially intelligent players behave when playing the same game. We use the
genetic programming paradigm, as developed by Koza (1992, 1994), to model
how a population of players might learn over time. In genetic programming
one seeks to breed and evolve highly fit computer programs that are capable
of solving a given problem. In our application, each computer program in the
population can be viewed as an individual agent’s forecast rule. The various
forecast rules (programs) then repeatedly take part in the coordination game
evolving and adapting over time according to principles of natural selection

∗This project was initiated while Duffy was visiting National Chengchi University. A
preliminary version of this paper, Chen, Duffy and Yeh (1996), was presented at the 1996
Evolutionary Programming Conference.
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and population genetics. We argue that the genetic programming paradigm that
we use has certain advantages over other models of adaptive learning behav-
ior in the context of the coordination game that we consider. We find that the
pattern of behavior generated by our population of artificially intelligent play-
ers is remarkably similar to that followed by the human subjects who played
the same game. In particular, we find that a steady state that is theoretically
unstable under a myopic, best-response learning dynamic turns out to be sta-
ble under our genetic-programming-based learning system, in accordance with
Van Huyck et al.’s (1994) finding using human subjects. We conclude that
genetic programming techniques may serve as a plausible mechanism for mod-
eling human behavior, and may also serve as a useful selection criterion in
environments with multiple equilibria.

AMS Subject Classifications. C63, D83.

1 Introduction

The empirical usefulness of static equilibrium analysis is compromised when eco-
nomic models have multiple equilibria. Consequently, extensive efforts have been
made to identify ways of reducing the set of equilibria that are focal in models with
multiple equilibria. There seems to be some consensus emerging that a sensible
selection criterion for choosing among multiple equilibria is to determine which
of the candidate equilibria are stable with respect to some kind of disequilibrium,
“learning” dynamic.1 A number of such learning dynamics have been proposed
and used to reduce or eliminate multiple equilibria as empirically relevant can-
didates. However, the notion that these learning dynamics accurately reflect the
behavior of individual economic agents or groups of agents has only very recently
begun to be examined through a number of controlled laboratory experiments with
human subjects.2

This paper focuses on results obtained from one such experiment conducted
by Van Huyck, Cook and Battalio (1994) that tested the predictions of a class
of selection dynamics in a generic coordination game against the behavior of
human subjects who played the same coordination game. Van Huyck et al. pos-
tulated that one of two candidate learning processes could describe the behavior
of human subjects playing the coordination game. The first learning process is a
Cournot-type, myopic best-response dynamic, and the second is an inertial learn-
ing algorithm that allows for slowing changing beliefs.3 Both learning models
are special versions of a large class of relaxation algorithms that have frequently

1For references, see, e.g. the surveys by Kreps (1990), Sargent (1993), and Marimon (1997).
2For a survey of some of these experiments, see, e.g., Kagel and Roth (1995).
3Van Huyck et al. (1994) refer to this inertial learning dynamic as the “L–map” which is a
reference to Lucas’ (1986) use of this type of learning dynamic.
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appeared in the learning literature.4 Under certain parameterizations, these two
learning processes yield different predictions for the stability of one of the game’s
two Nash equilibria. Van Huyck et al.’s (1994) experimental results suggest that
in those parameterizations where the two learning algorithms yield different pre-
dictions, the inertial learning algorithm provides a better characterization of the
behavior of human subjects in the coordination game than the myopic best response
dynamic.

In this paper, we adopt a computational approach, using Koza’s (1992, 1994)
genetic programming techniques to model the behavior of artificial economic
agents playing the same simple coordination game that was studied by Van Huyck
et al. (1994). The computational approach that we take to model agent behavior
allows for a considerably more flexible experimental design than is possible with
experiments involving human subjects. Moreover, unlike most rule-based mod-
els of adaptive learning behavior, the artificial players in our genetic program-
ming implementation of the coordination game are explicitly endowed with the
ability to “think” nonlinearly, and are given all the “building blocks” necessary
to construct a vast array of both linear and nonlinear forecasting rules includ-
ing the myopic best response and the inertial learning algorithms considered by
Van Huyck et al. (1994). Thus we know, at the outset, that our artificial players
are capable of both choosing and coordinating upon linear or nonlinear forecast-
ing rules that may result in stationary, periodic or aperiodic trajectories. We find
that our more general computational approach to modeling learning behavior in
the coordination game results in behavior that is qualitatively similar to that of
the subjects in Van Huyck et al.’s (1994) coordination game experiment. Indeed,
we think of our genetic programming implementation of learning in the coordi-
nation game as a kind of robustness check on the experimental results reported
for the same game. Finally, we argue that the genetic programming techniques
we illustrate in this application have certain advantages over other artificial intel-
ligence techniques that have been applied to economic models, namely, genetic
algorithms.

The coordination game found in Van Huyck et al. (1994) differs from previous
coordination games that have been studied experimentally (e.g. Cooper, DeJong,
Forsythe and Ross (1990) and Van Huyck, Battalio and Beil (1990, 1991)) in that
1) the set of agent actions is considerably larger (indeed, there can be a contin-
uum of possible actions), and 2) the stability of one of the game’s two equilibria
cannot be ascertaineda priori. The first difference makes it difficult to formulate
and enumerate strategies that are based upon all possible actions as is often done
in adaptive learning models. The second difference arises because Van Huyck et
al. (1994) entertain the notion that agents might adopt nonlinear rules to choose
actions. Because of these differences, learning models that have been used to

4The class of relaxation algorithms includes, for example, the past averaging algorithm
of Bray (1982) and Lucas (1986), and the least squares learning algorithm of Marcet and
Sargent (1989).
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explain behavior in the early coordination game experiments, for example, the lin-
ear learning models of Crawford (1991, 1995) and the genetic algorithm approach
of Arifovic (1997) are not as well suited to the coordination game environment stud-
ied by Van Huyck et al. (1994). By contrast, we argue that the genetic-programming
approach that we take to modeling learning behavior is particularly well suited to
the coordination game environment of Van Huyck et al. (1994). We now turn to a
description of this coordination game.

2 The Coordination Game

Consider the generic coordination game0(ω), studied by Van Huyck et al. (1994).
There aren players, each of whom chooses some actionei ∈ [0, 1], i = 1, 2, . . . n.
The individual playeri’s payoff function in every round of play,t , is described by:

πi,t (e
i, e−i ) = c1 − c2|ei − ωMt(e)[1 − Mt(e)]|, (1)

wherec1 andc2 are constants,Mt(e) denotes the median of alln players’ actions
in roundt , ω ∈ (1, 4] is a given parameter ande−i denotes the vector of actions
taken by the othern − 1 players in the same round. Both the payoff function and
the set of feasible actions are assumed to be common knowledge.

It is clear from the structure of the payoff function that the individual player in
this game should seek to minimize the expression that lies between the absolute
value signs. That is, for a given value of the median,M, the individual player’s
best response functionb(M), is:

b(M) = ωM(1 − M).

This best response function gives rise to two Nash equilibria: a corner equilibrium,
whereei = 0 for all i, and an interior equilibrium whereei = 1 − (1/ω) for
all i. The best response functionb(M) is easily recognized to be a member of
the family of quadratic maps, where the degree of curvature is determined by the
tuning parameterω.

3 Selection Dynamics

Van Huyck et al. (1994) suggested that a certain class of “relaxation algo-
rithms” that are frequently encountered in the learning literature could be used to
characterize the evolution of play of this coordination game over time. This class
of relaxation algorithms is described by the simple dynamical system:

Mt = b(M̂t ),

M̂t = M̂t−1 + αt (Mt−1 − M̂t−1),
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whereM̂t is the representative agent’sexpectedvalue for the median at timet > 1,
and αt ∈ [0, 1] is a given forgetting factor. Van Huyck et al. (1994) consider
two specific versions of this relaxation algorithm: 1) a “myopic” best response
algorithm whereαt = 1 for all t > 1, and 2) an “inertial” algorithm, where
αt = 1/t for all t > 1.

The myopic best response version of the dynamical system gives rise to a simple
first-order difference equation that characterizes the evolution of the median over
time:

Mt = ωMt−1(1 − Mt−1)

It is easily shown that for 1< ω < 3, the interior equilibrium, 1−(1/ω) is attracting
(locally stable) while the corner equilibrium, 0, is repelling (locally unstable) under
the myopic best response dynamics. However forω > 3, the dynamics of the
myopic best response algorithm become increasingly more complicated, resulting
in a dense set of periodic trajectories for the median that follows the Sarkovskii
order. Whenω = 3.839, the myopic best response algorithm gives rise to a stable
cycle of period 3, which according to the famous theorem of Li and Yorke implies
that there are cycles of all periods and an uncountable set of non-periodic (chaotic)
trajectories.5 Thus, forω > 3, the interior equilibrium is no longer stable under
the myopic best response dynamics.

The inertial version of the relaxation algorithm gives rise to the dynamical
system:

Mt = b(M̂t )

M̂t = t − 1

t
M̂t−1 + 1

t
Mt−1

Note that the inertial learning algorithm differs from the myopic best response
algorithm in that the inertial algorithm gives most weight to the previousexpected
value of the median whereas the myopic best response algorithm gives all weight
to the previousrealizedvalue of the median. It is easily shown that for all feasible
values forω (ω ∈ (1, 4]), the interior equilibrium 1− (1/ω) is a global attractor
under the dynamics of the inertial learning algorithm.

Thus if 1 < ω ≤ 3, both the myopic best response and the inertial learning
algorithms predict that the interior equilibrium 1− (1/ω) will be the equilibrium
that agents eventually coordinate upon. However, for 3< ω ≤ 4, the myopic best
response algorithm predicts that the interior equilibrium will be unstable, whereas
the inertial learning algorithm predicts that the interior equilibrium will continue
to be stable.

5For a detailed analysis of the first-order difference equation,Mt = ωMt−1(1− Mt−1), that
characterizes the myopic best response dynamic see, e.g. Devaney (1989).
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4 Experimental Results and Experimental Design

Van Huyck et al. (1994) considered two experimental versions of the coordination
game,0(ω), described above. In one version of the game,0(2.4722), the interior
equilibrium is predicted to be stable under both the myopic best response and
inertial learning dynamics based on the choice ofω < 3. In a second version of
game,0(3.86957), the interior equilibrium is predicted to beunstableunder the
myopic best response dynamics; starting from any initial condition, the myopic best
response algorithm results in a chaotic trajectory for the median. By contrast, under
the inertial learning dynamics, the interior equilibrium in the game,0(3.86957),
is predicted to remain stable sinceω ≤ 4. Thus, the second game,0(3.86957), is
the more interesting one, as the stability predictions of the myopic best response
and inertial learning dynamics differ for this particular game.

Van Huyck et al. (1994) report results from 2 experimental sessions of0(2.4722)
and 6 experimental sessions of0(3.86957) using 5 subjects in each session. In
all eight sessions they found that almost all subjects quickly coordinated on the
interior equilibrium; that is, the interior equilibrium is judged to be stable in all
treatments. The authors thus conclude that the inertial learning algorithm is a better
selection device in the coordination game than the myopic best response algorithm,
since the prediction of the inertial learning algorithm regarding the stability of the
interior equilibrium is always consistent with the experimental findings.

Van Huyck et al.’s conclusion that the inertial learning algorithm serves as a
reasonable learning model/selection criterion is subject to some criticism. First,
while it is true that the inertial learning algorithm converges to the interior equi-
librium in the game,0(3.86957) (whereas myopic best response does not), the
convergence trajectory taken by this algorithm is much too smooth when com-
pared with the evolution of the median in the human subject experiments (see the
experimental data reported in Appendix B of Van Huyck et al. (1994)). A second,
related criticism is that it is apparent from the experimental data that the play-
ers in the coordination game do not all use the same learning scheme. If they all
did use the same scheme, then for the same sequence of values for the median,
we should expect to observe the same actions being taken. However, we observe
players taking many different actions, especially in the early stages of the experi-
ment, which suggests that they do not hold identical expectations. For this reason,
it seems necessary to look beyond the predictions of representative agent learn-
ing models and to consider instead the performance of heterogeneous, multi-agent
learning models. Our genetic-programming-based learning model is an example
of this kind of multi-agent approach.

We note also that in implementing the coordination game experimentally, Van
Huyck et al. (1994) made the simplifying assumption that the action set,ei consists
of only afinite set ofdiscretechoices; players were asked to choose an actionei

from the set of integers{1, 2, . . . , 90}. Each subject’s action was then mapped
into the unit interval using the functionf (ei) = (90− ei)/89. The discreteness
of the action set, however, leads to some rather dramatic changes in the analysis
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of the myopic best response dynamics for the interesting case whereω > 3. First,
the discreteness of the action set rules out the possibility of chaotic trajectories
which require the continuum of the unit interval. Indeed, the restriction that the
median take on one of 90 values implies that the median must repeat itself at least
once every 91 periods. Second, the discreteness of the action set also leads to the
possibility that the interior equilibrium of the game,0(3.86957), is locallystable
under the myopic best response dynamics. In particular, the stability of the interior
equilibrium of the discrete choice coordination game,0(3.86957), now depends
crucially on the initial condition, i.e. the first median valueM1. For almost all
feasible values forM1 ∈ {1, 2, . . . , 90}, the myopic best response dynamics for
the game,0(3.86957), converge to a stablesevencycle, implying that the interior
equilibrium is unstable. However, for some initial values the interior and the corner
equilibria can also be locallystableunder the discrete choice, myopic best response
dynamics.6

In the genetic programming implementation of the coordination game that we
explore in this paper, we do not have to discretize the action set. The computer
programs that we evolve are all capable of choosing actions on the continuum of
the unit interval. Therefore, unlike the experimental implementation of the coor-
dination game we do not rule out the possibility of chaotic trajectories. Moreover,
by allowing a continuum for the set of feasible actions, the coordination problem
faced by our artificial agents is much more complicated than that faced by the
experimental subjects whose actions were limited to a finite, discrete choice set.
Finally, we consider a much larger size population of players than is practically
feasible in an experiment with human subjects. This larger population size should,
again, make the coordination problem more difficult. Thus, our genetic program-
ming implementation of learning in the coordination game can be viewed as a
check of whether the experimental results are robust to a continuous action set with
a large number of players that would be difficult to implement in an experiment
involving human subjects.

5 Genetic Programming

Before describing how we model agent behavior in the coordination game using
genetic programming techniques, we first provide a brief overview of genetic
programming.
6In particular, forM1 ∈ {24, 67}, the interior equilibrium is locally stable under the discrete
choice, myopic best response dynamics, and forM1 ∈ {1, 90}, the corner equilibrium is
locally stable under these same dynamics. It is interesting to note that in one of Van Huyck
et al.’s 6 treatments of the game0(3.86957) - session 7 - the initial median was 24. With
this value forM1, the discrete choice, myopic best response dynamic would predict that the
system would stay at 24, the interior equilibrium forever, and indeed, this is roughly what
occurred. See figure 13 of Van Huyck et al. (1994). Thus, one cannot dismiss altogether the
possibility that discrete choice, myopic best response dynamic might also characterize the
behavior of the experimental subjects in the game,0(3.86957).
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5.1 An overview

Genetic programming (GP) represents a new field in the artificial intelligence lit-
erature that was developed only recently by Koza (1992, 1994) and others.7 GP
belongs to a class of evolutionary computing techniques based on principles of pop-
ulation genetics. These techniques combine Darwin’s notion of natural selection
through survival of the fittest with naturally occurring genetic operations of recom-
bination (crossover) and mutation. Genetic programming techniques have already
been widely applied to engineering type optimization problems (both theoretical
and commercial), but have seen comparatively little application to economic prob-
lems, which are often similar in nature. The few economic applications of GP thus
far include Allen and Karjalainen (1999), Chen and Yeh (1997a,b), Dworman et al.
(1996) and Neely et al. (1997).

While GP techniques are often viewed as an offshoot of Holland’s (1975) genetic
algorithm (GA), they are perhaps more accurately viewed as ageneralizationof
the genetic algorithm. The standard genetic algorithm operates on a population
of structures, usually strings of bits. Each of the members of this population, the
individual bitstrings, represents different candidate solutions to a well-defined
optimization problem. The genetic algorithm evaluates the fitness of these various
candidate solutions using the given objective function of the optimization problem
and retains solutions that have, on average, higher fitness values. Operations of
crossover (recombination) and mutation are then applied to some of these more fit
solutions as a means of creating a new “generation” of candidate solutions. The
whole process is repeated over many generations, in order to evolve solutions that
are as close to optimal as possible. In analyzing the evolution of solutions over
time, it is typical to report the solution in each generation that has the highest fitness
value – this solution is designated the “best-of-generation” solution. The algorithm
is ended when this best-of-generation solution satisfies a certain criterion (e.g.
some tolerance) or after some maximum number of iterations has been reached.

Theoretical analyses of genetic algorithms suggest that they are capable of
quickly locating regions of large and complex search spaces that yield highly fit
solutions to optimization problems. That is because the genetic operators of the
GA work together to optimize on the trade-off between discovering new solutions
and using solutions that have worked well in the past (Holland (1975)).8

Koza’s idea in developing genetic programming techniques was to take the
genetic algorithm a step further and ask whether the same genetic operators used
in GAs could be applied to a population ofcomputer programsso as to evolve
highly fit computer programs. There are several advantages to using computer

7See also Kinnear (1994).
8For an introduction to the theory of genetic algorithms, see, e.g. Goldberg (1989) or Mitchell
(1996). Economic applications of genetic algorithms can be found in the work of Arifovic
(1994–97), Arthur et al. (1997), Bullard and Duffy (1998a,b), Dawid (1996), Miller (1996)
and Tesfatsion (1997) among others and are also discussed in Sargent (1993) and Birchenhall
(1995).
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programs rather than bitstrings as the structures to be evolved. First, the computer
programs of GP have anexplicit, dynamic structurethat can be easily represented in
adecision tree format. By contrast, the bitstrings of GAs typically encode passive
yes/no type decisions or parameter values for pre-specified, often static functional
forms. The dynamic nature of the computer programs of GP makes them capable of
much more sophisticated and nonlinear decision-making than in generally possible
using the bitstrings of GAs. Second, the computer programs of GP areimmediately
implementable structures; as such, they can be readily interpreted as the forecast
rules used by a heterogeneous population of agents. For example, in GP, a computer
program used by playeri in roundt , gpi,t , might take the form:

gpi,t = 0.31+ Mt−1(Mt−1 − Mt−2).

Here,Mt−j represents the value of the medianj periods in the past. Given these
lagged median values, this program can be immediately executed and delivers a
forecast of the median in periodt , equal to the value of 0.31+Mt−1(Mt−1−Mt−2).
This forecast then becomes the action taken by playeri in roundt . Note that this
program is readily interpreted as the agent’sforecast function. By contrast, the bit-
strings used in GAs are not immediately implementable and their interpretation
is less clear; these bitstrings first have to be decoded and then the decoded values
must be applied to some prespecified functional form before the solution the bit-
strings represent can be implemented. Finally, while the length of the bitstrings
used in GAs is fixed, the length of the computer programs used in GP is free to
vary (up to some limit, of course) providing for a much richer range of structures.9

Koza (1992, 1994) chose to develop GP techniques using the Lisp programming
language because the syntax of Lisp allows computer programs to be easily manip-
ulated like bitstrings, so that the same genetic operations used on bitstrings in GAs
can also be applied to the computer programs that serve as the evolutionary struc-
tures in GP. Moreover, the new computer programs that result from application of
these genetic operations are immediately executable programs.

Lisp has a single syntactic form, the symbolic expression (S-expression), that
consists of a number ofatoms. These atoms are either members of aterminalset,
that comprise theinputs(e.g. data) to be used in the computer programs, or they
are members of afunctionset that consists of a number of pre-specified functions
or operators that are capable of processing any data value from the terminal set
and any data value that results from the application of any function or operator in
the function set. Each Lisp S-expression has the property that it is immediately
executable as a computer program, and can be readily depicted as a rooted, point-
labeled tree. Moreover, the S-expressions are easily manipulated like data; cutting
a tree at any point and recombining the cut portion with another tree (S-expression)
results in a new S-expression that is immediately executable.

9While in principle it is possible to represent dynamic, variable length expressions using
the bitstrings of genetic algorithms, this has not been the practice. See Angeline (1994) for
a further discussion.
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As Koza and others have noted, the use of Lisp is not necessary for genetic
programming; what is important for genetic programming is the implementation
of a Lisp-like environment, where individual expressions can be manipulated like
data, and are immediately executable. For the results reported in this paper, we
have chosen to implement the Lisp environment using Pascal 4.0.10

5.2 Using genetic programming to model learning in the coordination game

In this section, we explain how we use genetic programming to model popu-
lation learning in the coordination game. The version of genetic programming
used here is thesimple genetic programmingthat is described in detail in Koza
(1992).

Let GPt , denote a population of trees (S-expressions), representing a collection
of players’ forecasting functions. A playeri, i = 1, . . . , n, makes a decision about
his action for timet using aparse tree, gpi,t ∈ GPt , written over thefunctionand
terminalsets that are given in Table 1.

Table 1: Tableau for the GP–Based Learning Algorithm

Population size 500

The number of initial trees generated by
the full method

250

The number of initial trees generated by
the grow method

250

The maximum depth of a tree 17

Function set {+, −, ×, %, Exp, Rlog, Sin, Cos}
Terminal set {<, Mt−1, Mt−2, Mt−3, Mt−4, Mt−5}
The maximum number in the domain of
Exp

1,700

The number of trees created by reproduc-
tion

50

The number of trees created by crossover350

The number of trees created by mutation 100

The probability of mutation 0.0033

The probability of leaf selection under
crossover

0.5

The maximum number of generations 1,000

Fitness criterion Payoff function:πi,t

10Other programming languages, e.g. C, C++, and Mathematica have also been used to
implement Lisp environments.



Equilibrium Selection via Adaptation 581

As Table 1 indicates, thefunction set, includes the standard mathematical oper-
ations of addition (+), subtraction (−), multiplication (×) and protected division
(%), and also includes the exponential function (Exp), a protected natural loga-
rithm function (Rlog) and the sin and cosine functions (Sin andCos).11 This set
of operators and functions is the one that the artificial agents in our experiments
are “endowed” with.

The terminal setincludes the set of constants and variables that the artificial
agents may use in combination with the operators and functions from the function
set to build forecast rules. As indicated in Table 1, the terminal set includes the
random floating-point constantR which is restricted to range over the interval
[−9.99, 9.99], as well as the populationmeanchoice of action lagged up toh
periods, i.e.,Mt−1, . . . , Mt−h. Note that in our version of the coordination game,
M refers to themeanrather than themedianchoice of action as in Van Huyck et
al. (1994).12 The choice of the lag length,h, determines players’ ability to recall
the past. We seth equal to 5, so that agents may consider as many as 5 past lagged
values of the mean in their forecast functions.

The forecasting functions that players may construct and use are linear and
nonlinear functions ofMt−1, . . . ,Mt−h,<, and, as we shall see later, they may also
be functions, in whole or in part, of past forecast rulesgpi,t (Mt−1, . . . , Mt−h).
We note that the set of forecast functions that our artificial players may adopt
includes the myopic best response, but not the inertial learning algorithm, as the
latter requires knowledge of the previous period’s forecast of the mean value,
M̂t−1.

Indeed, Chen and Yeh (1997a) have shown that GP techniques can be used to
uncover a variety of nonlinear data generating functions. In one demonstration,
they generated a time series for the nonlinear, chaotic dynamical systemxt+1 =
4xt (1−xt ), which is the same as our myopic best response law of motion withω =
4. They then used a GP-based search in an effort to recover this exogenously given
system. Fitness was based on how close the forecast functions in the population

11The protected division operator protects against division by zero by returning the value 1 if
its denominator argument is 0; otherwise, it returns the value from dividing its first argument
(the numerator) by its second argument (the denominator). Similarly, the protected natural
logarithm function avoids non-positive arguments by returning the natural logarithm of the
absolute value of its argument, and returning the value 0 if its argument is 0. The exponential
function, which takes the argumentx and returns the valueex , allows a maximum argument
value of 1,700 as indicated in Table 1. Such function modifications and restrictions are
necessary to avoid ill-defined forecasts; these types of modifications are quite standard in
the GP literature. See, e.g., Koza (1992).

12Van Huyck et al. (1994) used the median rather than the mean in the coordination game
because in experiments involving small numbers of human subjects (they only had 5 subjects
in each experimental session), the mean can be easily influenced by the behavior of a single
subject. By contrast, the computational coordination game experiments that we perform
involve hundreds of artificial agents, so that the use of the mean rather than the median is
no longer a concern.
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came to matching the given time series behavior, and the GP function and terminal
sets were nearly identical to those used in this paper. Chen and Yeh (1997a) report
that the GP-based search was able to uncover the data generating process in no
more than 19 generations. In this paper, by contrast, the data generating process for
the mean isendogenouslydetermined by the actions chosen by all of the individual
players. Nevertheless, it is nice to know that a GP-based search algorithm can
deduce a nonlinear data generating function such as the myopic best response law
of motion.

The decoding of a parse treegpi,t gives the forecasting function used by player
i at time periodt , i.e.,gpi,t (�t−1) where�t−1 is the information set containing
past mean values through timet − 1. Evaluatinggpi,t (�t−1) at the realization of
�t−1 gives the mean action predicted by playeri in roundt , i.e.,gpi,t . Without
any further restriction, the range ofgpi,t is (−∞, ∞). However, since the action
space for each player is restricted to [0, 1], we must restrictgpi,t so that it also lies
in [0, 1]. We chose to implement this restriction in two different ways. Our first
approach was to use thesymmetric sigmoidal activation functionto map(−∞, ∞)

to [0, 1] so as to obtain a valid mean forecast,M̂i,t , for playeri in roundt , i.e.

M̂i,t = 1

1 + e−gpi,t
.

A second approach that we also considered was a simpletruncated linear trans-
formationwhere playeri’s roundt forecast was determined as follows:

M̂i,t =


gpi,t if 0 ≤ gpi,t ≤ 1,

1 if gpi,t > 1,

0 if gpi,t < 0.

Using either of these two approaches ensures that playeri’s mean choice of action
lies in the feasible [0, 1] interval.

Once we have alln players’ mean action choices (equivalent to their mean
forecasts), it is possible to determine the actual value of the mean in roundt ,
Mt = 1

n

∑n
i=1 M̂i,t . Given this mean value, we can calculate each player’sfitness

valuein roundt . Theraw fitnessof a parse treegpi,t is determined by the value of
the player’s payoffs earned in roundt as determined by the payoff functionπi,t ,
given in equation (1). To avoid negative fitness values, each raw fitness value is
adjusted to produce anadjusted fitnessmeasureµi,t that is described as follows:

µi,t =
{

πi,t + 0.25 if πi,t ≥ −0.25,

0 if πi,t < −0.25.

In making this adjustment, we are effectively eliminating from the population fore-
cast functionsgpi,t that lose more than $0.25, since these rules have comparatively
lower adjusted fitness values (equal to 0) than rules that did not perform so poorly.



Equilibrium Selection via Adaptation 583

Our decision to make the above adjustment to the fitness measure was due to the
following considerations. In the early rounds of a game, players have very limited
experience with the environment so their expectations essentially amount to ran-
dom guessing. As a consequence, many of the players will lose money. If we only
considered players with forecast functions that earned positive payoffs, the selec-
tion process would quickly come to be dominated by those few players (forecast
functions) that were lucky enough to earn positive payoffs in the initial stages of
the game. However, we want to maintain some heterogeneity in the population
and avoid the possibility ofpremature convergence, a problem that can occur in
populations lacking sufficient heterogeneity. For this reason, we allow some play-
ers to earn negative payoffs, but we restrict such losses so that they do not exceed
$0.25. After a few generations, when most of the players have begun to earn pos-
itive payoffs, this protection no longer plays any effective role. We have exper-
imented with adjustment values other than 0.25. While small adjustment values
do not significantly alter our simulation results, very large adjustment values do
affect the results because these large values effectively nullify the adjusted fitness
measure as an indicator of the relative success of a forecast function. Later in the
paper, we examine what happens when we replace the adjustment value of 0.25
in the adjustment scheme described above with the much larger value of 200.00.
However, unless otherwise indicated, all of the simulation results we report below
involve an adjustment value equal to 0.25.

Once all of the adjusted fitness values are determined, each adjusted fitness value
µi,t is then normalized. Thenormalized fitnessvaluepi,t is given by:

pi,t = µi,t∑n
i=1 µi,t

.

It is clear that the normalized fitness value is aprobability measure. Moreover,pi,t

varies directly with the performance of the parse treegpi,t ; the better the parse tree
performs (in terms of its payoff), the higher is its normalized fitness value. The
normalized fitness valuespi,t are used to determine the next generation of agents
(parse trees)GPt+1 from the current generationGPt through application of the
three primary genetic operators, i.e.,reproduction, crossover, andmutation. We
now describe these three genetic operators.

a. Reproduction:
The reproduction operator makes copies of individual parse trees from gen-
erationGPt and places them in the next generationGPt+1. The criterion
used for copying is the normalized fitness valuepi,t . If gpi,t is an individual
in the populationGPt with normalized fitness valuepi,t , then each time the
reproduction operator is called,gpi,t is copied into the next generation with
probabilitypi,t . The reproduction operator does not create anything new in
the population and the “offspring” generated by reproduction constitute only
part of the population of the next generation of trees,GPt+1. As specified in
Table 1, the reproduction operator is used to create only 10% (50 out of 500)
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of the next generation. The rest of the offspring are generated by the other
two operators,crossoverandmutation.

b. Crossover:
The crossover operation for the genetic programming paradigm is a sexual
operation that starts with two parental parse trees that have been randomly
selected from the populationGPt based upon their normalized fitness values
as described above. Crossover involves exchanging different parts of these
“parents” to produce two new “offspring.” This exchange begins by randomly
and independently selecting a single point on each parental parse tree using a
uniform distribution described below. By the syntax of Lisp, each point (atom)
of a parse tree could be either aleaf (terminal) or ainner code(function).
Thus, the point (atom) selected for crossover could either be a terminal or
a function. As specified in Table 1, the probability that the crossover point
is a terminal or a function is the same, i.e., one-half. Given that a terminal
or function is to be the point chosen for crossover, the probability that any
terminal or function is chosen as the crossover point is uniformly distributed.
For example, if the crossover point is to be a terminal, and there are three
terminals in the parse tree, the probability that any one of the three terminals is
chosen for the crossover point is one-third. Unlike reproduction, the crossover
operation adds new individuals (new forecasts rules) to the population. As
indicated in Table 1, crossover is responsible for creating 70% (350 out of
500) of the next generation of parse trees,GPt+1.

c. Mutation:
The operation of mutation also allows for the creation of new individuals.
The mutation operator begins by selecting a parse treegpi,t from the popu-
lationGPt based once again upon normalized fitness valuespi,t . Each point
(atom) of the selected parse tree is then subjected to mutation (alteration)
with a small, fixed probability. As specified in Table 1, this fixed probability
of mutation is 0.0033. To ensure that the resulting expression is a syntacti-
cally and semantically valid Lisp S-expression, terminals can only be altered
to another member from the terminal set and functions can only be altered to
another member from the function set possessing the same number of argu-
ments. The altered individual forecast rule (parse tree) is then copied into the
next generation of the population. As indicated in Table 1, mutation is respon-
sible for creating 20% (100 out of 500) of the next generation of parse trees.

The three operators combined create the populationGPt+1 by copying, recom-
bining and mutating the parse trees that make up the populationGPt . Once the
new populationGPt+1 has been created, the decoding of each parse treegpi,t+1 is
performed to obtain the new mean,Mt+1. Once the new mean is determined, the
raw, adjusted and normalized fitness values for each parse tree can be determined
using the payoff function (1), and the GP operators can then be applied to create
the populationGPt+2. The algorithm continues with successive generations, up to
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the maximum number of generations. We set the maximum number of generations
equal to 1,000 as indicated in Table 1.

The initial S-expressions were randomly generated using both the methods sug-
gested by Koza (1992) – thefull method and thegrow method.13 Together, these
two initialization methods provide for a great diversity of initial programs. Table
1 indicates that each method was responsible for creating one-half (250) of the
initial population of trees,GP1.

We consider the same two coordination games studied by Van Huyck et al.
(1994), although as mentioned previously, we do not restrict the action set to a
finite set of discrete choices. Furthermore, we have many more (artificial) players.
We refer to the game,0(2.4722), studied by Van Huyck et al. (1994) as Case 1
and the other game these authors considered,0(3.86957), as Case 2. The exact
parameterizations of these two cases are reported in Table 2.

Table 2: Parameter Values for the Coordination Game Used in the
Genetic Programming Simulations

Parameter Case 1 Case 2

ω 2.47222 3.86957

c1 0.5 0.5

c2 1.0 1.0

n 500 500

e∗
I 0 0

e∗
II 0.59551 0.74157

e∗
I : The optimal action under the strict equilibriumei = 0 ∀i.

e∗
II : The optimal action under the strict equilibriumei = 1− (1/ω)

∀i.

6 Simulation Results

Our simulation experiments were organized as follows. For each of the two differ-
ent transformation functions – the symmetric sigmoidal transformation function
and the truncated linear transformation function – we conducted 10 simulations
for a total of 20 simulations. Within each group of 10 simulations, 5 of the simu-
lations were conducted under the Case 1 parameterization and 5 were conducted
under the Case 2 parameterization.

We focus our attention first on the 10 simulations that we conducted using the
symmetric sigmoidal transformation function.Means and standard deviations from
these 10 simulations are reported in Table 3. In this table, simulation 1.1 refers to
our first simulation of Case 1, while simulation 2.1 refers to our first simulation

13See Koza (1992), pp. 92–93.
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of Case 2, and so on. Time series for the mean,Mt , from a single simulation of
Case 1 and Case 2 are plotted in Figure 1. These time series plots are typical of the
other simulations we conducted for the two cases. As these figures clearly indicate,
the time series forMt in both cases of the GP-based coordination game (Case 1
and Case 2) tend to converge to a neighborhood of the strict interior equilibrium
1−(1/ω), i.e., 0.59551 for Case 1 and 0.74157 for Case 2. In addition, the transition
to 1− (1/ω) is remarkably brief; If one considers(0.99− (1/ω), 1.01− (1/ω))

as a neighborhood of 1− (1/ω) then, for all simulations, it takes no more than 50
generations to move into this neighborhood.

A second finding is that whileMt does not converge to 1− (1/ω) in a strict
sense, due to the constant mutation rate, there appears to be a force that serves to
stabilize the movement ofMt in a very small band around the interior equilibrium.
In other words, GP-based coordination games have a self-stabilizing feature. These
properties are also revealed by Table 3.

As Table 3 reveals, in almost all of our simulations, the average of the means,
Mt , from generation 201 to 1,000, i.e.Mb, does not deviate from the interior
equilibrium value, 1− (1/ω), by more than 0.5%. Note also that if we compare

Table 3: GP Simulation Results Using the Symmetric Sigmoidal Transformation

Simulation
Case 1 2 3 4 5

1 Ma 0.5917 0.5897 0.5910 0.5907 0.5901
δM,a 0.0118 0.0107 0.0091 0.0094 0.0122
δM∗,a 0.0124 0.0122 0.0102 0.0105 0.0133

1 Mb 0.5958 0.5925 0.5936 0.5933 0.5946
δM,b 0.0037 0.0026 0.0033 0.0028 0.0021
δM∗,b 0.0038 0.0039 0.0038 0.0035 0.0023

2 Ma 0.7406 0.7411 0.7415 0.7450 0.7447
δM,a 0.0061 0.0067 0.0069 0.0064 0.0064
δM∗,a 0.0061 0.0067 0.0069 0.0073 0.0071

2 Mb 0.7394 0.7403 0.7399 0.7434 0.7431
δM,b 0.0033 0.0039 0.0040 0.0034 0.0024
δM∗,b 0.0039 0.0041 0.0043 0.0039 0.0029

Ma = the average ofMt of a simulation from Generation 1 to 1,000.
Mb = the average ofMt of a simulation from Generation 201 to 1,000.
δM,a = standard deviation about theMa of a simulation from Generation 1 to 1,000.
δM,b = standard deviation about theMb of a simulation from Generation 201 to 1,000.
δM∗,a = standard deviation about thestrict interior equilibrium1 − (1/ω) from Gen-
eration 1 to 1,000.
δM∗,b = standard deviation about thestrict interior equilibrium1 − (1/ω) from Gen-
eration 201 to 1,000.
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the standard deviations,δM,a with δM,b or δM∗,a with δM∗,b for each simulation,
we see that after the first 200 periods of learning, the stability of the mean in all
of the GP-based coordination games improves.

A third result is that the chaotic trajectories for0(3.86957) that are predicted by
the myopic best response dynamic arenot apparentin any of our simulations of
Case 2. However, by comparingδM,b or δM∗,b across Case 1 and Case 2 in Table 3,
we find that the standard deviations in Case 2 are generally somewhat larger than
those in Case 1. Indeed, a rank order test reveals thatδM∗,b is significantly larger in
Case 2 as compared with Case 1 (p ≤ .10).14This difference between the two cases
is also apparent from a visual comparison between Figure 1. Thus, while it appears
that the aggregate outcome from the GP simulations is similar for both treatments,
there appears to be some evidence that the coordination problem in Case 2 is more
difficult for our artificial players than is the coordination problem in Case 1.

Figure 1: The Time Series of the Mean Choice of Action of the Coordination Game.

We have also considered how sensitive our results are to the use of payoff
fitness as the main determinant of successive generations of forecast rules through

14No significant difference was found forδM,b between Cases 1 and 2. See Siegel and
Castellan (1988) for an explanation of the nonparametric, robust rank order test used here.
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application of the reproduction, crossover and mutation operations. Recall that we
made an adjustment to the raw fitness values, so as to avoid excluding rules with
negative payoffs. In all our simulations, we used an adjustment factor of 0.25. We
also performed a simulation exercise where we considered what happens when we
used a much larger adjustment factor of 200.00. That is, we adjusted raw fitness
values,πi,t as follows:

µi,t =
{

πi,t + 200.00 if πi,t ≥ −200.00,

0 if πi,t < −200.00.

The effect of this adjustment is to nullify the usefulness of fitness as an indicator
of the relative success of individual forecast functions. That is because the raw,
unadjusted fitness values,πi,t can only take on values in the range [−.50, .50]. (See
the payoff function (1) and the parameterizations of this function given in Table 2.)
Adding 200.00 to these raw fitness values makes them essentially indistinguishable
from one another, even after the adjusted fitness values have been converted into the
normalized fitness values that are used to determine application of the reproduction,
crossover and mutation operations.

Thus, the experiment where the adjustment value is set at 200.00 rather than at
0.25 serves as a test of whether relative fitness values are the driving force behind
the results reported above. Indeed, this experiment is a test of the explanatory
power of GP techniques. Figure 2 presents the time series for the mean from the
single experiment involving Case 1 where we set the adjustment factor equal to

Figure 2: The Time Series of the Mean Choice of Action of their Coordination Game.
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200.00 rather than 0.25. We see in this figure that the mean just wanders about
randomly and has not settled down after 1,000 iterations. In particular, the mean
does not approach either the corner equilibrium (0) or the interior equilibrium of
Case 1 (0.59551). We may conclude from this exercise that the reliance of the
genetic operators on relative fitness values is a driving force behind our simulation
results, i.e. that fitness of forecast functions matters.

In addition to considering the dynamics of the mean choice of action, it is also
interesting to examine the evolution of the population of forecast functions, i.e.,
GPt . The lengthof the best-of-generation forecast function (Lisp S-expression)
varies pretty widely. The length of a forecast function is measured by counting the
number of elements (atoms) that are used in the program.15 Programs with longer
lengths are more complex than those with shorter lengths, so the length of the
program serves as a measure of the complexity of the forecast rule. Initially, the
length of the best-of-generation program is rather small, but over time, the length
increases substantially.

Consider, Simulation 2.5 for example. (Simulation 2.5 corresponds to the fifth
simulation of Case 2). The length of the shortest best-of-generation program (S-
expression) in this simulation is 15 and it appears in generations 16, 23, 27, 29,
32, 35, 37, 40, 41 and 50:16

gpbest,16 = ((Mt−5 + Mt−4) ∗ Mt−4),

gpbest,23 = ((Mt−5 + Mt−4) ∗ Mt−4),

gpbest,27 = ((Mt−5 + Mt−3) ∗ Mt−4),

gpbest,29 = (Mt−3 ∗ (Mt−5 + Mt−4)),

gpbest,32 = ((Mt−1 + Mt−3) ∗ Mt−3),

gpbest,35 = (Mt−5 ∗ (Mt−5 + Mt−4)),

gpbest,37 = (Mt−3 ∗ (Mt−4 + Mt−5)),

gpbest,40 = (Mt−3 ∗ (Mt−4 + Mt−5)),

gpbest,41 = (Mt−2 ∗ (Mt−5 + Mt−5)),

gpbest,50 = (Mt−5 ∗ (Mt−4 + Mt−5)),

Programs with such a small program length continue to appear frequently after
generation 50 but they are no longer selected as best-of-generation programs.
Instead, increasingly complicated programs with lengths over 200 are more likely
to be selected as the best-of-generation; the longest best-of-generation program
with a length of 459 appears in generation 554:

15The length of a Lisp S-expression is distinct from thedepthof a Lisp S-expression in tree
form.

16All the GP programs below are represented as algebraic expressions (so that they can be
more easily understood) rather than in the Lisp S-expression form in which they are encoded
for GP.
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gpbest,554 = (SinCos((CosCosCos(CosMt−3 ∗ Mt−3) ∗ CosSin(CosCos

(Cos(CosMt−4%Mt−4) ∗ Cos(Mt−2 + SinSinMt−1)) + (Mt−5

∗ CosMt−2))) ∗ CosCosCosSin((Mt−3 ∗ Mt−3) − CosMt−3))

%CosSinCos(((Cos(CosMt−1 ∗ Cos(ExpSinCosMt−4∗Mt−2))

%CosSinCosSin(Mt−4%CosSinCosMt−1)) ∗ CosSinRLog

((Sin(Mt−4 ∗ CosCosMt−1) ∗ Cos(Mt−4%((CosMt−5 + Mt−2)

∗ (CosMt−3 ∗ Mt−4)))) ∗ Cos((Cos(Mt−3 ∗ CosMt−5) ∗ Cos

CosMt−4) ∗ Mt−1))) ∗ Cos(Sin(SinCos(CosSinCosMt−1

∗ (CosSinMt−2 ∗ CosCosMt−4)) + ExpSinCosCosSin

((Mt−2 ∗ Mt−3) − CosMt−3)) ∗ Cos((SinMt−3 + Mt−5) ∗
((Mt−4 + (Mt−3 + ((Mt−2 ∗ SinMt−2) ∗ Mt−1)))%CosMt−3)))))

At generation 1,000 of simulation 2.5, the length of the individual programs
was found to vary over the interval [3, 297]. This wide variation in program length
implies that considerable heterogeneity remains in the population of forecast rules
even after many generations.

Our findings that the best-of-generation programs become increasingly more
complicated over time and that heterogeneity does not appear to diminish with time
are perhaps attributable to our use of the symmetric sigmoidal activation function
to map forecasts into the unit interval. The symmetric sigmoidal transformation
function effectively “squashes” the output of forecast rules so that forecasts always
lie within the unit interval. As a result, the forecasts of the various rules and their
associated fitness values may not be all that distinct from one another even though
the rules themselves may differ considerably. One consequence is that simple
forecast rules, e.g.gpt = Mt−i , i = 1 or 2, may be unable to effectively compete
with more complicated rules (programs with longer lengths), since these more
complicated rules are better able to differentiate themselves from the simpler rules
after being squashed, and therefore, these more complicated rules stand a better
chance of being chosen for reproduction than the simpler rules.

As an alternative to the symmetric sigmoidal transformation function, we also
considered the performance of our GP–based learning algorithm when the sim-
ple truncated linear transformation (discussed above) is used in place of the sym-
metric sigmoidal transformation. The truncated linear transformation is essen-
tially a linear mapping into the unit interval whereas the symmetric sigmoidal
transformation comprises a nonlinear mapping. Thus, with the truncated linear
transformation there is less “squashing” of forecasts and associated fitness val-
ues. Indeed, squashing only occurs for forecasts that exceed the bounds of the
unit interval; forecasts that lie within the unit interval are unaltered, and there-
fore remain more distinct (in terms of fitness) than under the symmetric sigmoidal
transformation.
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We conducted 10 simulations using thetruncated linear transformation function
in place of the symmetric sigmoidal transformation function – 5 simulations of
Case 1 and 5 simulations of Case 2.17 Means and standard deviations from these
10 simulations are reported in Table 4. Here again, simulation 1.1 refers to our first
simulation of Case 1, while simulation 2.1 refers to our first simulation of Case 2,
and so on. Time series for the mean,Mt , from a single simulation of Case 1 and Case
2 are plotted in Figure 3. These time series plots are typical of the other simulations
we conducted for the two cases using the truncated linear transformation.

Table 4: GP Simulation Results Using the Truncated Linear Transformation

Simulation
Case 1 2 3 4 5

1 Ma 0.59281308 0.59279258 0.59328333 0.59295982 0.59249145
δM,a 0.02706819 0.02707828 0.02422021 0.02663368 0.02761726
δM∗,a 0.02720234 0.02721443 0.02432245 0.02675562 0.02778190

1 Mb 0.59543389 0.59544433 0.59546691 0.59546368 0.59545463
δM,b 0.00033369 0.00033578 0.00025092 0.00028152 0.00029720
δM∗,b 0.00034227 0.00034215 0.00025460 0.00028531 0.00030232

2 Ma 0.74079979 0.74081541 0.74069191 0.74081630 0.74080296
δM,a 0.01710630 0.01744866 0.01870916 0.01680324 0.01777976
δM∗,a 0.01712365 0.01746498 0.01872978 0.01682015 0.01779631

2 Mb 0.74154575 0.74154649 0.74155158 0.74155041 0.74154058
δM,b 0.00043555 0.00045807 0.00044765 0.00048606 0.00050182
δM∗,b 0.00043622 0.00045867 0.00044803 0.00048645 0.00050268

Ma = the average ofMt of a simulation from Generation 1 to 1,000.
Mb = the average ofMt of a simulation from Generation 201 to 1,000.
δM,a = standard deviation about theMa of a simulation from Generation 1 to 1,000.
δM,b = standard deviation about theMb of a simulation from Generation 201 to 1,000.
δM∗,a = standard deviation about thestrict interior equilibrium1− (1/ω) from Generation
1 to 1,000.
δM∗,b = standard deviation about thestrict interior equilibrium1− (1/ω) from Generation
201 to 1,000.

From Table 4 and Figure 3, we see that our use of the truncated linear trans-
formation in place of the symmetric sigmoidal transformation results in several
significant differences. First, a comparison between Figures 3 and 1 and between
the results in Tables 4 and 3 reveals that after 1,000 generations, the GP learning
algorithm with the truncated linear transformation is generally closer to achiev-
ing the interior equilibrium than is the GP learning algorithm with the symmetric
sigmoidal transformation. This quicker convergence to the interior equilibrium is

17Here we are using an adjustment factor of 0.25 once again to obtain adjusted fitness values.
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Figure 3: The Time Series of the Mean Choice of Action of the Coordination Game.

more consistent with the experimental findings of Van Huyck et al. (1994). Second,
we observe that the deviation of the mean from the interior equilibrium, 1−(1/ω),
in both Case 1 and Case 2 ismuch smallerwhen we use the truncated linear trans-
formation in place of the symmetric sigmoidal transformation; in all 10 simula-
tions, the average of the means,Mt , from generation 201 to 1,000, i.e.Mb, does
not deviate from the interior equilibrium value, 1− (1/ω) by more than 0.01%.
This tighter distribution of forecasts around the interior equilibrium is again more
consistent with the experimental findings of Van Huyck et al. (1994).18

As in the case of the symmetric sigmoidal transformation, we find that the
chaotic trajectories for the game,0(3.86957) that are predicted by the myopic best
response dynamic are not apparent in any of our simulations of Case 2. We also
find once again that a comparison of the standard deviations,δM,b or δM∗,b across
Cases 1 and 2 in Table 4 reveals that these standard deviations are slightly larger
in Case 2 than in Case 1. A rank order test confirms that bothδM,b andδM∗,b are
significantly larger in Case 2 than in Case 1 (p ≤ .01 in both cases). This difference

18More direct comparisons between the experimental data and the simulated data from the
GP-based learning algorithm are not really possible due to differences in the two experi-
mental designs (e.g. the GP algorithm allows forecasts on the continuum of the unit interval,
while the experimental subjects are limited to a finite set of discrete choices).
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is also present, though difficult to see, in a visual comparison between Figure 3.
We conclude that the coordination problem remains somewhat more difficult in
Case 2 than in Case 1 regardless of whether we use truncated linear transformation
or the symmetric sigmoidal transformation.

Finally, we note that under the truncated linear transformation, the length of
the best-of-generation programs are considerably smaller than those discovered
under the sigmoidal transformation. Simulation 2.2 (our second simulation of
Case 2) is typical of the other simulation results we obtained using the truncated
linear transformation. In this simulation, the longest best-of-generation program
appeared in generation 2, and had a length of 29:

gpbest,2 = Exp((((Mt−3 ∗ Mt−5) − ExpMt−1) ∗ Mt−1)

− (Mt−2%Rlog(−2.66020+ Mt−5))).

Following generation 100 of simulation 2.2, no best-of-generation program had a
length that exceeded 3. In fact, the best-of-generation programs after generation
100 were always of the simplest form:

gpbest,t>100 = Mt−i , i = 1, 2, 3, 4 or 5.

Given such simple forecast rules, it is easy to understand why the distribution of
forecasts becomes more tightly concentrated around the interior equilibrium when
we use the truncated linear transformation.

7 Summary and Conclusions

We have considered a simple coordination game where the actions of the individual
players are modeled and updated using GP techniques. Our GP-based coordination
game allows for a considerably more flexible experimental design than is possible
in experiments with human subjects. In particular, we do not have to restrict the
choice set to a finite set of discrete actions, and we can have large numbers of play-
ers, e.g.n = 500. Moreover, players in our genetic programming implementation
are explicitly endowed with the ability to formulate a vast number of both linear
and nonlinear forecasting rules for the mean, including the myopic best response
rule. This more flexible design allows for a possibly dense set of periodic and
chaotic trajectories for the mean for values ofω > 3. Despite this more flexible
design, the evolution of play in our GP-based coordination game remains quite
similar to that observed in the experiments that Van Huyck et al. (1994) conducted
with human subjects. The mean choice of action eventually settles down to a small
neighborhood of the interior equilibrium, even in Case 2, where the myopic best
response dynamic predicts that this interior equilibrium should be unstable. There
is evidence, however, that the coordination problem that our artificial agents face
in Case 2 is somewhat more difficult than the coordination problem they face in



594 S.-H. Chen, J. Duffy, and C.-H. Yeh

Case 1, as indicated by the different standard deviations about the mean/interior
equilibrium for these two cases.

While these results cast some doubt on the plausibility of the myopic best
response dynamic as a selection criterion (or any other learning schemes that would
predict the interior equilibrium to be unstable), it is not yet clear that the myopic
best response dynamic should be rejected on the basis of a “bad” prediction for a
single game, namely0(3.86957), or that the alternative, inertial learning algorithm
should be accepted as a plausible selection dynamic on the same basis. While the
inertial learning dynamic predicts that the interior equilibrium is always stable,
the predicted trajectory for the mean/median is much too smooth when compared
with the same trajectory from the experimental data. Moreover, the notion that a
single, representative-agent-type learning algorithm can be used to characterize
the evolution of the mean/median is at odds with the initial heterogeneity that is
apparent in the experimental subjects’ actions. Finally, since our GP-based learn-
ing algorithm always “converges” to the interior equilibrium it is, by the criterion
of Van Huyck et al. (1994), just as plausible a selection dynamic as the inertial
learning algorithm. The initial heterogeneity of the forecasts that arise from our
population-based GP algorithm makes it all the more plausible as a characteriza-
tion of the experimental data.

We also note that the predictions of our GP-based learning model, especially
those involving the truncated linear transformation, compare quite favorably with
some new coordination game experiments that Van Huyck, Battalio and Rankin
(1996) have recently conducted with human subjects. These new experiments
differ from the previous experiments conducted by Van Huyck et al. (1994) in that
subjects are not informed of the game’s payoff functionπ ; the only information
available to subjects is their own past action/payoff history and the discrete action
set that they may choose from. The purpose of this new experimental treatment
is to place the human subjects in an environment that is as close as possible to
that of artificial learning algorithms such as GP. In this new treatment, the human
subjects learn to coordinate on the interior equilibriumeven more quicklythan
in the previous treatment where subjects are informed of the payoff functionπ ,
of the game. Van Huyck et al. (1996) compare the experimental behavior in the
new treatment with the behavior of a representative-agent-type, linear, stochastic
reinforcement algorithm. While this algorithm eventually achieves a neighborhood
of the interior equilibrium, it takes much longer to achieve this equilibrium (750
iterations) than it takes the experimental subjects. In contrast, our multi-agent
GP-based learning algorithm converges much more quickly to a neighborhood of
the interior equilibrium (usually within 50 iterations) so that it comes closer to
mimicking the behavior of the experimental subjects.

Finally, we note that our findings for the coordination game are consistent
with some other coordination experiments that have involved overlapping gen-
erations economies. Marimon, Spear and Sunder (1993) for example, report that
experimental subjects are unable to coordinate on two-state sunspot equilibria,
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choosing instead to settle upon the steady state of an overlapping generations
economy. Similarly, Bullard and Duffy (1998b) simulate behavior using a genetic
algorithm–based learning model in an overlapping generations economy and find
that their population of artificial agents is able to eventually coordinate on steady
state and low-order cycles for inflation rates but not on the higher order peri-
odic equilibria of their model. This paper extends these earlier findings by sug-
gesting that it may not be possible for agents to coordinate on aperiodic,chaotic
trajectories.
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