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Abstract  We applied Genetic Programming with lambda abstraction module mech-
anism to learn technical trading rules based on S&P 500 index from 1982
to 2003. The results show strong evidence of excess returns over buy-
and-hold after transaction cost. The rules can be interpreted easily;
each uses a combination of one to four widely used technical indicators
to make trading decisions. The consensus among Genetic Programming
rules is high, with 80% of the evolved rules give the same decision for
most of the testing period. The Genetic Programming rules give high
transaction frequency. Regardless of market climate, they are able to
identify opportunities to make profitable trades and out-perform buy-
and-hold.
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Introduction

In this chapter Genetic Programming (GP) combined with a Lambda
Abstraction module mechanism is used to find technical trading rules
that make profitable trading in stock markets. The returns from GP
trading rules are compared with the returns from buy-and-hold strategy.
In this strategy, stocks purchased at the beginning of the term are kept
until the end of the term when they are closed; no trading activity takes
place during the term. It is the mostly frequently used benchmark to
evaluate the profitability of any trading rules.

Finding profitable trading rules is not equivalent to the problem of
forecasting stock prices, although the two are clearly linked. A profitable
trading rule may forecast rather poorly most of the time, but perform
well overall because it is able to position the trader on the right side
of the market during large price changes. One empirical approach to
predict the change of price trends is technical analysis. This approach
uses historical stock prices and volume data to identify the price trends
in the market. This technique was originated from the work of Charles
Dow in the late 1800s, and is now widely used by investment professionals
as input for trading decisions [13].

Various trading indicators have been developed based on technical
analysis techniques. Examples are moving average, filter and trading-
range break. Moving average includes a class of indicators where the
trading signals are decided by comparing a short-run with a long-run
moving average in the same time series, producing a “buy” signal when
the short-run moving average is greater than the long-run moving aver-
age. This rule can be implemented in many different ways by specifying
different short and long periods. Filter rules include a class of trading
indicators where the trading signals are decided by comparing the cur-
rent price with its local low or with its local high over a past period of
time. It can also be implemented in different time length. Trading-range
break combines multiple filter indicators to make trading decisions. Fig-
ure 1.1 gives a moving average indicator example and a trading-range
break indicator example, which is a combination of 2 filter rules.

[3] reported that moving average and trading-range break give signifi-
cant positive returns on Dow Jones Index from 1897 to 1986. [5] showed
that filter strategy can out-perform buy-and-hold under relatively low
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Figure 1.1. Moving average (10,50) and trading-range break rules.

transaction cost on NYSE and AMEX stocks for the 1962-1993 period.
These studies are encouraging evidences indicating that it is possible to
devise profitable trading rules for stock markets.

However, one concern toward these studies is that the investigated
trading indicators are decided ex post. It is possible that the selected
indicator is favored by the tested time periods. If the investor has to
make a choice about what indicator or combination of indicators to
use at the beginning of the sample period, the reported returns may
have not occurred. In order to obtain true out-of-sample performance,
Genetic Programming (GP)[7] has been used to devise the trading rules
for analysis. For the two attempts made, both of them reported that
GP can not find trading rules that out-perform buy-and-hold on S&P
500 index [1] [14] (see Section 1 for details). One possible reason of this
outcome is that the GP systems used are not adequate for this task. This
work extends GP with A abstraction module mechanism and investigate
its ability to find profitable technical trading rules based on S&P 500
index from 1982 to 2002.

This chapter is organized as follows. Section 1 reviews related work.
Section 2 presents the A abstraction module mechanism. In Section 3,
the PolyGP system is described. In section 4, S&P 500 time series data
are given. Section 5 explains the experimental setup while Section 6
presents the experimental results. We analyze the GP trading rules in
Section 7 and 8. Finally, concluding remarks are given in Section 9.

1. Related Work

Targeted toward different financial markets, different researchers have
applied GP to generate trading rules and to analyze their profitability.
For example, [1] studied S&P 500 index from 1928 to 1995. They re-
ported that the evolved GP trading rules do not earn consistent excess
returns over buy-and-hold after transaction costs. In contrast, [9] re-
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ported that their GP trading rules for foreign exchange markets were
able to gain excess returns for six exchange rates over the period 1981-
1995. [14] suggested that this conflicting result might be due to the
fact that foreign exchange markets have a lower transaction cost than
the stock markets have. Another reason Wang suggested is that [9] did
not use the rolling forward method (explained in Section 4) to test their
results for different time periods while [1] did. Finally, Wang pointed
out that these two works used different benchmarks to assess their GP
trading rules: [1] used the return from buy-and-hold while [9] used zero
return, because there is no well-defined buy-and-hold strategy in the
foreign exchange markets.

Using a similar GP setup as that of [1], [14] also investigated GP rules
to trade in S&P 500 futures markets alone and to trade in both S&P 500
spot and futures markets simultaneously. He reported that GP trading
rules are not able to beat buy-and-hold in both cases. Additionally,
he also incorporated Automatically Defined Functions (ADFs) [8] in his
GP experiments. He reported that ADFs made the representation of
the trading rules simpler by avoiding duplication of the same branches.
In this work, Wang did not compare the returns from GP rules with the
returns from ADF-GP rules.

A different approach using GP to generate trading rules is combin-
ing predefined trading indicators [2] [10]. In these works, instead of
providing functions such as average for GP to construct moving average
indicator and minimum to construct filter indicator, some of the trading
indicators are selected and calculated. These indicators are then used to
construct the leaves of GP trees. Since there are a wide range of trading
indicators, this approach has an inevitable bias; only selected indicators
can be used to construct trading rules. Modular GP relieves such bias
by allowing any forms of indicators to be generated as modules and then
combined to make trading decisions.

In a previous work [17], we used GP to generate trading strategies that
consists of rules to trade in stock markets and foreign exchange markets
simultaneously. Moreover, we also included ADF's in our GP implemen-
tations. However, the results show that most ADFs are evaluated into
constant value of True or False. In other words, ADFs do not fulfill the
role of identifying modules in the trading rules. As a result, ADF-GP
trading rules give similar returns as that of vanilla GP trading rules;
both of them are not as good as the returns from buy-and-hold. This
suggests that either there is no pattern in financial market trading rules
or ADF is not able to find them. We find this outcome counter-intuitive
since it is not uncommon for traders to combine different indicators to
make trading decisions. We therefore decide to investigate a different
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GP modular approach (A abstraction) to better understand GP ability
in finding profitable trading rules.

2. Modular GP through Lambda Abstraction

Lambda abstractions are expressions defined in A calculus [4] that rep-
resent function definition (see Section 3 for the syntax). In a GP program
tree, they are treated as independent modules which have unique iden-
tity and purpose. A abstraction can take inputs and produce outputs.
They are protected as units throughout the program evolution process.

One way to incorporate A abstraction modules in GP is using higher-
order functions. Higher-order functions are functions which take other
functions as inputs or return functions as outputs. When a higher-order
function is used to construct GP program trees, its function arguments
are created as A\ abstractions modules. These modules evolve in ways
that are similar to the rest of the GP trees. However, they can only
interact with their own kind to preserve module identities.

For example, Figure 1.2 gives two program trees, each contains two
different kinds of A\ abstraction modules: one is represented as a triangle
and the other a cycle. Cross-over operations are only permitted between
modules of the same kind.

if-then-else

A and A if-then-else

A @ N

Figure 1.2. Cross-over between A abstraction modules in two GP trees.

We use type information to distinguish different kind of A\ abstraction
modules. X\ abstractions that have the same number of inputs and out-
puts with the same argument and return types are of the same category.

) abstractions modules are simultaneously evolved with the main pro-
gram. With protected structures, they can perform a top-down process
to decompose a problem. In other words, they provide a “divide and
conquer” mechanism for GP to perform problem solving. Modules can
also be reused. In a previous work, A\ abstractions are reused through
implicit recursion to solve the even parity Boolean function problem [16].
However, in this chapter, we only investigate A abstraction in its ability
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to discover and exploit inherent patterns in technical trading rules. The
reuse of A abstraction modules in finding technical trading rules will be
studied in our future work.

3. The PolyGP System

PolyGP [15] is a GP system that evolves expression-based programs
(A calculus). The programs have the following syntax:

exrp :: ¢ constant
| identifier
| f built-in function
| expl exp2 application of one expression to another
| Az.exp lambda abstraction

Constants and identifiers are given in the terminal set while built-in
functions are provided in the function set. Application of expressions
and )\ abstractions are constructed by the system.

Each expression also has an associated type. The types of constants
and identifiers are specified with known types or type variables. For
example, the stock price index has a type Double.

index :: Double

The argument and return types of each built-in function are also spec-
ified. For example, the function “4” takes two Double type inputs, and
return a Double type output.

+ :: Double — Double — Double

For higher-order functions, their function arguments are specified us-
ing brackets. For example, the first argument of function IF-THEN-
ELSE can be specified as a function that takes two argument (one of
Time type and one with Double Type) and returns a Boolean value.

IF—-THEN — ELSE :: (Time — Double — Boolean) — Boolean — Boolean —
Boolean

Using the provided type information, a type system selects type-
matching functions and terminals to construct type-correct expression
trees. An expression tree is grown from the top node downwards. There
is a required type for the top node of the tree. The type system selects
a function whose return type matches the required type. The selected
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function will require arguments to be created at the next (lower) level
in the tree: there will be type requirements for each of those arguments.
If the argument has a function type, a A abstraction will be created to
represent it. Otherwise, the type system will randomly select a func-
tion (or a terminal) whose return type matches the new required type
to construct the argument node.

A abstractions are created using the same function set as that used
to create the main program. The terminal set, however, consists both
the terminal set used to create the main program and the arguments of
the X abstraction. Argument naming in A abstractions follows a simple
rule: each argument is uniquely named with a hash symbol followed by
an unique integer, e.g. #1, #2. This consistent naming style allows
cross-over to be easily performed between \ abstractions with the same
number and type of arguments.

4. S&P 500 Index Time Series Data

We have acquired S&P 500 index time series data between January 1,
1982 and December 31, 2002 from Datastream. Since the original time
series are non-stationary, we transform them by dividing the daily data
by a 250-day moving average. This is the method used by [1], [9]. The
adjusted data oscillate around 1 and make the modeling task earlier.

There is a different approach to normalize financial time series by
converting the price index series into a return series. In this approach,
the price difference between two consecutive days (first-order difference)
are calculated to become the return series. Since our work focuses on
relatively difference to [1] and [9], their method for normalization is
adopted. We are also aware of the controversy about whether to use
price series or return series for financial modeling [6].

Figure 1.3 gives the original and the transformed time series. There
are 3 distinct phases in this time series. From 1982 to 1995, the market
inclines consistently; between 1996 and 1999, the market bulls. After
2000, the market declines. With such a diversity, this data set is suitable
for GP to model trading rules.

While the transformed series are used for modeling, the computation
of GP trading rules returns is based on the original time series. One
implication of this data transformation is that GP is searching for rules
exhibited in the change of price trend that give profitable trading rules.

Over-fitting is an issue faced by all data modeling techniques. GP is
no exception. When optimizing the trading rules, GP tends to make the
rules producing maximum returns for the training period, which may
contain noise that do not represent the overall series pattern. In order
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Figure 1.3. Time series data before and after normalization.

to construct trading rules that generalize beyond the training data, we
split the series into training, validation and testing periods. We also
adopted the rolling forward method, which was proposed by [12] and
used by [1] and [14].

To start, we reserve 1982 data to be referred by time series functions
such as lag. The remaining time series are then organized into 7 se-
quences, each of which will be used to make independent GP runs. In
each sequence, training period is 4-year long, validation period is 2-year
and testing period is 2-year. The data in one sequence may overlap with
the data in other sequences. As shown in Figure 1.4, the second half of
the training period and the entire validation period at the first sequence
are the training period at the second sequence. The testing period at
the first sequence is the validation period at the second sequence. With
this setup, each testing period is two-year and covers a different time
period from 1989 to 2002.

training validation testing
by
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Figure 1.4. Training, validation and testing periods for 7 time sequences.
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Data from the training period are used to construct/optimize GP
trading rules while data from the validation period are used to select
the GP trading rules, which are then applied on the testing period data
to give the performance of the rule. The evaluation of the GP rules
performance is based on results from the testing periods.

5. Experimental Setup

We made two sets of runs: one with A abstraction modules and one
without. The three higher-order functions defined for GP to evolve A
abstraction modules are:

AND :: (Time — Boolean) — Boolean — Boolean

NOR : (Time — Boolean) — Boolean — Boolean

IF —THEN — ELSE :: (Time — Double — Boolean) — Boolean
— Boolean — Boolean

The first argument of AND and NOR is a function with a Time type
argument. As described before, this argument will be created as A ab-
straction in the GP trees. Since the two A abstractions are of the same
category, the left branch of an AND node in a GP tree is allowed to cross-
over with the left branch of either an AND or a NOR node in another
GP tree. The first argument of IF-THEN-ELSE, however, has unique
types. It’s left branch is therefore only allowed to cross-over with the
left branch of IF-THEN-ELSE node in another GP tree. We constrains
a GP tree to have a maximum number of 4 higher-order-functions to
preserve computer memory usage.

Table 1.1 and 1.2 give the functions and terminals that are used by
both sets of GP runs. The function avg computes the moving average in a
time window specified by the integer argument. For example, avg(250) at
time tis the arithmetic mean of index;_1, index;_o, - - -, index;_o59. The
function maz returns the largest index during a time window specified
by the integer argument. For example, maz(3) at time ¢ is equivalent to
max(index_1, index;_ o, index;_3). Similarly, the function min returns
the smallest index value during a time window specified by the integer
argument. The function lag returns the index value lagged by a number
of days specified by the integer argument. For example, lag(3) at time ¢
is index;_3. These functions are commonly used by financial traders to
design trading indicators, hence are reasonable building blocks for GP
to evolve trading rules.
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Table 1.1. Functions and their types used for both sets of GP runs.
Name Type
OR Boolean — Boolean — Boolean
NAND  Boolean — Boolean — Boolean
Double — Double — Boolean
Double — Double — Boolean
Double — Double — Double
Double — Double — Double
Double — Double — Double
Double — Double — Double
AVG Integer — Double
MIN Integer — Double
MAX Integer — Double
LAG Integer — Double

I+ AV

*

~

Table 1.2. Terminals and their types used for both sets of GP runs.

Name Type Name Type
INDEX Double RANDOM-INT Integer
TRUE Boolean RANDOM-DOUBLE Double
FALSE Boolean T Time

We redefine the AND, NOR and IF-THEN-ELSE function as follow
for GP runs without )\ abstraction:

AND :: Boolean — Boolean — Boolean
NOR :: Boolean — Boolean — Boolean
IF —THEN — ELSFE :: Boolean — Boolean — Boolean — Boolean

Both sets of GP runs use the same control parameters given in Table
1.3. The GP system is generation-based, i.e. parents do not compete
with offspring for selection and reproduction. We used tournament of
size 2 to select winners. This means that two individuals are randomly
selected and the one with a better fitness is the winner. The new pop-
ulation is generated with 50% of the individuals from cross-over, 40%
from mutation (either point or sub-tree), and 10% from copy operator.
The best individual is always copied over to the new generation. A GP
run stops if no new best rule appears for 50 generation on validation
data or the maximum number of generation (100) is reached.
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Table 1.3. GP control parameters.

Parameter Value Parameter Value
Tree Depth 4 Cross-over Rate 50
Population Size 200 Mutation Rate 40
Number of Runs 50 Copy Rate 10
Maximum Generation 100 Maximum Non-Improvement 50

Fitness Function

The fitness of an evolved GP trading rule is the return (R) it generates
over the tested period. Initially, we are out of the market, i.e. holding no
stock. Based on the trading decisions, buy and sell activities interleave
throughout the time period until the end of the term when the stock
will be forcibly closed. When in the market, it earns the stock market
return. While out of the market, it earns a risk free interest return. The
continuous compounded return over the entire period is the return which
becomes the fitness of the GP trading rule.

There are three steps in computing the return. First, the GP rules is
applied to the normalized time series to produce a sequence of trading
decisions: True means to enter/stay in the market and False means to
exit/stay out of the market. Second, this decision sequence is executed
based on the original stock price series and the daily interest rate to
calculate the compounded return. Last, each transaction (buy or sell) is
charged with 0.25% fee, which is deducted from the compounded return
to give the final fitness.

Let P; be the S&P 500 index on day ¢, I; be the interest rate on day
t, and the return of day ¢ is ry:

_ | log(P;) —log(P;—1) , in the market
= I , out of the market

Let n denotes the total number of transactions, i.e. the number of
times a True (in the market) is followed by a False (out of the market)
plus the number of times a False (out of the market) is followed by a
True (in the market). Also, let ¢ be the one-way transaction cost. The
return over the entire period of T days is:

1—c¢

T
R= log ——
Zrt+n* 0g1+c

t=1
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In this study, the transaction fee ¢ is 0.25% of the stock price. Com-
pared to the transaction cost used by [1] (0.1%, 0.25% & 0.5%) and by
[14] (0.12%), we have a reasonable transaction cost.

6. Results

Table 1.4 gives the returns from non-\ abstraction GP trading rules
while Table 1.5 gives the returns from A abstraction-GP trading rules.
The last column of both tables give the returns from trading decisions
made by the majority vote over all 50 trading rules, generated from the
50 different runs.

Table 1.4. Returns from non-)\ abstraction GP trading rules on testing data.

seq year mean stdev  median max min majority vote
1 1989-1990 0.4910 0.2667 0.4021 1.2768  0.1681 0.5639
2 1991-1992 0.5032 0.2614 0.3640 1.0306  0.2688 0.4997
3 1993-1994 0.1776 0.1540 0.1286  0.5660 0.0477 0.1996
4 1995-1996 0.6058 0.1901 0.4964 0.9212  0.3257 0.6808
5  1997-1998 0.8678 0.4177 0.7913 1.8019 0.2392 0.9145
6  1999-2000 0.4787 0.4354 0.3667 1.7774  0.0665 0.5058
7  2001-2002 0.2608 0.5796 0.0852 1.9405 -0.4109 0.7599

Table 1.5. Returns from A abstraction-GP trading rules on testing data.

seq year mean  stdev median  max min majority vote
1 1989-1990 1.0353 0.2829 1.1287 1.2585 0.3081 1.1983
2 1991-1992 0.8377 0.2297 0.9507  0.9853  0.2120 0.9610
3 1993-1994 0.4479 0.1219 0.4905 0.5925 0.0477 0.5346
4  1995-1996 0.8007 0.1484 0.8537 0.9137 0.4548 0.9051
5 1997-1998 1.4917 0.4364 1.6450 1.8972 0.4976 1.8243
6  1999-2000 1.3321 0.5569 1.5488 1.9248 0.0665 1.6522
7 2001-2002 1.0167 0.7973 1.2671 1.9844 -0.1984 1.9651

Both sets of GP runs find trading rules that consistently out-perform
buy-and-hold (whose returns are 0.1681, 0.2722, 0.0477, 0.4730, 0.5015,
0.0665, -0.4109 respectively for the 7 time periods). It is clear that
their excess returns over buy-and-hold are statically significant. Also,
A abstraction-GP rules give higher returns than non-\ abstraction GP
rules give. Moreover, trading decisions based on the majority vote over
50 rules give the best returns. These are encouraging results indicating
GP is capable of finding profitable trading rules that out-perform buy-
and-hold.
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However, the GP rules returns are calculated without considering the
following two biases: trading cost bias and non-synchronous trading bias.

Trading Cost Bias. The actual cost associated with each trading is
not easy to estimate. One obvious reason is that different markets have
different fees and taxes. Additionally, there are hidden costs involved
in the collection and analysis of information. To work with such diffi-
culty, break-even transaction cost (BETC) is proposed as an alternative
approach to evaluate the profitability of a trading rule [11].

BETC is the level of transaction cost which offsets trading rule revenue
and lead to zero profits. Once we have calculated BETC for each trading
rule, it can be roughly interpreted as follows:

m large and positive: good;
= small and positive: OK;
m= small and negative: bad;
m large and negative: interesting;

We will incorporate BETC to measure the profitability of the evolved
GP trading rules in our future works.

Non-Synchronous Trading Bias. Non-synchronous trading is
the tendency for prices recorded at the end of the day to represent the
outcome of transactions that occur at different points in time for different
stocks. Since the existence of thinly traded shares in the index can
introduce non-synchronous trading bias, the observed returns might not
be exploitable in practice. One way to test it out is by executing the
trading rules based on trades occurring with a delay of one day. This
could remove any first order autocorrelation bias due to non-synchronous
trading [11]. This is another research topic in our future work.

Another way to evaluate the GP trading rules is applying them on a
different financial index, such as NASDAQ 100. The returns might give
insights about the rules and/or the stock markets themselves.

7. Analysis of GP Trading Rules

We examined all 50 rules generated from GP with A abstraction mod-
ules on sequence 5 data and found most of them can be interpreted
easily; each module is a trading indicator in various form. Depending
on the number of )\ abstraction modules it contains, a rule applies one to
four indicators to make trading decisions (see Table 1.6). For example,
index > avg(28) is a moving average indicator which compares today’s
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index (divided by 250 moving average) with the average index (divided
by 250 moving average) over the previous 28 days. Another example
is index > maz(8), which is a filter rule that compares today’s index
(divided by 250 moving average) with the maximum index (divided by
250 moving average) of the previous 8 days.

The majority (27) of the 50 rules contain one trading indicator while
the rest (23) use a combination of two to four indicators to make trading
decisions. The most frequently used combinator is the AND function.
This means many criteria have to be met before a stay-in-the-market de-
cision (True) is issued. In other words, the GP rules evaluate the market
trends using various indicators for trading decisions. Such sophisticated
decision making process has led to more profitable trading.

In contrast, most (48) of the 50 rules generated from non-\ abstraction
GP apply single indicator to make trading decisions. Although some of
the single trading indicators can also give high returns (see Table 1.6),
they are not always easy to find. Without the structure protection,
forming trading indicator modules during evolution is not always easy.
We have found many rules having branches under a combinator (such as
AND) that are evaluated into constant value of True or False, instead
of a meaningful indicator. This is very different from the results from
the A\ abstraction GP trading rules, where more meaningful indicators
are evolved as A abstraction modules under the branches of higher-order
function combinators (AND & NOR & IF-THEN-ELSE).

Based on the analysis, we believe the A abstraction module mechanism
promotes the creation and combination of technical indicators. Such
combination usage of different trading indicators give more sophisticated
market evaluation and led to trades that generate higher returns.

We have also considered another possible benefit of A abstraction mod-
ule mechanism: it provides good seeding, which helps GP to find fitter
trading rules. However, after examining the initial populations of all the
GP runs, we find no evidence to support such hypothesis. Sometimes,
A abstraction-GP gives higher initial population fitness than the non-\
abstraction-GP does. Sometimes, it is the other way around.

8. Analysis of Transaction Frequency

As mentioned in Section 4, S&P 500 index inclines consistently be-
tween 1989 and 1995; bulls during the time period of 1996 to 1999 and
declines after 2000. As expected, buy-and-hold gives the best returns
during the year of 1996-1998 and the worst returns for 2001-2002 period.

Regardless of the stock markets climate, GP trading rules are able to
identify opportunities to make profitable trading and out-perform buy-
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Table 1.6. 50 X abstraction GP trading rules trained by sequence 5 data.

fitness quantity rule
1.8972 2 or(index > avg(2),index > lag(1))

1.8937 1 (index + indezx) > (avg(2) + avg(1))
1.8535 1 index > avg(1)
1.8476 1 if —then — else(max(1l) < index, true, avg(3) < index)
1.8059 7 index > min(2)
1.8034 1 nand(if — then — else(index < avg(3),true, false),
if —then — else(index < min(2), true, false))
1.7941 5 index > avg(2)
1.7941 1 2 % index — avg(2) > min(21)
1.7844 1 and(or(avg(l) < index,
or(or(avg(6) < index,1.30 < min(6)),avg(6) < index)), true)
1.7002 1 and(index > min(3), nand(index > avg(28), index < avg(3)))
1.6936 1 and(and(index < min(3), or(index > min(9),
index > min(11))), and(min(5) > index, true))
1.6819 1 or(index > 1.173, index > avg(2))
1.6784 1 nand(index < avg(5),index < min(3))
1.6775 1 nand(index < avg(4), nand(indexr < min(4),
nand(index < lag(4),nand(index < avg(13),true))))
1.6126 1 or(and(index > avg(5),true), and(index > min(5),
and(or(index > max(10),index < lag(5)),true)))
1.5873 2 index > min(4)
1.5870 4 index > avg(3)
1.5539 1 nand((0.00565 + index) < max(3), true)
1.5149 1 index > avg(4)
1.5133 1 and(min(5) < indez,
nor((index + avg(175)) < (min(6) + avg(199)), false))
1.5079 1 and(index > min(13), and(index > min(5),
and(index > min(17), true)))
1.4402 1 and(index > min(8), or(nand(index > maz(8),
nand(avg(165) < index, lag(45) > index)),
if —then — else(index > min(6), true, false)))
1.4130 2 index > avg(6)
1.3283 1 index < min(8)
1.1427 1 index > min(15)
1.0650 1 (0.01 + min(39)) < index
0.7968 1 2.44 * (index + index) > (avg(53) + (index * 3.86))
0.7242 1 index * index > avg(21)
0.5996 1 (index + 14.4) > (20.892/(0.28 + index))
0.5611 1 (index + 3.12) > (index/0.24)
0.5611 1 (min(84) + (8.8/index)) < ((index + 6.79) + lag(84))
0.5015 2 true(buy — and — hold)
0.4976 1 false

and-hold. The average transaction frequency for non-\ abstraction GP
rules is 22 for each testing period of 2 years. The frequency for A ab-
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straction GP rules are 3 time higher, with an average of 76 transactions
in each testing period. In both cases, the higher the transaction fre-
quency, the higher the return. This is demonstrated at the bottom half
of Figure 1.5 and 1.6 where 3 cross plots from the 3 distinct time peri-
ods are given. With a reasonable transaction cost of 0.25%, GP is still
able to find trading rules that explore many profitable trading oppor-
tunities. This endorses GP ability to find profitable trading rules that
out-perform buy-and-hold.
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Figure 1.5. Transaction frequency vs. returns for non-\ abstraction GP rules.
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Figure 1.6. Transaction frequency vs. returns for A abstraction GP rules.
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We also compare the number of generations that each GP run lasts.
As mentioned in Section 4, a GP run terminates when either no better
rule on validation data is found for 50 generations or the maximum num-
ber of generation (100) is reached. This means the number of possible
generations of a GP run is between 50 and 100. We have found that
on average A abstraction GP runs last 6 generations longer than non-A
abstraction GP runs. This means that A abstraction GP is more able to
continue to find fitter trading rules.

Do longer runs always generate better trading rules? The top half of
Figure 1.5 shows that rules that give trading frequency large than 20
are generated by runs terminated at generation 100 (there are a couple
of exceptions). In other words, longer runs generate trading rules that
give higher trading frequency (> 20) and better returns. However, this
pattern is not as evident in the ) ahstraction GP runs (The top half
of Figure 1.68) Some of the runs that terminate hefore generation 100
also generate trading rules that give high trading frequency (3> 20) and
good returns  Nevertheless gll rung that terminate at generation 100
give high trading frequency (> 20) which leads to good returns.

Figure 1.7 and 1.8 present the proportion of the 50 rules signaling
a True (in the market) over the entire testing period. They give a
visual representation of the degree of consensus among 50 rules and of
the extent to which their decisions are coordinated. The A abstraction
rules have high consensus; most of the time 80% of the rules give the
same decisions. In contrast, non-\ abstraction rules have a slightly lower
degree of consensus: about 70% of the rules give the same decisions most
of the time.
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Figure 1.7. Proportion of non-\ abstraction GP rules signals“in the market”.

Both sets of GP rules are able to identify market price trends. They
signal mostly True (in the market) during the year between 1996 and
2000 when the market is up and mostly False (out of the market) during
the year of 2001-2002 when the market is down.


客人
@Þ�:E=S2S:<b�$'&˘2S4�U)#P*B$'&)/1$q$3254�=>(n#)/1$32SFO25bx:<4'2X;<28#˘254./1$'(K:E#ŁŁ5Ł<Ł
/<V+*3:S;<28#˘254�/1$32M$34�/<I)(+#);S4�U)VK28*!$'&)/1$7;E(Ku<2G&)(K;E&m$34./<I)(+#˘;Sbd4'28y�U˘28#),Dj\? � ±1Ł�Cg/<#)I
;<:z:TIa4'25$'U˘4�#)*8_|Ü�25u<254'$'&˘28VK28*'*8o
/<V+VŁ4�U)#)*G$'&)/1$X$3254�=>(+#)/1$32m/1$c;<28#˘254�/1$'(K:E#ÙŁ5Ł<Ł
;E(Ku<2G&)(K;E&m$34./<I)(+#˘;Xbd4'28yzU)28#),Djw? � ±1Ł�C!J7&)(n,�&^VK28/<I)*�$3:>;<:z:TI^4'25$'U)4�#)*5_


18

% in the market

9.

Lambda

100 gy IW r'ﬂmm' i ’”11‘- prr"'”’ i m‘

80

60
40
20

0 11 ™

1989 1991 1993 1995 1997 1999 2001

Figure 1.8. Proportion of A abstraction GP rules signal “in the market”.

Concluding Remarks

The application of A abstraction GP to find technical trading rules
based on S&P 500 index has generated many encouraging results:

The GP trading rules give returns excess buy-and-hold with sta-
tistical significance.

The GP trading rules can be interpreted easily; they use one to
four widely used technical indicators to make trading decisions.

The GP trading rules have high consensus; 80% of the rules give
the same decision for most of the testing period.

The GP trading rules are able to identify market price trends;
they signal mostly True (in the market) during the year between
1996 and 2000 when the market is up and mostly False (out of the
market) during the year of 2001-2002 when the market is down.

The GP rules give high transaction frequency. Regardless of mar-
ket climate, they are able to identify opportunities to make prof-
itable trades.

These are strong evidences indicating GP is able to find profitable
technical trading rules that out-perform buy-and-hold. This is the first
time such positive results on GP trading rules are reported.

Various analysis show that A abstraction module mechanism promotes
the creation and combination of technical indicators during the GP evo-
lution process. With the module structure protection, meaningful tech-
nical indicators are formed as A abstraction modules. Such combination
usage of different technical indicators give more sophisticated market
evaluation and led to trades that generate higher returns.
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Future Work

The evolved GP trading rules give strong evidences that there are
patterns in the S&P 500 time series. These patterns are identified by
GP as various forms of technical indicators, each of which is captured
in a A abstraction module. This feature is exhibited in all the rules
generated from 50 GP runs.

These patterns, however, do not seem to exist in the initial popu-
lation. Instead, it is through the continuous merging (cross-over) and
modification (mutation) of the same kind of modules for a long time
(100 generations) when meaningful technical indicators were formed.

Based on these application results, we are planning on a theoretical
work to formally define the convergence process of the A abstraction GP:

m Define each indicator in the 50 GP rules as a building block;
m Formulate the steps to find one of the 50 rules.

We are not certain if such a theory is useful, since we might not
be able to generalize it beyond this particular application or data set.
Nevertheless, we believe it is a research worth pursuing.
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