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Abstract. Genetic algorithms (GAs) have, time and again, shown some
promising features when applied to optimization problems. The theoret-
ical foundations of these successful applications however are rather lim-
ited, in particular, when the problem embodies a dynamic rather than a
static landscape. In this paper, dynamic landscapes are treated as ran-
dom variables, and we sort out a few stochastic properties which may
impinge upon the performance of GAs in financial data mining. Several
tests of these properties are then proposed and a priori evaluation of the
potential of GAs can be made based on these proposed tests.

1 Motivation and Introduction

“If you had everything (computationally), where would you put it (financially)?”
This is the opening question raised in Leiweber and Arnott (1995) and is the
question faced by all investment managers in the era of high-performance com-
puting. Efforts made to answer this question have introduced a new field entitled
computational intelligence in finance. While many techniques have been claimed
to be helpful in this area, knowledge about why they are helpful is rather limited
so that these techniques are usually crowned with the unpleasant term black box.
As a consequence, the justification of using computational intelligence in finance
has yet to be established. In this paper, efforts are devoted to narrowing the gap
between theory and practice. We would like to know why we should believe in
computational intelligence without actually seeing it work.

Our contemplation of this issue starts with a specific type of computational
intelligence, namely, genetic algorithms (GAs), and a specific type of financial
application, namely, trading strategies. For a concrete example about the appli-
cation of genetic algorithms to trading strategies, we refer to Bauer (1994). These
restrictions facilitate our work to concretize the properties that can make GAs
helpful. We believe that the properties developed here should be easily extended
to other techniques in various applications.
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2 Some Fundamental Concepts and Theorems

A trading strategy d is formally defined as a mapping:

d : Ω → {0, 1}. (1)

In this paper, Ω is assumed to be a collection of finite-length binary strings. This
simplification can be justified by a data-preprocessing procedure which transforms
the raw data into binary strings. Since a different data-preprocessing procedure
may generate different Ωs, all theorems presented in this paper are expected to
be read with respect to all Ωs, or we can assume that there exists a universal-
like Ω and all theorems are working with that Ω. By assuming the existence of
a Universal Ω, we avoid the trouble of constructing an effective coding scheme
which functions as a universal Turing machine.

The range of the mapping d is simplified as a 0-1 action space. In terms of
simple market-timing strategy, “0” means to “sell” and “1” means to “buy”. Of
course, there is no reason to restrict ourselves to such limited choices. “Just hold
and wait to see”, for example, could be another alternative. In any case, the
theorem presented in this paper has little to do with the specific action space
chosen.

Given the Ω (or the Universal Ω), consider a collection of trading strategies
D:

D = {d | d : Ω → {0, 1}} (2)

Denote the return earned by following a trading strategy d (d ∈ D) over the
time interval [s, t] by rt

s. rt
s can be considered as a mapping:

rt
s : {0, 1}t−s+1 → R (3)

On the other hand, rt
s can be considered as a random variable mapping the

sample space D to R, and let f t
s be the histogram of rt

s or the density function of
the random variable rt

s, then the important property which can help us to answer
why genetic algorithms would help in financial data mining is the behavior of rt

s

and f t
s, and without losing generality, simply rt (≡ rt

0) and f t (≡ f t
0).

We say that rt holds a no-free-lunch property (briefly, NFL) if

lim
t→∞ rt a.s−→ ct, (4)

where ct is a time-dependent deterministic variable and “a.s” refers to “almost
surely”. If the NFL property holds, then clearly,

lim
t→∞ f t deg−→ ct, (5)

where “deg” means “degenerates to”.
The term no free lunch is frequently used in economics, and recently it has

been adopted by Wolpert and Macready to name their well-celebrated theorem
in machine learning (Wolpert and Macready, 1997). Our NFL property is named
in the same spirit. It simply means that in the long run, all trading strategies



perform equally well or equally bad. Alternatively speaking, if a trading strategy
d performs exceptionally well during a specific period of time, then it will be
compensated by an extremely poor performance during some other time, and
vice versa. Furthermore, if we treat ct in Equation (4) as returns from of a
riskless asset, then what the NFL property says is that, in the long run, all
trading strategies can earn no more, or no less for that matter, than what the
riskless asset does. This is analogous to the efficient market hypothesis or the
no-arbitrage condition in finance. With these understandings, we can start to
introduce our first theorem about GAs in financial data mining.

Theorem 1. If the NFL property holds, then the GA used in a non-adaptive
manner is not expected to work in the long run.

Note that Theorem 1 only states that the non-adaptive GA can fail to work
in the long run. This includes all versions of GAs as long as they are used in
a non-adaptive manner. Therefore, the choice of styles and control parameters
running GAs does not matter as predicted by Theorem 1. However, Theorem
1 itself is not sufficient to claim whether or not adaptive GAs, i.e., the trading
strategies trained recursively by GAs, will work. Also, it is mute on the short-run
behavior of any styles of GAs.

If the NFL property fails to hold, then the limit behavior of rt, if existent,
is a random variable. To see whether genetic algorithms would be helpful when
r∞(≡ limt→∞ rt) is a random variable, let us define a term called the well-ordered
property.

Definition 2. D is a well-ordered set if for all pairs of (d1, d2) in the product
space D ×D and for all t large enough, either

rt
0(d1) ≥ rt

0(d2) (6)

or
rt
0(d1) < rt

0(d2), (7)

but not both.

If D is a well-ordered set, then it is equivalent to saying that the landscape
(fitness function) determined by rt

0 is essentially static. In particular, all local
and global optima are time-invariant when t is large enough. In this case, by
the convergence theorem of GAs given by Rudolph (1994, 1996), we have the
following theorem to support the use of GAs in financial data mining.

Theorem 3. If D is a well-ordered set, then the non-adaptive GAs would
work provided that

1. The size of the training set is appropriately chosen (i.e., t is large enough).
2. The version of GAs employed can guarantee the convergence to the global

optimum.



Theorem 3 provides the conditions under which we can be very positive about
the use of genetic algorithms in financial data mining. Of the three conditions
in Theorem 3, the easiest one to satisfy is the condition on sample size. As a
matter of fact, one of the advantages of using financial data is its chunk size, e.g.,
the tick by tick data. It is also not difficult to satisfy the condition of the global
convergence. For example, one can add the elitism operator to their GAs, though
this operator does not guarantee a reasonable speed of convergence. The most
difficult condition to meet is the well-ordered property. To see how strong this
condition is, let us introduce the notation Corr(rt

0 , r
t+∆
0 ) to be the correlation

coefficient of the random variables rt
0 and rt+∆

0 . An alternative definition for the
well-ordered property is given below.

Definition 4. D is a well-ordered set if there exists a T such that for all t > T ,

Corr(rt
0 , r

t+∆
0 ) = 1, ∀∆ ∈ ℵ+. (8)

In other words, a well-ordered set implies a perfect correlation. Under a per-
fect correlation, we can surely say that the global optimum d∗ found from rt

0 is
also the global optimum of the fitness function rt+∆

0 (for t > T ). The perfect
correlation may be too strong. For example, if

Corr(rt
0 , r

t+∆
0 ) > 0.9, ∀∆ and t > T, (9)

we can form an equally weighted portfolio over the top k strategies founded
from rt

0. While not all of these k strategies are expected to perform well on an
arbitrarily extended landscape rt+∆

0 , due to the high correlation coefficient, we
can still expect that the portfolio can perform reasonably well. We, therefore,
provide the following modified version of Theorem 3.

Theorem5. The non-adaptive GAs would work provided that for t large enough
and for all ∆ in ℵ+,

Corr(rt
0 , r

t+∆
0 ) is high, (10)

and the higher the better.

Theorems 1, 3 and 5 provide us with the theoretical foundations for the non-
adaptive genetic algorithms in financial data mining. Theorem 1 gives the reason
why non-adaptive GAs may fail to work, while Theorems 3 and 5 explain ex-
plicitly the conditions under which non-adaptive GAs would help. Alternatively,
the predictable failure of the non-adaptive GAs can be summarized by Theorem
6.

Theorem6. In the long run, all non-adaptive GAs are doomed to fail provided
that

– r∞ −→ ct or
– Statistically speaking, D is not well-ordered enough.



Theorem 6 delineates the domain where non-adaptive GAs can fail. Within
this domain, the issue left is then to decide whether or not there exists a sub-
domain on which adaptive GAs can work. The main additional function of the
adaptive GA lies in its retraining design. The retraining schedule can be deter-
mined in an active (non-supervising) manner or passive (supervising) manner.
We do not intend to further differentiate the many variants of each manner. The
interested reader can find some examples in Chen and Lin (1997). Here, we would
like to restrict our attention to the general condition under which these types
of GAs tend to work. For convenience, we shall term this condition temporal
correlation defined as follows.

Definition 7. Two fitness function determined by rt+∆1
t and rs+∆2

s is said to
be connected if either

s = t + ∆1, (11)
or

t = s + ∆2, (12)
where ∆1, ∆2 ∈ ℵ+.

The temporal correlation is then the statistical correlation of any fitness functions
which are connected. More precisely, it is a function of three parameters:

Corr(t, ∆1 , ∆2) ≡ Corr(rt+∆1
t , rt+∆1+∆2

t+∆1
) (13)

To facilitate our discussion, we may need a few more notations, first, the set
Γ .

Γ ≡ {(t, ∆1, ∆2) | t ∈ [0,∞), ∆1, ∆2 ∈ ℵ+}. (14)
Second, let

Γρ ≡ {(t, ∆1, ∆2) | (t, ∆1, ∆2) ∈ Γ, | Corr(t, ∆1, ∆2) |≤ ρ} (15)

Now, we are ready to give the first theorem on adaptive GAs. First, let us
consider an extreme case.

Theorem 8 (The Random-Walk Theorem). In general, adaptive GAs would
not work if, for all triples (t, ∆1, ∆2) ∈ Γ ,

Corr(t, ∆1 , ∆2) = 0 (16)

or simply,
Γ = Γ0 (17)

Theorem 8 basically says that, no matter how we divide our data into sub-
samples, what has been learned from the previous training set can no longer be
useful to the testing set. In other words, the training sample is always uncor-
rected to the testing sample. In finance, Theorem 5 corresponds the random walk
hypothesis on which the efficient market hypothesis is built. In fact, Theorem 5
can be considered as the strongest version that can support those finance people
who believe in the EMH and claim that machine learning would play no role
in getting excess returns. Given the Random Walk Theorem as the extreme and
the most adverse circumstances for adaptive GAs, any deviations from it can
only be better. For example, consider the following deviation.



Theorem9. The adaptive GAs would work if there exists a pair (∆1, ∆2) such
that, for all t ∈ [0,∞), Corr(t, ∆1 , ∆2) is high enough, and the higher the better.

If Theorem 9 holds, then the main job left for machine learning is to search for
this pair. The search for ∆1 is equivalent to the determination of the size of the
training sample, and the search for ∆2 is equivalent to the design of the retraining
plan. In the literature, it is quite often that these two numbers are arbitrarily
chosen or chosen based on some rules of thumb. If the condition embodied in
Theorem 9 holds, then there should be some systematic ways designed for the
determination of the pair (∆1, ∆2).

While Theorem 9 is obviously a large deviation of the efficient market hypoth-
esis, the money left on the ground may not be so easy to pick up. As opposed to
Theorem 9, Theorem 10 provides a closer description of the more sophisticated
situation.

Theorem10. The adaptive GAs would work if, for all t ∈ [0,∞), there exists
a pair (∆1, ∆2) depending on t such that Corr(t, ∆1(t), ∆2(t)) is high enough,
and the higher the better.

In Theorem 10, while the pairs (∆1, ∆2) exists for all t, they are not fixed.
Different t may imply different ∆1 and ∆2. Therefore, any adaptive GAs with a
fixed size of training sample and a fixed updating frequency may fail.

3 Concluding Remarks

By asking why GAs may or may not work in principle, this paper distinguish
itself from the existing empirical literature of financial data mining in that we
do not evaluate the performance of GAs just by their luck. Instead, we try
to provide some properties which can help us explain why some kinds of GAs
can performs well, while others cannot, in particular, the properties about the
success or failure of non-adaptive GAs and adaptive GAs. In the next paper, we
will test some of these properties and, based on that, to gauge the performance
of different styles of GAs.
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