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Abstract

As a follow-up to the work of [4] and [5], this paper continues to explore the relation-
ship between wealth share dynamics and risk preferences in the context of an agent-based
multi-asset artificial stock market. We simulate a multi-asset agent-based artificial stock
market composed of heterogeneous agents with different degrees of relative risk aversion.
As before, we find that the difference in risk aversion and the resultant saving behavior are
the primary forces in determining the survivability of agents. In addition to the stability of
the saving behavior, the level of the saving rate also plays a crucial role. The agents with
stable saving behavior, e.g., the log-utility agents, may still become extinct because of their
low saving rates, whereas the agents with unstable saving behavior may survive because of
their high saving rates, implied by their highly risk-averse preferences.

Key words: Risk Preferences, CRRA (Constant Relative Risk Aversion), Blume-Easley
Theorem, Agent-Based Artificial Stock Markets, Genetic Algorithms

1 Motivation and Introduction

The contribution of risk preference to the survivability (wealth share) of in-
vestors has recently received a series of theoretic and simulation studies (e.g., [1],
[19], [18], [2], [4], [5]). The results are mixed, depending on how we approach
this issue. While the standard analytic approach proves the irrelevance of risk pref-
erence to survivability ([18], [2]), the agent-based computational approach indi-
cates the opposite ([4], [5]). This kind of inconsistency, as quite often seen in the
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agent-based computational economics literature, simply reflects the sensitivity of
the classical (analytical) results to the interacting heterogeneous boundedly-rational
behavior.

[4] actually supports an earlier result obtained in [1], which is also known as
the Kelly criterion in financial economics. This result basically points out the op-
timal type of risk preference, namely, the CRRA (constant relative risk aversion
coefficient) agent with an RRA coefficient of one. Equivalently, it is the log utility
function. [5] reestablishes this result, while in an agent-based computational set-
ting. They examine the long-run wealth share dynamics of eleven different types
of CRRA agents, with RRA coefficients ranging from 0 to 1 with increments of
0.1. They find that in finite time the wealth share is positively related to the CRRA
coefficient, and in the long run, only the agents with high CRRA coefficients can
survive. All others become extinct.

This paper is an extension of [5] in the sense that we wish to extend the earlier
testing domain of the CRRA coefficient from [0, 1] to an even larger positive do-
main. In doing so, we are inquiring whether a higher degree of risk aversion can
actually enhance the survivability of agents. Notice that the degree of risk aversion
is not the original concern of either the Kelly criterion or the Blume-Easley theo-
rem ([1]), both of which are only concerned with the dominance of the log-utility
type agents. Risk aversion is involved because the log-utility agent is also known
as a CRRA type of agent with an RRA coefficient of one. Now, is this the optimal
degree of risk aversion? Will more risk-averse agents (i.e. those with RRA coeffi-
cients greater than one) be also driven out of the market when they are competing
with the log-utility agents? Or, would higher risk aversion help them survive? These
are the questions that we try to answer in this paper.

We consider these questions to be particularly relevant because the empirical lit-
erature actually suggests a large range of relative risk aversion coefficients. Some
of them are exactly one or less than one, but many more are greater than one. Of
course, it is doubtful whether one can directly compare our results with those empir-
ical values, since they refer to quite different stories. However, given the prevailing
empirical results on high risk aversion, it is definitely useful to know what makes
them so, and our agent-based computational setting can serve as a good starting
point.

The remainder of this paper is organized as follows. Section 2 gives a brief in-
troduction to a simple multi-asset model, which is originally used in [1] and later
extended and modified by [18]. Section 3 presents the artificial multi-asset mar-
ket, which is an agent-based version of the analytical model presented in Section
2. Section 4 gives the experimental design. To justify the range of the relative risk
aversion coefficient considered in this paper, it starts with a brief review of the lit-
erature on the empirical estimation of the RRA coefficient in Section 4.1, followed
by the setting of other control parameters in Section 4.2. The simulation results are
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presented and discussed in Section 5, and are followed by the concluding remarks
in Section 6.

2 A Simple Multi-Asset Model

The simulations presented in this paper are based on an agent-based version of
the multi-asset market as [1] and [18] have studied. The market is complete in the
sense that the number of states is equal to the number of assets, say M . At each date
t, the outstanding volume of each asset is exogenously fixed at one unit. There are
I investors in the market, each indexed by i. At time t asset m will pay dividends
wm if the corresponding state m occurs, and 0 otherwise. The behavior of states
follows a finite-state stochastic process, which does not have to be stationary. The
dividends wm will be distributed among the I investors proportionately according
to their owned share of the respective asset. The dividends can only be either re-
invested or consumed. Hoarding is prohibited. If agent i chooses to consume c, her
satisfaction is measured by her utility function u(c). This simple multi-asset market
clearly defines an optimization problem for each individual.

max
{{δi

t+r}∞r=0,{αi
t+r}∞r=0}

E{
∞∑

r=0

(βi)rui(ci
t+r) | Bi

t} (1)

subject to

ci
t+r +

M∑

m=1

αi,∗
m,t+r · δi,∗

t+r · W i
t+r−1 ≤ W i

t+r−1, ∀r ≥ 0, (2)

M∑

m=1

αi
m,t+r = 1, αi

m,t+r ≥ 0, ∀r ≥ 0. (3)

In Equation (1), ui is agent i’s temporal utility function, and β i, also called the
discount factor, reveals agent i’s time preference. The expectation E( ) is taken
with respect to the most recent belief B i

t , which is a probabilistic model used to
represent agent i’s subjective belief regarding the stochastic nature of the state. The
maximization problem asks for two sequences of decisions, one on saving, and one
on portfolios, as denoted by

{{δi
t+r}∞r=0, {αi

t+r}∞r=0},

where δi
t is the saving rate at time t, and

αi
t = (αi

1,t, α
i
2,t, ..., α

i
M,t)

is the portfolio comprising the M assets.
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Equations (2) and (3) are the budget constraints. W i
t is the wealth of agent i at

time t, which is earned from the dividends paid at time t. Notice that these budget
constraints do not allow agents to consume or invest by borrowing.

The equilibrium price ρm,t is determined by equating the demand for asset m
with the supply of asset m, i.e.

I∑

i=1

αi,∗
m,t · δi,∗

t · W i
t−1

ρm,t
= 1, m = 1, 2, ...,M. (4)

Rearranging Equation (4), we obtain the market equilibrium price of asset m:

ρm,t =
I∑

i=1

αi,∗
m,t · δi,∗

t · W i
t−1. (5)

3 The Agent-Based Multi-Asset Artificial Stock Market

An agent-based computational version of the Blume-Easley-Sandroni standard
multi-asset model is developed in [4]. One of the mainstays of the agent-based
computational economics is autonomous agents. ([20]) The idea of autonomous
agents was initially presented in [12]. Briefly, these agents are able to learn and
to adapt to the changing environment without too much external intervention, say,
from the model designer. Their behavior is very much endogenously determined by
the environment which they are interacting with. Accordingly, it can sometimes be
very difficult to trace and to predict the resulting outcome, known as the emergent
behavior.

In this paper, we follow what was initiated in [12], and equip our agents with the
genetic algorithm to cope with the finite-horizon stochastic dynamic optimization
problem, (1) – (3). The GA is applied here at two different levels, a high level (learn-
ing level) and a low level (optimization level). First, at the high level, it is applied
as a belief-updating scheme. This is about the B i

t appearing in (1). Agents start with
some initial beliefs regarding state uncertainty which are technically characterized
by parametric models, say, Markov processes. However, agents do not necessarily
confine themselves with just stationary Markov processes. Actually, they can never
be sure whether the underlying process will remain unchanged over time. So, they
stay alert to that possibility, and keep on trying different Markov processes with
different time frames (time horizons). Specifically, each belief can be described as
“a kth order Markov process appearing over the last d days and may continue”.
These two parameters can be represented by a binary string, and a canonical GA
is applied to evolve a population of these two parameters with a set of standard
genetic operators. 1

1 Details can be found in [4], Appendix A.2.
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Once the belief is determined, the low-level GA is applied to solve the stochastic
dynamic optimization problem defined in (1) – (3). Basically, we use Monte Carlo
simulation to generate many possible ensembles consistent with the given belief
and use them to evaluate a population of investment plans composed of a saving
rate and a portfolio. GA is then applied to evolve this population of candidates. 2

In sum, the high-level GA finds an appropriate belief, and under that belief the
low-level GA searches for the best decisions regarding savings and portfolios. This
style of adaptive design combines learning how to forecast with learning how to
optimize, a distinction made in [3]. These two levels of GA, however, do not repeat
themselves with the same frequency. As a matter of fact, the belief-updating scheme
is somewhat slow, whereas the numerical optimization scheme is more frequent.
Intuitively, changing our belief in the meta-level of the world tends to be slower
and less frequent than just fine-tuning or updating some parameters associated with
a given structure. In this sense, the idea of incremental learning is also applied to
our design of autonomous agents.

4 Experimental Design

4.1 Empirical RRA Coefficients

This paper and the coming experimental design are both very much motivated
by the existing intensive empirical studies on the RRA coefficient. Therefore, we
would like to give a brief survey here to present a general flavor on the wide dis-
persion of various estimates. For convenience we shall denote the RRA coefficient
by �.

Let us look at this from the left extreme, i.e. � ≤ 1. While [5] already questions
the survivability of the CRRA agents with � being less than 1, empirical studies
supporting small � still exist. The lowest value of � is found in [16], which is
only 0.3. A little above this is [11]’s estimate, that ranges between 0.3502 and
0.9903. The one that seems to best fit our early simulation result of [5] is [8],
who find values of RRA of around unity. Instead of using real economic data, [10]
derived their estimate from a laboratory experiment with human subjects, which
lay between 0.6 and 1.4. At the other extreme, there are cases of � ≥ 10, such as
18 in [17] and 30 in [14]. These estimates are so large and are puzzling to many
economists, having become part of the very famous equity premium puzzle. Next to
those big ones, [13] also find a double-digit RRA in their estimates, which is close
to 12. Despite these two extremes, most estimates suggest a moderate range for �,
and include the [1,3] interval ([9]), the [2,3] interval ([15]), [21]), the [2,5] interval

2 Details can be found in [4], Appendix A.1.
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([6]), etc.

4.2 Control Parameters

According to the brief review above, we have set � to lie in the [0.5, 5] interval.
It starts from 0.5 with increments of 0.5 and continues up to 5. In this setting, we
have a total of 10 types of CRRA agents, and assign 5 market participants to each
type of agent. Hence, there are fifty agents in the market in total. There are also 5
assets available in the market (M = 5), corresponding to 5 states. Asset m pays
dividends 6 − m (m = 1, 2, ...5). Two stochastic processes are considered in the
experiments, namely, iid and the first-order Markov. Each is employed for one half
of the total number of runs. The parameters of these two stochastic processes are
also randomly generated in such a way that the axioms of the probability function
are satisfied. Parameter values for the low-level and high-level GA can be found in
[4], 4.1. We have 100 independent runs of the same experiment, and each run lasts
for 100 market periods (T=100). The simulation is conducted using the software
AIE-ASM Version 5.0. The software is written with Delphi, Version 6.0. It usually
takes 3 hours for a single run on a Pentium III 1000 computer with 256 MB of
RAM.

5 Simulation Results

5.1 Wealth Share Dynamics

Figure 1 shows the time series of the wealth share among the 10 types of agents.
Notice that each line is based on an average of 100 simulations. The diagram seems
to clearly indicate that the higher the risk aversion coefficient, the higher the wealth
share. For example, the wealth share of the agents with the highest risk aversion
coefficient (� = 5) shows strong growth from 10% in the initial period to 35% in
the final period. What is particularly striking is that, unlike what the Blume-Easley
theorem ([1]) predicts, the log-utility agents (� = 1) do not survive well in this
case. Instead, their wealth share keeps on declining toward zero. Agents with lower
values of � share the same destiny. This result combined with our earlier result
(Figure 3, [5]) well articulates the contribution of risk aversion to survivability.

5.2 Saving Rates

Following the analysis in [4], we raise the same question: what may cause the
agents with high values of � to survive and those with low values to vanish? In [4],
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Fig. 1. Wealth Share Dynamics

the difference lies in the saving behavior. It is mainly the stable saving behavior that
distinguishes log-utility agents from other types of agents. However, this argument
is no longer applicable to our case. Figure 2 is the box-whisker plot of the saving
rates. Each plot shows the life-time distribution of the saving rate δt associated with
a specific RRA coefficient. To generate each plot, we first take an average of the
saving rate of the five agents for the same �. This is done period by period. A single
history of δt (t = 1, 2, ..., 100) is then derived by further taking an average over the
entire 100 simulation runs. So, in the end, we have a single time history of δt for
each �. The ten boxes are drawn accordingly.

We first notice that the log-utility agent (the case where � = 1) still has the most
stable saving behavior with a very narrow niche around 0.45, which is exactly the
discount rate (β) set in this paper. [1] shows analytically that δt = β for � = 1.
In other words, the optimal saving rate for agents with � = 1 is just a constant
and is the discount rate. Therefore, their saving behavior is independent of other
economic variables, such as beliefs, wealth, asset prices or expected asset returns.
Our genetic algorithm (the low-level GA) just confirms this property numerically.
The property, however, is not shared by other types of agents. The most successful
agents, agents with � = 5, obviously have a box and whisker wider and longer
than the log-utility agents, indicating a not very stable saving behavior. Hence, the
dominance of a stable saving behavior as evidenced in [4] fails to carry over to this
case.

However, why does the unstable saving behavior no longer cause a threat to
the survival of the agents with a high RRA coefficient? And why can these agents
drive out the log-utility agents? The answer probably lies in their high level of sav-
ing rates and the avoidance of extremely low saving rates. [1] already addressed the
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Fig. 2. Distribution of Saving Rates

significance of the level of the saving rates, while their saving behavior is exoge-
nously given. In our context, saving behavior is endogenously generated, and from
the median, i.e. the line appearing in the middle of the box in Figure 2, it is found
that the level of the saving rates increases with the RRA coefficient. 3 It starts from
0.45 or so and increases up to 0.75. Therefore, although the agents of high risk
aversion have very unstable saving behavior, their high long-run saving rates com-
pensate for this weakness. Besides, what deserves to be mentioned further is that
the high saving rate does not provide the entire compensation. To survive, agents
must also avoid extremely low saving rates, i.e. the low whisker cannot come down
to anything almost zero. Fortunately, an analysis using Equation (6) may show that
our CRRA-type agents will avoid this fatal point. As shown in Figure 2, almost all
of our agents have the minimum saving rate above 0.20. However, many other types
of agents studied in [4] are not so lucky to step away from this dangerous zone.

Putting it together, we find that both the first moment and the second moment of
saving behavior matter for the survivability issue. [1] does not consider the unstable
saving behavior, so the second moment is neglected. [4] does not simulate the cases
in which there exist some agents whose level of saving rates is sufficiently high
and simultaneously without choosing an extremely low down-side saving rate, so

3 Analytically, via the Euler equation (6), it can be shown that in a standard continuous-
time dynamic optimization context, the RRA coefficient is positively related to the saving
rate.

r = β + �
ċ(t)
c(t)

(6)

While our situation is much more complicated, that context may still provide us some useful
insights to work with.
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Table 1
Performance Measurements

RRA 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Mean 4.479 3.303 2.182 1.713 1.484 1.360 1.281 1.222 1.181 1.162

Variance 109.923 53.816 18.923 10.779 7.666 6.261 5.349 4.688 4.382 4.351

Sharpe Ratio 0.427 0.450 0.502 0.522 0.536 0.543 0.554 0.564 0.564 0.557

the importance of the first moment is not revealed. This paper supplements [4] by
integrating the effect of the first moment and the second moment.

Having said that, we compare the wealth share dynamics of two types of agents,
i.e. agents with � = 1.5 and � = 1. From Figure 2, we can see that agents with
� = 1.5 have a higher medium saving rate than agents with � = 1, but they have a
weaker stability. On the other hand, from Figure 1, we actually see that the wealth
share of the former (� = 1.5) declines at almost the same speed as the latter (� = 1),
which suggests the substitution effect between the two moments: a sufficiently high
level of saving rates can compensate a lower degree of instability so as to keep
survivability unaffected. 4

5.3 Portfolio Performance

In addition to the saving rate, portfolio performance may be another contributing
factor to survivability. However, this possibility has already been excluded in [4],
and is excluded here again. Table 1 gives the three basic performance measures:
the mean return, the risk (variance), and the Sharpe ratio. 5 These statistics are
averaged over the five agents of the identical type and are further averaged over the
entire 100 simulation runs.

As we have seen in [4], the surviving agents do not have the highest rates of
return. For example, surviving agents, agents with a � of 4 to 5, have earned rates
of return ranging from 1.22 to 1.16, which is almost one fourth or one third of those
of the extinct agents (� = 0.5, 1). Nonetheless, the column “variance of return”
indicates that these agents are under different exposures to risk. Agents with higher
returns are exposed to a higher risk and vice versa. This result is exactly what we
expect. Agents with higher relative risk aversion coefficients choose to behave more
prudently: low risk but also low return. On the other hand, agents with lower risk

4 The substitution effect between the first and second moments obviously needs more care-
ful analysis in the future. What is needed for supporting the existing empirical evidence is
whether one can have a range of �, e.g. 3 ≤ � ≤ 5, within this range, all agents survive,
characterized by a large positive wealth share.
5 For the definition or calculation of these statistics, please see [4], Equations (21) and
(22), for details.
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aversion coefficients choose to behave more aggressively: high return but also high
risk.

Motivated by this finding, we go further to examine the risk-adjusted return,
also known as the Sharpe ratio, and we find that, despite their low mean rate of
return, the precautionary behavior of highly risk-averse agents actually helps them
to earn a higher Sharpe ratio. However, there is no simple intuition to tell us why
the agents with higher Sharpe ratios would survive. In particular, if we draw the
risk-return plot in Figure 3, we see that all these ten type of agents are standing on
the efficient frontier. Strictly speaking, there is no one type of agent being strongly
dominated by any other types of agent. 6 Therefore, we see no particular reason to
attribute their survivability to portfolio performance.

6 Concluding Remarks

The basic conclusion that risk preference matters as established in [4] and [5]
remains unchanged in this paper. The only thing modified here is what causes it
to matter. The early analysis singles out the stable saving behavior as the distin-

6 Since all agents are equipped with the same soft computing technique, namely, GA, to
solve their utility maximization problems, this result simply shows that GA is at least doing
equally well for all types of agents. In fact, not only for the low-level GA, [4] shows that,
in terms of forecasting accuracy, the high-level GA also performs equally well for all types
of agents.
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guishing feature of the log-utility agents, and considers it to be the contributing
factor to survivability. In this analysis, we add the level of the saving rate to it, and
suggest that the level (the first moment) and the stability (the second moment) can
both be contributing factors and in effect work together. When the first-moment
effect dominates the second-moment effect, the log-utility agents become extinct
and those who survive are the very risk-averse agents.

This study can be possibly related to the extensive literature on the empirical
estimation of the RRA coefficients. A wide range of RRA coefficients has been
found in the literature, and so far no unanimous conclusion has been reached. The
agent-based computational approach as demonstrated in this paper proposes the
possibility that in reality there may be such a wide survival range of the relative
risk aversion coefficient. Within this range, the first-moment effect counter balances
the second-moment effect, and all agents can survive with some positive and large
wealth share.
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