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Abstract

By exploring a two-dimensional parameter space, this paper pindowns the area where speculative
trades can contribute to the reduction of price volatility and are hence imperative for market efficiency.
This area is delimited by a rather restrictive financial regulations imposed on an inherently unstable
economy. Specifically, depending on the associated financial regulations, our GP-based simulations of
cobweb markets show that speculative trades may reduce price volatility by 20% to 50% in an inherently
unstable economy; on the other hand they may also increase price volatility by 300% to 3000%. This
paper generalizes the earlier finding by Chen and Yeh (1997), which basically shows that in an inherently
stable economy, speculative trades can only be destabilizing.

Key Words: Genetic Programming, Efficient Market Hypothesis, Speculative Trades, Short Selling,
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1 Motivation and Introduction

Let 02 be the variance of the price of an abstract commodity X, and assume that o2 can be decomposed
into two parts, i.e., the systematic part o2 and the non-systematic part o7, or simply,

02 =02+o0;. (1)

Based on Equation (1), the efficient market hypothesis (EMH) can be defined as follows: a market
is said to be efficient if 02 = 0. In other words, if we consider o2 as a measure of risk, then the EMH
is a hypothesis about the minimum risk. It says that when market is efficient, the market participants
(consumers and producers) are actually exposed to the minimum risk. The argument which lends support
to the EMH is the classical theory of speculative trades, which is built upon the no-arbitrage condition.
By this condition, if o2 is greater than 0, then there must exist some underlying regularities of the price
movement, e.g., the climate pattern. The speculators can then take the advantage of these regularities by
trading on these patterns, e.g., buying a lot of goods in the rainy season and selling them in the dry season.

*This paper is prepared for the presentation at the IEEE/IAFE Annual Conference on Computational Intelligence for
Financial Engineering (CIFER’97), Crowne Plaza, Manhattan, New York City, March 23-25, 1997. Research support from
NSC grants No.84-2415-H-004-001 and No. 84-2415-H-004-001-1 is gratefully acknowledged. The authors are grateful to Wei-
Chuan Chang for excellent research assistance. All the simulations were conducted in the Laboratory for the Advancement
of Economics Education, funded by the Ministry of Education and National Chengchi University.



This kind of trade will continue until all regularities are exploited, i.e., until 2 = 0. As a consequence, in
a market where speculative trades are permitted,

o2 =oj. (2)

Clearly, the 02 in Equation (2) is smaller than the o2 in Equation (1).

In other words, speculative trades can reduce price volatility by ¢2. The reduction of price volatility
has significant implications for economic efficiency. Usually, when the price is steady and predictable, the
decision to produce is more likely to be correct, and, as a result, larger gains from trade can be realized.
Therefore, the main conclusion of the classical theory of speculative trades is that speculators function as
price stabilizers and can enhance the economic welfare of market participants.

The reasoning process from Equation (1) to Equation (2) presented above has one important assumption,
namely, that speculators themselves will not contribute to the increase in price volatility. In other words,
even if speculators fail to bring down price volatility, there is no way that it can go up. Suppose that this

assumption fails to hold, then Equation (2) must be modified by adding to it a positive term o2,

afc = Uf + Uf, (3)

where o2 is trading noise brought by speculators. Given this modification, the classical theory of speculators
can still sustain if and only if
02 > 0’3. (4)

Since the classical theory of speculative trades fails to take the factor o2 into account, it certainly cannot
answer the question when Equation (4) can hold and, more importantly, when speculators can be destruc-
tie. Insufficient knowledge of Equation (4) has created a puzzle for economics students. In class, they are
told that speculative trades are imperative for efficient market, while, walking on street, they are impressed
by the fact that financial regulations are important for the healthy operation of financial markets. What
is the foundation of financial regulations? Can these regulations be justified? How do we know that they
are making markets efficient rather than inefficient?

Using genetic programming to simulate speculative trades, Chen and Yeh (1997) illustrated that the
function of financial regulations is to control 2. Therefore, to some extent, financial regulations can
contribute to the reduction of o2 given that speculative trades are permitted. The environment simulated
by Chen and Yeh (1997) is a multi-agent production economy with adaptive producers as well as adaptive
speculators. To see whether speculators are stabilizing or destabilizing the market, they used the CASE 1
in Chen and Yeh (1996) as the starting point and added speculators to it thereafter. In all the simulations,
they had a consistent result: speculators are destabilizing rather than stabilizing the market. Furthermore,
price volatility has a tendency to go up when the financial regulations are increasingly relaxed.

While the role of financial regulations is explained in Chen and Yeh (1997), we can hardly see how
speculators can contribute to price stability. The study was biased towards the side o2 < o2 and gave little
attention to the other possibility: 02> > 2. However, as we shall see in this paper, this biased result, if
any, is due to the design of the experiments, which set o2 initially too low and o2 too high.

The key variable used to control o2 is the cobweb ratio. The cobweb ratio was set to be 0.95 in Chen
and Yeh (1997). This ratio will generate a stable cobweb model. As shown by Chen and Yeh (1996), in
this stable case, 02, and hence o2, will converge to a number which is dependent on the mutation rate.
Since normally the mutation rate is set to be a very small number, say, 0.0033, o2 can be small as well
and, other things being equal, this setting makes Equation (4) more difficult to hold. On the other hand,
the key variable which may affect o2 is the financial depth defined as the ratio of potential real speculative
trades to the real output in the equilibrium. The financial depth is regularized by setting the upper limit
for short selling s and the upper limit for the inventory b. In Chen and Yeh (1997), it ranges from % to
@. This setting may be so high that Equation (4) can easily be violated.

Therefore, while Chen and Yeh (1997) showed when o2 can be greater than o2, the essence of this line of
research is not to show that speculators are destabilizing. Rather, the belief underlying this line of research
is that markets without speculators cannot be efficient. On the other hand, markets with speculators can be
even worse if appropriate financial requlations are absent.



Table 1: Codes of Simulations
f.d. /c.r. | 0.95 | 1.05 | 2.00 3

B.M. A0 | B-0 | C-0 | D-0
0.005 A1 | B1 | C-1 | D-1

0.01 A2 | B2 | C2 | D2
0.1 A3 | B3 | C3 | D-3
1.0 A4 | B4 | C4 | D4
10 A5 | B-5 | C5 | D-5

The four numbers appearing in the c.r. row are four cobweb ratios. The four ratios are encoded by letters A, B,
C, D in the ascending order. The five numbers in the f.d. column are the upper limit for short sells and inventory.
These five limits are also encoded by numbers 1, 2, 3, 4, 5 in the ascending order. B.M. refers to the benchmark
which is the case without speculators and is encoded by “0”. For those cases with speculative trades, the duration
for the short position is set to be 20. For details, see Chen and Yeh (1997a).

This paper modifies the environment simulated by Chen and Yeh (1997) in the following aspects. First
of all, we are not just considering the stable cobweb model in which speculators can hardly find a role
to play. Instead, by fine-tuning the cobweb ratio (c.r.), we simulate the economy from the stable case
(c.r.=0.95), through fairly unstable ones (c.r.=1.05 and 2) and further to a highly unstable one (c.r.=3)
(Table 1). Secondly, we also consider cases of more restrictive financial depth (f.d.). In particular, two
cases which had not been explored in Chen and Yeh (1997), i.e., (s,b) = (0.01,0.01) and (0.005,0.005), are
included (Table 1). As we shall see later, this parameter space is large enough to observe both the stabilizing
and destabilizing function of speculators. Furthermore, by delimiting the space in which speculators are
stabilizing or destabilizing, one can get a sketch of conditions under which Equation (4) holds or fails to
hold. This is certainly an important step towards a general understanding about the nature of speculative
trades and the meaning of financial regulations.

The rest of the paper is organized as follows. Section 2 briefly reviews the model. The design of
simulations is given in Section 3, followed by the analysis of simulation results in Section 4.

2 The Analytical Framework

The analytical framework used in this paper is based on Muth (1961). Before adding the role of speculation
to Muth’s model, let’s briefly review the multiagent system proposed by Chen and Yeh (1996). Consider a
competitive market composed of n firms which produce the same goods by employing the same technology
and which face the same cost function described in Equation (5):

1
Cit = TGt + Eynqzt (5)

where ¢; ; is the quantity supplied by firm 7 at time ¢, and = and y are the parameters of the cost function.
Given Pf; and the cost function c;;, the expected profit of firm i at time ¢ can be expressed as follows:

e — € . _ .
Tit = Pi,tqht Ci,t (6)

Given P/, gi, is chosen at the level such that 7§, can be maximized and, according to the first order
condition, is given by

1 e
Qi = y_n(Pi,t - z) (7)

Once ¢;; is decided, the aggregate supply of the goods at time ¢ is fixed and P;, which sets demand
equal to supply, is determined by the demand function:

P=A-BY gy (8)
i=1



Given P, the actual profit of firm i at time ¢ is :
Tit = PiGis — Cit 9)

In a representative-agent model, it can be shown that the rational expectations equilibrium price (P*)
and quantity (Q*) are (Chen and Yeh, 1996, p.449):

« Ay+ Bzx

A—1x
y = 11
=5 (1)

To extend the model (Equations (5)-(11)) with speculation, the behavior of speculators has to be
specified first. Suppose we let I;; represent the inventory of the jth speculator at the end of the ¢th period,
then the profit to be realized is

7rj’t = Ijﬂg(PtJrl - Pt) (12)

Of course, the actual profit 7;; is unknown at the moment when the inventory plan is carried out;
therefore, like producers, speculators tend to set the inventory up to the level where speculators’ expected
utility Euj, or expected profit Em;; can be maximized. We shall follow Muth (1961) to assume that
the objective function for speculators is to maximize the expected utility rather than the expected profit.
Without assuming any specific form of utility function, what Muth (1961) did was to approximate the
general utility function by taking the second-order Taylor’s series expansion about the origin:

! ]_ 1
wjp & ¢(m) = $(0) + ¢ (0)mjs + 56 ()}, (13)
Based on Equation (13), the approximate utility depends on the moments of the probability distribution
of m, i.e.,
! 1 1
Buja % 6(0) + ¢ (0) By + 56" (02, (14

Solving the first and the second moment of Equation (14), we can rewrite the expected utility function
as follows.

! e ]_ 1 e
Bujy ~ ¢(0) + ¢ (O)Ij,t(Pj,H-l - P)+ §¢ (O)I?7t[0-t271 + (Pj,t+1 - Pt)z]a (15)
where 07 ; is the conditional variance var(Py11 | ;) and € is the o-algebra generated by P, P,_1, .... The

optimal position of the inventory can then be derived approximately by solving the first order condition
and the optimal position of the inventory I7, is given by

ijt = a(Pﬁt—H - Pt): (16)
where a = —%. Equation (12) explicitly shows that speculators’ optimal decision about the level of
t,1
inventory depends on their expectations of the price in the next period, i.e., Pf

Jst+1-
Now, if the market is composed of n producers and m speculators, the equilibrium condition is given in

Equation (17),

n m

1 i 1
- 5P+ S aPf—P)=> y—n(P;t —x)+ Y a(Pf, - Py). (17)
j=1

i=1 j=1

SIS

This concludes the construction of our model.



Table 2: Tableau of GP-Based Adaptation

Number of producers 300
Number of speculators 100
Number of trees created by the full method 30 (P), 10 (S)
Number of trees created by the grow method 30 (P), 10 (S)
Function set {+,—, Sin,Cos}
Terminal set {Ptfl, Pt,Q, st ,Ptflo, R}
Number of trees created by reproduction 30 (P), 10 (S)
Number of trees created by crossover 210 (P), 70 (S)
Number of trees created by mutation 60 (P), 20 (S)
Probability of mutation 0.2
Maximum depth of tree 17
Probability of leaf selection under crossover 0.5
Number of generations 1000
Maximum number in the domain of Exp 1700
Criterion of fitness Profit

“P” stands for the producers and “S” stands for the speculators. The number of trees created by the full method
or grow method is the number of trees initialized in Generation 0 with the depth of tree being 2, 3, 4, 5, and 6. For
details, see Koza (1992).

3 Simulation Design

The modeling technique for the adaptive behavior of both producers and speculators in the market is
genetic programming. The GP-based algorithm for producers can be found in Chen and Yeh (1996), and
the GP-based algorithm for speculators can be found in Chen and Yeh (1997). All the control parameters
for the Muthian economy are given in Table 2. Due to the space limit, we will not repeat the details here.
However, we do want to emphasize that the selection scheme employed in this paper is tournament selection
instead of the proportionate selection (roulette-wheel selection).

The selection scheme is an important operator in genetic programming. When applying genetic pro-
gramming to optimization, the user must notice that different selection schemes may have different impli-
cations for the fitness value, selection intensity, selection variance, and loss of diversity. By the same token,
when genetic programming is applied to simulating the evolution and learning of the economic system, we
have to keep in mind that different schemes may have different economic implications. From the viewpoint
of matching processes, Chen and Yeh (1997a) argued that what proportionate selection simulates is the
evolution of a centralized network economy and that what tournament selection does is the evolution of a
decentralized network economy. They also pointed out that to simulate the adaptive behavior of “specu-
lating about of others’ speculations”, tournament selection seems to be more appropriate. Therefore, this
paper, unlike previous studies, choose tournament selection as the selection scheme!

Given the GP-based adaptive producers and speculators, we simulate all the economies as indicated in
Table 1. From CASE x.1 to CASE x.5 (z = A, B, C, D), the financial regulations on b and s are gradually
relaxed from 0.005 to 10. Since the equilibrium quantity @* is 70 and there are one hundred speculators in
the market, these settings imply that the proportion of potential speculative trades to @Q* is relaxed from
1 4o 100

10 . The larger the b and the s, the higher the possible proportion of “non-productive activities” to

the economy.

4 Simulation Results

Simulations were conducted for all cases, including the benchmark, in accordance with Tables 1 and 2. For
each case, we ran five simulations and each simulation was conducted for one thousand periods (generations).

IFor the design of tournament selection, the interested reader is referred to Chen and Yeh (1997a).



Table 3: Relative Volatility (q):

d. (j) /cr. (i) | 0.95 (A) | 1.05 (B) | 2.00 (C) | 3 (D)
B.M. 1 1 1 1

0.005 (1) 0.9408 | 0.9353 | 0.8760 | 0.4860

0 01 (2) 0.9934 | 009529 | 0.4791 | 1.2611

1(3) 1.1447 | 1.1882 | 1.1552 | 0.7953

0 (4) 54079 | 6.4118 | 3.7406 | 3.5769

005 36.4013 | 47.2824 | 34.6648 | 31.5030

Here, volatility is estimated by averaging the standard deviations of the five simulations in each case. The standard

deviations are estimated based on the last five hundred observations, i.e., {P; 000 .

Basic statistics such as average prices and standard deviations for all cases can be found in Chen and Yeh
(1997b). In Figures 1-8, some selected samples are depicted. To see the impact of speculative trades on
price volatility under different financial depths, we define relative volatility ¢, ; as

P
¢ = =2, (18)
Oz,i0

where i = A,...,D, j =1,...,5. “ means “the estimated”, and the result is exhibited in Table 3.

By the definition given above, ¢ < 1 indicates that the market experiences a reduction in price volatility,
and ¢ > 1 means that the market experiences an increase in volatility. From Table 3, we have two interesting
observations. First, speculative trades can contribute to the reduction of volatility only if the corresponding
financial regulations are appropriately imposed. For example, in our simulations, ¢ > 1 when f.d. > 1.
Second, speculative trades can contribute to the reduction of volatility more significantly if the market is
inherently unstable (high c.r.). For example, in CASEs C' and D, depending on the associated financial
regulations, 20% to 50% of volatility can be reduced.
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Figure1: Equilibrium Pricein Each Generation (CASE A5-5)

Figure5: Inventory in Each Generation (CASE A5-5)
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