Using Genetic Programming to Model Volatility in
Financial Time Series

Shu-Heng Chen
AI-ECON Research Group
Department of Economics

National Chengchi University
Taipei, Taiwan 11623
TEL: 886-2-9387308
FAX: 886-2-9390344

E-mail: chchen@cc.nccu.edu.tw

Abstract

In this paper we propose a time-variant and non-
parametric approach to estimating wvolatility. This
approach is based on recursive genetic programming
(RGP). Here, volatility is estimated by a class of
non-parametric models which are generated through
a recursive competitive process. The essential feature
of this approach is that it can estimate volatility by
simultaneously detecting and adapting to structural
changes. Thus, volatility is estimated by taking possi-
ble structural changes into account. When RGP dis-
covers structural changes, it will quickly suggest a new
class of models so that overestimation of volatility due
to ignorance of structural changes can be avoided. In
this paper, the idea is tested by using Nikkei 225 and
S&P 500 as an example.
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1 Motivation and Introduction

The paper is motivated by the cross-fertilization of fi-
nancial engineering and artificial intelligence. From
the aspect of financial engineering, there is a tendency
to search for a more general or adaptive technique to
modeling volatility. This tendency is quite important
because there is no absolutely objective definition of
volatility. In particular, in light of the recent advances
in nonlinear models, volatility is a model-dependent
concept, i.e., different model imply different degrees
of volatility. Refenes, Burgess and Bentz (1996) used
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Monte Carlo simulations to deliver a very interesting
message. They showed that when volatility actually
follows a nonlinear dynamic stochastic process and can
be traced by the nonlinear models such as artificial
neural networks, then using the simple standard devia-
tion, based on the historical data, to estimate volatility
can not only mislead investors to overestimate volatil-
ity but also generate a lower rate of return due to the
resulting non-optimal portfolio. Put in another way,
the estimated efficient frontier is located in the interior
of the potential efficient frontier.

In financial econometrics, volatility has been mod-
eled with linear ARCH or GARCH processes. It is
not until recently that researchers started to work
with nonlinear GARCH models. For example, Olmeda
and Fernandez (1996) suggests the following general
univariate model (nonlinear ARMA with a nonlinear
GARCH process) to estimate volatility.
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where p; is a standard normal random variables and
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While both Refenes et al (1996) and Olmeda and
Fernandez (1996) suggest a general class of models to
define and estimate volatility, functions f and h as-
sumed in these studies are basically time-invariant. In
other words, they are not adaptive. To consider mod-
els in an adaptive fashion, an appropriate technique
which can estimate volatility by simultaneously taking
structural changes into account is needed.

While detecting structural changes of any observed
time series data has its long history in statistics and



econometrics, there are still many issues left to be set-
tled. Recent extensive use of nonlinear and nonstation-
ary time series models seems to make many of these
issues even more obscure. For example, it is difficult
to distinguish a nonstationary I(1) time series from a
stationary time series with structural breaks (Perron,
1989). Also, it is likely to detect a spurious structural
change for the fractionally integrated processes of order
I(d), where 0 < d < 0.5 is the fractionally differencing
parameter (Kuan and Hsu, 1996). Moreover, it should
not be surprised by a generalization of these findings,
i.e., detecting structural changes of observed time se-
ries is a daunting task when the model class is extended
from linear to nonlinear and stationary to nonstation-
ary models. In this case, a reflection upon structural
changes seems to be crucial.

Chen and Yeh (1997) proposed a non-parametric
approach to the definition and detection of structural
changes. Their approach is based on recursive genetic
programming (RGP). RGP gives us a model-free no-
tion of structural changes. This notion, as opposed
to the conventional model-specific notion of structural
changes, has the advantage of being insensitive to the
small perturbation of the reference model. As a con-
sequence, it can easily avoid the problem of spurious
structural changes. In this paper, we shall employ this
RGP to model financial volatility.

2 Recursive Genetic Program-
ming

The RGP used in this paper is an extension of Koza’s
genetic programming (BGP) (Koza, 1992). It is com-
posed of three key parameters, namely, the size of the
magjor sample (the width of the sliding window) (n;),
the size of the marginal sample (n2) and the size of the
representative sample (q). Given the pair (nq, na), we
can construct a sequence of samples Sy, Ss, ... described
as follows (Figure 1). The first major sample S; is com-
posed of the first n; observations of a time series, i.e.,
{z;}, = {z1,22,..., 25, }. The second major sample
So is the alteration of S; by adding the first marginal
sample M; to S; and deleting the first ny observations
from Sy, i.e., So = {xl};’:l;:jl Similarly,

- +(=1)
Sj = {mi}?:l(jzl)ngnjl'

(4)

In other words, S;(j =1,2,...) is a fixed-size sliding
window of the original time series {z;}. Given this
sequence of the major samples, BGP is applied to this
sequence of sample in the following manner. Firstly,
BGP is applied to learn the underlying regularity of Sy

Figure 1

as usual (Chen and Yeh, 1996a,b). When the training
is over, the population of the last generation GP} is
kept and is used as the initial generation for the second
major sample Sy, i.e.,

GP! =GP,. (5)

The fitness of GP? is then evaluated based on the
fitness function F'. In terms of evaluating learning per-
formance, the fitness function is usually residual-based,
i.e., F'is a function of the residual (¢) or F' = F(£). For
example, the function F(£) considered in this paper is
the sum of squared errors. The fitness of each GP-tree
of the population is then ranked so that F; < Fy < ...
The best ¢ GP trees are then selected as a representa-
tive sample for GP2. Call this representative sample
Q?. The average fitness of Q7 is then calculated and
denoted by

a
Fp = 2l (©
q
where F} < F;, < ... < F,.

By BGP, we then start another n-generation evolu-
tion on S,. The population of the last generation G P2
is kept. With the same procedure described above, we
generate Q2 and compute the F2. The difference D

—2

D, =F, -TF, (7)

can then be considered an indicator of the improvement
after n-periods’ training. In this manner, we can gener-
ate a sequence Dy, k=1,2,..., and this sequence, called
the improvement sequence, is an important statistic
for us to detect structural changes. Due to the space
limit, the interested reader is referred to Chen and Yeh
(1996¢) for details.

2.1 RGP and Volatility

The relation between RGP and volatility can be re-

vealed by the fitness function (F(£)). Since F(£) in

this paper is chosen to be the sum of squared errors,
F©)
ni

is the volatility. However, since genetic pro-

gramming is a population-based learning scheme, each
GP-tree of the population has its own estimation of



volatility. Therefore, GP will not give us a single es-

1/—Ff); instead, it will generate a
1

timate of volatility
population of it. Based on the ranking described above,
they can be arranged in an increasing order, i.e.,

(8)

g1 S g2 S

where 0; = @/F;L—(f) and Fy(§) < F»(€) < ...

Similarly, using the representative sample QJ,, we
can have an estimate of volatility by simply taking the

sample average, 5~
= =L ©)
q

where o; is the volatility estimate of the ith GP-tree
in the representative sample Q7.

The distinctive feature of using RGP to estimate
volatility is that it will take structural changes into
account. Therefore, when the underlying structure ex-
periences a certain change, RGP can detect it and,
in the mean time, generate a population of volatility
estimates under the new structure. As a consequence,
we can avoid reliance on out-of-date knowledge and
the problem of overestimation of volatility discussed
in Refenes et al. (1996) can be avoided. In the next
section, we shall exemplify the use of RGP with two
financial datasets.

gj

3 Data Description

The two financial datasets considered in this paper are
taken from Chen and Tan (1996). These datasets are
a small subsample of the stock indices S&P 500 and
Nikkei 225. This small sample is selected by a complez-
ity measure, namely, the minimum description length
principle proposed by Rissanen (Rissanen, 1989). A
brief description of the dataset is given in Table 1 and
the time series of these samples are depicted in Figures
2-3.

The data of Nikkei 225 is very interesting. During
the sample period, the rate of return R; of Nikkei wan-
dered over the range [-0.02, 0.02] for the first three
quarters and then jumped around in a visually signifi-
cant larger range in the last quarter (Figure 2). Com-
pared with Nikkei 225, S&P 500 seems to be much
more stable. Over the sample period, the R; only
walked randomly between -0.02 and 0.02. So, these two
samples together provide us with a great opportunity
to test the RGP-based notion of structural changes.
Visual inspection suspects a structural change for the
first sample but not the second one. However, by say-
ing this, one must be wary of the fact that RGP is an
adaptive cognitive system, so the seeming structural

Table 1: Data Description

Country| Stock Sample Period Sample | MDL
Index Size

US. S&P 1/3/92 - 10/16/92 | 200 142.472
500

Japan Nikkei 6/30/89 - 4/24/90 200 142.472
225

The last column “MDL” refers to the minimum description
length. The number “142.472” indicated under this column is the
maximal value that one can possibly have for a 200-bit string.
In other words, the sample selected here is the most complex of
the whole dataset. For details, see Chen and Tan (1996a).

change might not be a real one for this system if the
speed of change is slower than the speed of adjustment.

4 Experimental Results

The design of RGP is given in Table 2. The three ma-
jor parameters of RGP ni, ny and ¢ are set to be 50,
5 and 50. This version of RGP is then applied to the
data described in Table 1. Ten simulations are con-
ducted for Nikkei 225 (Simulations 1.1-1.10) and S&P
500 (Simulations 2.1-2.10) respectively. In each sim-
ulation, the improvement series {D;}??, is recorded.
Given the number of observations, n; and ns, it is
clear that we have 29 major samples. The summary
statistics of the series {D;}??, of each simulation are
given in Table 3 (Nikkei 225) and Table 4 (S&P 500).
These statistics include the mean, standard deviation
and maximum value.

The mean of {D;}??, of Nikkei 225 ranges from
0.0004 (Simulation 1.3) to 0.0137 (Simulation 1.6).
This range is not only higher but also wider than that
of S&P 500, which ranges from 0.0001 to 0.0025. This
difference also holds for the standard deviation (S.D.)
of D;, series. For Nikkei 225, the S.D. ranges from
0.0007 (1.3) to 0.06053 (1.6), while it is only [0.0001,
0.0126] for S&P 500. If we look at the maximum
improvement ever made, the range for Nikkei 225 is
[0.0030, 0.3278] and that for S&P 500 is only [0.0004,
0.0680]. These results seem to suggest:

e There is more room for improvement with Nikkei
225 than there is with S&P 500 by using RGP,
which implies that adaptive learning is more im-
portant for Nikkei 225 than it is for S&P 500. In
other words, it pays more for the Tokyo stock bro-
ker to continuously monitor the movement of stock
prices than it does for the New York stock broker.

e It is more likely to overestimate the volatility of
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Figure4.1: Thelmprovement Sequence of NIKKEI 225 (Simulation 1.1)
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Figure4.2: Thelmprovement Sequence of NIKKEI 225 (Simulation 1.2)
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Figure 4.3 : Thelmprovement Sequence of NIKKEI 225 (Simulation 1.3)
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Figure4.4: Thelmprovement Sequence of NIKKEI 225 (Simulation 1.4)
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Table 2: Tableau for Recursive Genetic Programming

Table 3: Summary Statistics of the Improvement
Series: Nikkei 225

Population size (N) 500 _ _
Number of trees created by | 50 Simulation Mean S.D. Max
complete growth 1.1 0.001681921 | 0.003515061 | 0.018270935
Number of trees created by | 50 1.2 0.001820705 | 0.003628995 | 0.016730926
partia.l growth i 1.3 0.000496815 | 0.000705278 | 0.003038730
Function set {JE;(’PX s J0, 81n, cos, 1.4 0.003382256 | 0.008014909 | 0.040116956
Tormimal , RLOG} 1.5 0.000832889 | 0.001763278 | 0.008795386
erminal set {Ri—1,Ri—2,--,Ri_10, R}
Number of trees generated by | 100 1.6 0.013713513 | 0.060539883 | 0.327866083
reproduction 1.7 0.002209311 | 0.004606436 | 0.018777644
Number of trees generated by | 100 1.8 0.000766762 | 0.001359543 | 0.005966590
mutatio.n. _ 1.9 0.000620353 | 0.000993308 | 0.004279575
Probability of mutation 0.0033 1.10 0.002076856 | 0.004201890 | 0.020429868
Maximum length of the tree 17
ﬁiﬁgiif;ts};;jr leaf selection | 0.5 Table 4: Summary Statistics of the Improvement
Maximum number in the do- | 1700 Series: S&P 500

main of Exp Simulation Mean S.D. Max
Criterion of fitness (F') Sum of Squared Errors 2.1 0.000627237 | 0.000545084 | 0.002628560
Number of generations (n) 100 2.2 0.000151256 | 0.000136751 | 0.000490568
EZZ (:)fft%clﬁemr?;):g?flgllp;;iglli 20 23 0.000133932 | 0.000165889 | 0.000557956
(n2) 2.4 0.000155246 | 0.000160896 | 0.000592844
Memory size () 10 2.5 0.000271861 | 0.000203626 | 0.000666856
Size of the representative sam- | 50 2.6 0.002595408 | 0.012603221 | 0.068080061
ple (¢) 2.7 0.000418231 | 0.000205636 | 0.000744960
2.8 0.000355931 | 0.000333614 | 0.001237812
Nikkei 225 than that to do S&P 500 if we are using 2.9 0.000248756 | 0.000237452 | 0.000808789
a time-invariant (fixed) model to do the estimat- 2.10 0.000177195 | 0.000213592 | 0.000709973

ing.

The performance of RGP can be further explored
through the improvement sequence Dy. For this pur-
pose, the improvement sequence of ten simulations for
Nikkei 225 are also drawn (Figures 4.1-4.10). Some
interesting properties are listed below.

e By the visual inspection of Figure 2, we can clearly
identify an increase in the volatility of Nikkei 225
from February 1990 to April 1990. Interestingly
enough, in all these ten simulations, RGP actually
confirms this change. In all ten figures, there is a
major hike at the end of the Dy, series. The date of
this major hike is almost consistently estimated by
these ten simulations. It is identified as the 23rd
sample (Sa23) in Simulation 1.4, the 25th (Sa5) in
Simulation 1.9, the 26th (Ss6) in Simulations 1.3,
1.7, and 1.8, the 27th (S27) in Simulations 1.2,
1.5, the 28th (Sag) in Simulation 1.1 and the 29th
(Sag) in Simulation 1.6.

e While for Nikkei 225 the peak consistently appears
in the last one-fourth of the data, the truth does
not hold for S&P 500. To see this, the improve-
ment series of S&P 500 of Simulations 2.1, 2.2, and
2.3 are depicted in Figures 5.1-5.3. From these
figures, we can see that peaks appear quite incon-
sistently among these simulations. Furthermore,

the heights of most of these peaks are negligible
as opposed to those of Nikkei 225.

Another property of the improvement series Dy
is that, after the peak, there is a dramatic fall in
Dy.. In other words, if S; is detected as a struc-
tural change, then D;,; is much smaller than D;.
This shows that once a structural change is de-
tected, RGP will quickly adapt itself to the new
environment by generating a new group of mod-
els; therefore, in the next period, possible room
for improvement shrinks and D;;; returns to the
normal.

The appearance of hikes can be explained by the
property that RGP is an adaptive cognitive sys-
tem. Once a change in volatility is detected, the
system quickly adapts to the change and the im-
provement sequence go back to the normal. This
feature makes RGP a very promising tool for the
study of structural changes, in particular, the es-
timation of change points.

5 Concluding Remarks

In this paper, a new approach to estimating volatil-
ity is proposed. It is exemplified by two samples se-
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Figure4.5: Thelmprovement Sequence of NIKKEI 225 (Simulation 1.5)
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Figure 4.6 : Thelmprovement Sequence of NIKKEI 225 (Simulation 1.6)
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Figure4.8: Thelmprovement Sequence of NIKKEI 225 (Simulation 1.8)
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Figure4.9: Thelmprovement Sequence of NIKKEI 225 (Simulation 1.9)
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Figure 4.10: Thelmprovement Sequence of NIKKEI 225 (Simulation 1.10)
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Figure5.1: Thelmprovement Sequence of S& P 500
(Simulation 2.1)
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(Simulation 2.2)
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lected from Nikkei 225 and S&P 500. While in this
paper we emphasize a model-free notion of structural
changes, structural changes were considered a memory-
dependent concept in Chen and Yeh (1997). The choice
of composition of n1 and ns, or the ratio r = Z—; indi-
cates the memory size upon which structural changes
are defined. Using different memory sizes can have
different results and implications. For example, with
financial data, it is found that it is more difficult to
detect structural changes when the ratio r is large. In
terms of dynamic landscapes, if the memory size is set
to be really large, then it would be possible for the
adaptive cognitive system to memorize all the possi-
ble patterns. In this case, it is not easy to see any
“surprise”. However, whether the assumption of an
extremely large memory size is practical is another is-
sue yet to be solved.
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