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Abstract In the context of agent-based arti-

�cial stock markets, we examine the signi�-

cance of a validation operator when added to

canonical genetic programming. Two kinds

of traders are considered: one who is \pru-

dent" and will experiment with a new idea

before putting it into practice, and one who

is \casual" and will take whatever suggested

(follow the herd). We then used genetic

programming to evolve a stock market com-

posed of \causal" traders and a stock mar-

ket composed of \prudent" traders. The ar-

ti�cial life of these two markets is summa-

rized and compared by a few statistics con-

sidered important by �nancial econometrics.

It is found that these two markets do ex-

hibit some non-trivial di�erence in the size

of speculative bubbles and price eÆciency.
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Markets, Agent-Based Modeling, Following the
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1 Motivation and Introduc-

tion

In this paper, two kinds of adaptive traders are

studied within the context of the arti�cial stock

market. The arti�cial stock market considered

here is built upon the standard asset pricing
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H-004-008 and No.87-I-2911-15 is gratefully acknowl-

edged.

model ([?]), and can be regarded as an agent-

based extension of the standard model. Agents'

(traders') adaptive behavior in this arti�cial

market are modeled with genetic programming

(GP). Two styles of genetic programming are

employed. The �rst style is canonical genetic

programming (CGP), which consists of three

genetic operators: reproduction, crossover and

mutation. The second style is to add to canon-

ical genetic programming a validation operator,

such as the election operator or the elitist op-

erator. The second version of GP is called val-

idation GP (VGP) in the paper.

These two styles of genetic programming

may di�er in their implication for traders' de-

gree of rationality. For the former, traders are

assumed to take whatever coming from the

selection process without giving it a second

thought or validating it, whereas for the lat-

ter, traders will not accept the a new idea until

it has been validated. At �rst sight, it seems

obvious that traders in the former case make

their decisions more casually than the traders

in the latter. However, since the selection pro-

cess encapsulated in genetic programming is

driven by the survival-of-the-�ttest principle,

the ideas suggested to traders are in fact of the

select group and hence by no means random.

Therefore, it may not be that clear whether a

validation operator can actually make any dif-

ference in such a context.

This question may arouse economists' inter-

est as well in that while there is no general

agreement, many economists tend to believe



that the prudent behavior of traders is indis-

pensable for a certain desirable feature of the

stock price, i.e., that the price is stable and

around the intrinsic value of the stock. The

casual behavior, often termed \animal spirit"

or \following the herd" by economists, is usu-

ally regarded as the force that drives the price

away from the fundamental with a wild 
uc-

tuation ([?]). Bubbles and crashes are usually

condemned as a result from the so-called noisy

traders. Therefore, for economists, our ques-

tion posed above can be restated as follows. In

a competitive market, i.e., a market operated

according to the survival-of-the-�ttest princi-

ple, would it be socially desirable if traders can

be more prudent in the usual sense? Or, more

precisely, would the price be more eÆcient, less

volatile, and thus less deviating from the fun-

damental if traders are \asked" to be more pru-

dent?

To answer this question, we simulated the

arti�cial stock markets based on the two dif-

ferent styles of genetic programming, i.e., CGP

and VGP. We then evaluated the price behav-

ior of these two setups with modern �nancial

econometrics ([?]). The evaluation was made

to answer the following three questions.

� Is the price series generated from sophis-

ticated traders more consistent with the

fundamental value?

� Is the price series generated from sophis-

ticated traders market less volatile?

� Is the price series generated from sophis-

ticated traders more eÆcient in terms of

the eÆcient market hypothesis?

The last question also concerns the emer-

gence of bubbles and their persistence.

2 Experimental Designs

The architecture of the arti�cial stock market

is detailed in [?] and can be found on the web-

site: http://econo.nccu.edu.tw/sta�/csh/

course/grad-mac/lec12/lec12.htm

Figure 1 depicts the market architecture of

Table 1: Parameters of the GP-Based Arti�cial

Stock Market

The Stock Market

Shares of the stock (H) 100

Initial Money supply

(M1)

100

Interest rate (r) 0.1

Stochastic Process (Dt) U(5:01; 14:99)

Price adjustment func-

tion

tanh

Price adjustment (�1) 10�5

Price adjustment (�2) 0.2�10�5

Traders

Number of Traders (N) 500

Degree of RRA (�) 0.5

Criterion of �tness Increment in wealth

Sample size of �2tjn1 (n1) 10

Evaluation cycle(n2) 1

Sample size (n3) 1

Search intensity (I�) 1 (CGP), 5 (VGP)

(�1; �2; �3) (0.5, 10�5, 0.0133)

Genetic Programming

Number of trees created

by the full method

50

Number of trees created

by the grow method

50

Function set f+;�; Sin; Cos; Exp;

Rlog;Abs; Sqrtg

Terminal set fPt; Pt�1; :::; Pt�10;

Pt�1 +Dt�1; :::;

Pt�10 +Dt�10g

Selection scheme Tournament selection

Tournament size 2

Probability of creating a

tree by reproduction

0.10

Probability of creating a

tree by crossover

0.70

Probability of creating a

tree by mutation

0.20

Probability of mutation 0.0033

Probability of leaf selec-

tion under crossover

0.5

Mutation scheme Tree Mutation

Maximum depth of tree 17

Number of generations 20,000

Maximum number in the

domain of Exp

1700

Criterion of �tness Increment in Wealth

Sample Size (MAPE)

(m2)

1



single-population GP (SGP). The top of Fig-

ure 1 is the market as a single object, and the

bottom is a population of directly interacting

heterogeneous agents.

Traders will update their forecasting models

with a prespeci�ed schedule, say once for ev-

ery n2 trading days. The updating process of

traders mainly consists of a sequence of two de-

cisions. First, will she be dissatis�ed with the

forecasting model on which her current trading

decisions are based, and search for a new one?

Second, when should she stop searching? In

the real world, the �rst decision is somehow

psychological and has something to do with

peer pressure. One way to model the in
uence

of peer pressure is to suppose that each trader

will examine how well she has performed over

the last n3 trading days, when compared with

other traders. Suppose that traders are ranked

by the net change of wealth over the last n3
trading days. Let W n3

i;t
be this net change of

wealth of trader i at time period t, i.e.,

�W n3

i;t
�Wi;t �Wi;t�n3

; (1)

and, let Ri;t be her rank. Then, the probability

that trader i will start a search at the end of

period t is assumed to be determined by

pi;t =
Ri;t

N
: (2)

In addition to peer pressure, a trader may

also decide to start a search out of a sense of

self-realization. Let the growth rate of wealth

over the last n3 days be

Æ
n3

i;t
=

Wi;t �Wi;t�n3

jWi;t�n3
j

; (3)

and let qi;t be the probability that trader i will

start a search at the end of the tth trading day,

then it is assumed that

qi;t =
1

1 + exp
Æ
n3
i;t

: (4)

The searching process is driven by genetic

programming. The new forecasting model is

generated randomly from the collection of the

existing models in the market at t, denoted by

GPi;t, by one of the following three genetic op-

erators, reproduction, crossover and mutation,

each with probability pr, pc, and pm (Table 1).

In the case of reproduction, we �rst randomly

select two GP trees, say, gpj;t and gpk;t. A

tournament selection is then conducted based

on the increment in wealth. The one with a

higher increment, say gpj;t, is selected and is

denoted by gp
r

i;t
. In the case of mutation, we

follow the same procedure as reproduction ex-

cept that gpj;t has a chance (probability of mu-

tation) being further perturbed by tree muta-

tion. Denote the result by gp
m

i;t
. In the case

of crossover, we �rst randomly select two pairs

of trees, say (gpj1;t; gpj2;t) and (gpk1;t; gpk2;t).

The tournament selection is applied separately

to each pair, and the winners are chosen to be

parents. The children, say (gp1; gp2), are born.

One of them is randomly selected, and is de-

noted by gpc
i;t
.

Once a trader decides to start a search, she

has to make a decision when to stop search-

ing. In the case of CGP, since there is no need

for validation, it is basically a one-shot search.

Traders will simply replace her original model

by whatever is found, i.e.,

gpi;t+1 � gp
�

i;t
; (5)

where, depending on which one applies, � can

be r;m or c. In the case of VGP, the trader will

validate the newly-found model by using it to

compete with gpi;t in terms of the increment

in wealth. If it outperforms the old model, she

will discard the old model, and put the new one

into practice. Otherwise, she will start another

search, and do it again and again until either

she �nds a better one or she continuously fails

I
� times. The adaptation process described as

above is also summarized in Flowchart 1.

3 Simulation Results

Based on the experimental design given above

(Table 1), a single run with 20,000 generations

was conducted for both CASE 1 (CGP) and

CASE 2 (VGP). We then examine their per-

formance di�erences in light of the questions

posed above.



Table 2: Basic Statistics of the Return Series:

CASE 1, \Casual" Traders (CGP)

T r � SK KU JB p

� 10�3 10�2 1 1 103 1

1 1.08 1.6 4.87 39.39 118.31 0.00

2 -0.05 1.3 3.64 19.79 27.92 0.00

3 -0.02 1.2 3.16 14.10 13.61 0.00

4 0.05 1.2 3.11 14.17 13.63 0.00

5 0.00 1.2 3.26 15.56 16.71 0.00

6 0.07 1.2 3.26 15.19 15.94 0.00

7 -0.10 1.2 3.58 19.39 26.68 0.00

8 0.02 1.2 3.26 15.30 16.17 0.00

9 -0.04 1.2 3.31 15.44 16.56 0.00

10 0.07 1.1 3.05 13.20 11.78 0.00

\SK" refers to skewness, \KU" refers to kurtosis, \JB"

the Jarqu-Bera test, and \p" the p value.

First, is the price series generated from so-

phisticated traders (VGP) more consistent with

the fundamental? The time series plot of the

stock price is drawn in Figure 2 (CASE 1) and

Figure 3 (CASE 2). Over this long horizon,

Pt roughly 
uctuates between 680 and 880 in

CASE 1 and varies from 180 to 380, a much

lower range, in CASE 2. Since the intrinsic

value of the stock is 100, both cases seem to

converge to a bubble. The size of the bubble

in the case of causal traders (CASE 1) is in-

deed much larger than that in the case of \so-

phisticated traders" (CASE 2). Therefore, the

answer for the �rst question is tentatively yes.

Nevertheless, the speculative bubble in both

markets seems to have emerged as a sustain-

able one. Up to the end of these simulations,

we see no tendency that the price will crash

or that the price will move back to the fun-

damental value.1 Of course, one may question

whether 20,000-generation simulations are suf-

�cient to draw any sound conclusion from. We

are not sure about this, and we see no e�ective

way to solve this problem except to run another

simulation with a large number of generations,

and this is an exercise for the future.

Second, is the price series generated from so-

1[?] argued that bubbles may have a positive e�ect

on the market provided they are sustainable.

Table 3: Basic Statistics of the Return Series:

CASE 2, \Sophisticated" Traders (VGP)

T r � SK KU JB p

� 10�3 10�2 1 1 103 1

1 0.62 1.3 3.58 19.99 28.35 0.00

2 -0.05 1.3 4.57 32.52 79.61 0.00

3 0.11 1.3 3.74 19.62 27.70 0.00

4 -0.06 1.2 4.00 24.71 44.64 0.00

5 -0.18 1.3 4.72 34.01 87.61 0.00

6 0.19 1.3 4.20 26.65 52.53 0.00

7 -0.10 1.3 4.16 26.29 51.02 0.00

8 -0.03 1.2 4.25 29.78 65.83 0.00

9 0.05 1.3 4.80 42.86 140.09 0.00

10 -0.01 1.5 5.11 42.23 136.98 0.00

\SK" refers to skewness, \KU" refers to kurtosis, \JB"

the Jarqu-Bera test, and \p" the p value.

phisticated traders less volatile? Statistically

speaking, this question is about distribution

and moments. Given the price series, the re-

turn series is derived as usual,

rt = ln(Pt)� ln(Pt�1) = pt � pt�1: (6)

Figures 4 and 5 give a histogram (empirical dis-

tribution) of the stock returns, and Tables 2

and 3 give the basic statistics of these return

series. From these two tables, the null hypoth-

esis that these series are normal are rejected by

the Jarqu-Bera statistics in all periods as it is

also noticeably demonstrated in Figures 4 and

5.

The excess kurtosis (the so-called fat-tail

property) is striking in both cases. Put an-

other way, the probability of the occurrence

of a large return is higher than what the nor-

mal distribution predicts. One of the usual

explanations for the fat-tail property is that

traders' reactions to news are highly positively

correlated. What is interesting is that sophis-

ticated traders (CASE 2) lead to a high degree

of this co-movement (a fatter tail). This re-

sult is not unexpected since traders in CASE 2

search more intensively than traders in CASE

1, and thus the former have a higher chance to

converge to the same forecastor than the lat-

ter. In addition, the standard deviation (usu-

ally known as risk) is quite stable around 0.012



and 0.013 in both cases. In other words, the


uctuation of the price is not a�ected by the

degree of traders' sophistication. (Figures 1

and 2).

Third, is the price series generated from so-

phisticated traders more eÆcient in terms of

the eÆcient market hypothesis? We �rst tested

whether the price series has a unit root. The

standard tool to test for the presence of a unit

root is the celebrated Augmented Dickey-Fuller

(ADF) test ([?]). The ADF test consists of run-

ning a regression of the �rst di�erence of the

log prices series against the series lagged once,

lagged di�erence terms, and optionally, a drift

and a time trend.

�pt = �1pt�1 +
4X

i=1

�i+1�pt�i + �6 + �7t (7)

The null hypothesis is that �1 is zero, i.e.,

pt(ln(Pt)) contains a unit root. If �1 is sig-

ni�cantly di�erent from zero then the null hy-

pothesis is rejected.

As can be seen from Table 4, for CASE 1,

from the total number of 10 subperiods only

the �rst subperiod failed to reject the presence

of a unit root, while, for CASE 2, six of the ten

subperiods failed to reject. Therefore, the �-

nancial time series generated by casual traders

is in e�ect stationary, whereas the one gener-

ated by sophisticated traders is non-stationary.

Next, we followed the procedure of [?]. This

procedure is composed of two steps, namely,

PSC �ltering and BDS testing. We �rst ap-

plied Rissanen's predictive stochastic complex-

ity (PSC) to �lter the linear process. The

fourth and the �fth columns of Table 4 give

us the ARMA(p; q) process extracted from the

return series frtg. Some of these series are lin-

early independent (p = 0; q = 0), and others

are either AR(1) or MA(1). Higher order of

linear dependence does not exist in any of these

series.

Once the linear signals are �ltered out, any

signals left in the residual series must be non-

linear. Therefore, one of the most frequently

used statistic, the BDS test ([?]), is applied to

the residuals from the PSC �lter. There are

two parameters required to conduct the BDS

Table 4: Unit Root Test and PSC Filtering

T DF Test PSC(p,q)

CASE 1 CASE 2 CASE 1 CASE 2

1 �3:372� �4:566 (0,0) (1,0)

2 �8:315 �3:355� (1,0) (1,0)

3 �5:871 �3:132� (0,1) (1,0)

4 �5:669 �4:073 (0,0) (0,0)

5 �6:513 �4:242 (0,0) (0,0)

6 �7:627 �3:008� (0,0) (1,0)

7 �4:601 �3:458 (0,0) (0,0)

8 �7:068 �2:459� (0,1) (1,0)

9 �6:741 �3:054� (1,0) (1,0)

10 �4:506 �2:602� (0,1) (1,0)

The MacKinnon critical values for rejection of hypoth-

esis of a unit root at 95% signi�cance level is -3.4146.

test. One is the distance parameter (� standard

deviations), and the other is the embedding di-

mension (DIM). The qualitative result is found

not sensitive to our choice of these two parame-

ters; hence we only report the result with � = 1

and DIM = 5. The result is given in Table 5.

Since the BDS test is asymptotically normal,

it is quite easy to have an eyeball check on the

results.

Based on Table 5 the null hypothesis that

the �ltered returns are IID (identically and

independently distributed) is signi�cantly re-

jected in all the subperiods. The result sug-

gests the existence of nonlinear dependence in

both cases. Furthermore, from the test statis-

tics, the �ltered returns of CASE 2 seem to

be less nonlinearly dependent and hence more

random than those of CASE 1. Therefore, in

terms of nonlinear dependence, the price series

generated by sophisticated traders is more eÆ-

cient than the one generated by causal traders.

So far, we have examined our simulated

time series with a test for non-linear depen-

dence. However, it is well known that most

of the non-linearity in �nancial data seems to

be contained in their second moment. The vo-

luminous (G)ARCH (Generalized AutoRegres-

sive Conditional Heteroskedasticity) literature

is the outcome of the attempt to capture by

appropriate time series models the regularities



Table 5: BDS Test and GARCH Modeling

T BDS TEST GARCH Modeling

CASE 1 CASE 2 CASE 1 CASE 2

1 4.05 4.92 (1,1) (1,2)

2 6.61 4.57 (0,1) (1,2)

3 6.77 4.85 (1,1) (1,1)

4 5.36 3.95 (0,1) �

5 4.90 3.96 (1,1) �

6 4.84 4.16 (1,1) (1,1)

7 5.08 4.17 (0,1) �

8 6.76 4.75 (1,1) (1,2)

9 6.77 4.22 (0,1) (1,2)

10 7.02 4.41 (1,1) (1,2)

The test statistic is asymptotically normal with mean 0

and standard deviation 1. The signi�cance level of the

test is set at 0.95. The (p,q) within each bracket refers

to the model GARCH(p,q), while � means that there is

no ARCH e�ect.

in the behavior of volatility. In order to pro-

ceed further, we carried out the Lagrange mul-

tiplier test for the presence of ARCH e�ects.

A detailed description of ARCH and GARCH

as well as an associated SAS program to run

the test is available from the website:

http://econo.nccu.edu.tw/ai/sta�/csh/

course/�naecon/lec6/lec6.htm

If the ARCH e�ect is rejected, we will fur-

ther identify the GARCH structure of the se-

ries by using the Bayesian Information Crite-

rion (BIC). The results are exhibited in Table

5. Clearly, the ARCH e�ect is quite ubiqui-

tous. Out of the 20 series, there are only 3

series without the ARCH e�ect.

4 Conclusions

In our simulations, we �nd that the market

composed of casual traders did perform di�er-

ently from the market composed of sophisti-

cated traders. Their di�erence is conspicuously

re
ected in the size of speculative bubbles and

price eÆciency, but there is no discernible dif-

ference in risk. In sum, the validation operator

has its independent role, and may not be waived

from canonical genetic programming.
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Figure 1 : The Market Architecture
Represented by Single-Population GP
(SGP) Figure 4 : The Histogram of Stock Returns (CASE 1)

Figure 2 : Time Series Plot of the Stock Price
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Figure 5 : The Histogram of Stock Returns (CASE 2)

Figure 3 : Time Series Plot of the Stock Price
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