
Evolving Bargaining Strategies with Genetic Programming:
An Overview of AIE-DA Ver. 2, Part 2

Shu-Heng Chen
AI-ECON Research Center
Department of Economics

National Chengchi University
Taipei, Taiwan 11623

E-mail: chchen@nccu.edu.tw

Bin-Tzong Chie
AI-ECON Research Center
Department of Economics

National Chengchi University
Taipei, Taiwan 11623

E-mail: chie@aiecon.org

Chung-Ching Tai
AI-ECON Research Center
Department of Economics

National Chengchi University
Taipei, Taiwan 11623

E-mail: g8258018@mail.nccu.edu.tw

Abstract

The purpose of this paper is to introduce the software system AIE-DA, which is designed
for the implementation of an agent-based modeling of double auction markets. We shall
start this introduction with the current version, Version 2, and then indicate what can be
expected from the future of it.

1 AIE-DA: An Overview

AIE-DA is written in the language of Delphi, and is largely motivated by object-oriented
programming (OOP). The use of OOP has contributed to the growth of the research area
known as agent-based computational economics. Its significance is well documented in [7]
as follows.

What is new about ACE is its exploitation of powerful new computational tools,
most notably object-oriented programming. These tools permit ACE researchers
to extend previous work on economic self-organization and evolution in four key
ways. (Italics added).

Based on the idea of OOP, the software AIE-DA is composed of a series of objects
with parallel or hierarchical interference. The major objects can be organized into three
categories, namely,

• market architecture: Market.pas, uMarket.pas, vMarket.pas, PaperToken.pas,
• agents: uTrader.pas, Buyer.pas, Seller.cpp, dfGP.pas iFunc.pas,
• adaptation mechanism: GPMain.pas, GP.pas, GPV.pas, Pop.pas, Gene.pas, uFunc-

tion.pas, uTerminal.pas, Symberg.pas.

1



Figure 1. The AIE-DA Architecture: Multi-Population Genetic Programming

The OOP allows us to modify any of these objects without too much involvement in other
objects. For example, if it is only the agents’ perception our concern, we can basically leave
the market architecture and adaptation mechanism alone.

2 Bargaining Agents

All buyers and sellers in AIE-DA are artificial adaptive agents in John Holland’s sense
([3]). Each artificial adaptive agent is built upon genetic programming. The architecture of
genetic programming used in AIE-DA is what known as multi-population genetic program-
ming (MGP). Briefly, we view or model an agent as a population of bargaining strategies.
The number of bargaining strategies assigned to each bargaining agent, called population
size, is supplied by the user. AIE-DA Version 2 allows each agent to have at most 1000
bargaining strategies. Genetic programming is then applied to evolving each population of
bargaining strategies. In this case, a society of bargaining agents consists of many popula-
tions of programs. This architecture is shown in Figure 1.

2.1 Primitives: Terminal Set and Function Set

In genetic programming, bargaining strategies are initially randomly generated by a set
of primitives, known as the function set and terminal set. Here comes the first issue: the
choice of primitives. While there is no simple answer for the choice of primitives1, that
choice should at least be consistent with what traders may know and what traders can do.
Based on the SFI market described in Part I of the paper 2 and the SFI double auction
tournament reported in [5] and [6], we consider the following sets of primitives relevant.

1See [2] for a detailed discussion of it. However, that discussion is mainly motivated by taking GP as
a function optimizers. It remains to be examined how the agent-based simulation results may sensitively
depend on the set of primitives employed.

2



Figure 2. AIE-DA: List of Primitives, the Terminal Set

What included in the terminal set are “Highest Token” (HT), “Next Token” (NT),
“Lowest Token” (LT), “ Current Ask” (CASK), “Current Bid” (CBID), time left before
the termination of a trading period(T1), time elapse since the last successful trading (T2),
the average, the minimum and the maximum price of the previous trading period (PAvg,
PMin, PMax), the average, minimum and the maximum bid of the price of previous
trading period, (PAvgBid, PMinBid, and PMaxBid), the average, minimum and the
maximum ask of the the previous trading period (PAvgAsk, PMinAsk, and PMaxAsk),
quiet (Pass), and ephemeral random constants. These variables are listed in Figure 2.
What included in the function set are arithmetic operators, absolute value, logarithmic
and exponential functions, the trigonometric functions (sine and cosine), logical operators,
extreme operators, and a comparison operator. These functions are listed in Figure 3.

These primitives are good enough to generate those championship strategies in the SFI
DA tournamnet, such as the Kaplan strategy and Ringuette strategy.2 However, to take
into account the possibility that simulation results can sensitively depend on the choice of
these primitives at large, AIE-DA Version 2 provides options for users. By checking (

√
)

or not checking the box in front of each primitives, users are able to select a subset of the
listed primitives.

2.2 Initialization

Once the primitives are determined, a population of initial strategies are initialized by
using the grow method constrained by the maximum depth of 5. During the strategy
generation process, primitives are randomly selected with a specified distribution supplied
by the user. While the default choice refers to the uniform distribution, the user may
consider other distributions as well by finetuning the weights assigned to each primitive.
For example, for the uniform distribution, one simply applies the same weight number to
all primitives (“1” in the case of Figure 3). This option design is motivated by the fact that
some primitives can be more productive than others. For example, the logical operators are
expected to be more crucial for the construction of an effective bargaining strategy than
the trigonometric functions. Therefore, the weights assigned for them should be higher. So,

2See [1] for details, in particular, Figures 11-13.

3



Figure 3. AIE-DA: List of Primitives, the Function Set

this design can serve this purpose.3 However, we have to say that the real issue involved
here is not just a choice of distribution. There is also a concern for semantic validity, and
by this option, strategies generated are more likely to be semantically valid.

2.3 Evolving Population

Once a population of bargaining strategies is initially generated, these strategies are
continuously under review and revision. New bargaining strategies are tried and tested
against experience, and strategies that produce desirable outcomes supplant those that do
not. This is basically what genetic programming does: generating an evolving population.
The technicalities involved here are fitness function, selection scheme, and genetic operators.

2.4 Fitness Function

In economics, there is always a nature criterion for fitness evaluation, namely, profits
or utilities. In our case, it is the gains from trade. Given a token-value table and other
opponents’ strategies, the gains from trade of using a particular trading strategy Bidj

(Askj) in each period of the DA game can be evaluated with Equation 12 (13) in Part I of
the paper. Let πi

j,s be the gains of using Bidj in the sth token value table, then the fitness
of Bidj is simply

πi
j =

S∑

s=1

πi
j,s, (1)

where S is the number of token value tables used in a DA game. Similarly for Askj .

2.5 Selection Scheme and Genetic Operator

Once the fitness evaluation of each bargaining strategy is done, the survival of the fittest
principle is then implemented via a chosen selection scheme. The most two popular selection

3[?] proposed a a different approach, which can in effect eliminate some irrelevant terminals when their
associated performance validate so.

4



Figure 4. Crossover

schemes are roulette wheel selection (proportionate selection) and tournament selection. The
one employed in in AIE-DA is the tournament selection scheme. Tournament size is 5. The
best of these five is selected as the mother, and the second best is singled out as the father.
This pair of parents will breed a child through the crossover operator. The crossover
operator proceeds as follows. First, a node in the mother will be randomly selected, and
then what below the node will be completely moved away and is replaced by a cut-off from
the father, which is also randomly selected. Then an offspring is generated (See Figure 4).

Once an offspring is generated, it will be perturbed with a small probability, i.e., the
mutation rate. In genetic programming, mutation is commonly proceeded in two ways,
namely, the node mutation and tree mutation. In the case of node mutation, we first
randomly target a node. Then, if the node is an n-array function node, the n-array function
in the node will be replaced with another randomly-selected n-array function. If it is a
terminal node, then the terminal in the node will be replaced with another randomly-
selected terminal node. For example, in Figure 5, for the left case, the one-array function
“Abs” is targeted, and it is replaced with the one-array function “-”. For the right case, it
is a terminal “Time1” selected, and is replaced with the terminal “LT”.

In addition to the normal selection and breeding, the elitist operator is also used.4 For
each generation, the best e strategies is directly copied to the next generation without
further modification. The number e can be chosen by the users.

2.6 Complexity Regularization

In addition to the survival-of-the-fittest principle, simplicity is another major concern.
Unlike genetic algorithms, the strategies generated by genetic programming are not strings
with fixed length, and they may not even be finite. Therefore, in practice, restrictions is
needed to be imposed to avoid over-complex strategies. What has been done in AIE-DA
is to set an adaptive version of the crossover operator. We, first, measure the complexity

4In agent-based economic modeling, another frequently used operator is known as the election operator. It
has been shown that the long-term dynamic property, in particular, the convergence property, can sensitively
depend on whether this operator is used. However, the election operator is not applicable here because
opponents’ strategies are not observable. Therefore, what we take instead is the elitist operator.

5



Figure 5. Mutation

of the mother strategy by counting the number of nodes of her LISP tree.5 Second, if the
node complexity is more than 10, and if the cut-off is not a function node, we shall try one
more time of the random selection of the cut-off. If the code complexity is more than 20,
we shall try two more times of the random selection unless a function node is selected. And
three more times when node complexity is more than 30. The number of ditto increases
with the node complexity in this manner.

References

[1] Chen, S.-H. (2000), “Toward an Agent-Based Computational Modeling of Bargaining Strategies in
Double Auction Markets with Genetic Programming,” in K.S.Leung, L.-W.Chan, and H.Meng (eds.),
Intelligent Data Engineering and Automated Learning-IDEAL 2000: Data Mining, Financial Engineer-
ing, and Intelligent Agents, Lecture Notes in Computer Sciences 1983, Springer, pp.517-531.

[2] Chen, S.-H. (2001), “On the Relevance of Genetic Programming in Evolutionary Economics,” forth-
coming in K. Aruka (ed.), Evolutionary Controversy in Economics towards a New Method in Preference
of Trans Discipline, Springer-Verlag, Tokyo.

[3] Holland J. H., and J. H. Miller (1991), “Artificial Adaptive Agents in Economic Theory,” American
Economic Review: Papers and Proceedings, 81(2), pp.365–370.

[4] Ok, S., K. Miyashita and S. Nishihara (2000), “Improve Performance of GP by Adaptive Terminal
Selection,” PRICAI 2000.

[5] Rust, J., J. Miller and R. Palmer (1993): “Behavior of Trading Automata in a Computerized Dou-
ble Auction Market,” in D. Friedman and J. Rust (eds.), The Double Auction Market: Institutions,
Theories, and Evidence, Addison Wesley. Chap. 6, pp.155-198.

[6] Rust, J., J. Miller, and R. Palmer (1994), “Characterizing Effective Trading Strategies: Insights from a
Computerized Double Auction Market,” Journal of Economic Dynamics and Control, Vol. 18, pp.61-96.

[7] Tesfatsion, L. (2001), “Introduction to the Spcial Issue on Agent-Based Computational Economics,”
Journal of Economics Dynamics and Control, Vol. 25, pp. 281-293.

5This is also called node complexity. An alternative is depth complexity.

6


