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PREFACE

Evolutionary Computation has developed during the past years into 2 mature research field with a steadily
improving theoretical basis and impressive results in challenging application domains. Computer algorithms gleaned
from the model of organic evolution, such as genetic algerithms, evolutionary programming, evolution strategies,
genetic programming, and classifier systems, have clearly demonstrated their capabilities in a wide range of tasks in
optimization and adaptation as well as simulation of biolagical systems, in order to better understand the modeled real
world.

Although these are the Proceedings of the Seventh Intenational Conference on Genetic Algorithms, the title just
reflects historical reasons rather than a scope limitation: The Seventh ICGA is a conference on evolutionary
computation, just as the other main conference series in the field (namely, the Parallel Froblem Solving from Mature
Conferences, the Conferences on Evelufionary Programming, and the [EEE Intemnational Conferences on Evolutionary
Computation). The ICGA is the conference with the longest history in the field, however, and that is one of the reasons
why | fel particularly proud to be in the position of the program chair for ICGA-97.

For this year's conference, 208 papers were submitted by the intenational scientific community, and [ would like
to thank all researchers for their submissions 1o ICGA-87. The papers were genzrally on a level of quality that | found
exceptionally high, such that it was easy for the program committee, the executive program committee, and the program
chair to arrive at the final decisions for the 102 accepted papers contained in this volume (and not so easy to reject the
rest). Fortunately, I had a good estimate of the expected number of submissions, and the 87 program commities
members did a good job by providing timely, fair, and helpful reviews for the authors and the program chair, We all
know that reviewing scientific work of other members of the community is a time-consuming, difficult honorary
business that steals aur free time and requires our most honest and fair attention—bue if we all give our best to achieve
this, it still turns out to be the most reasenable way of obtaining an adequate assessment of quality. For this conference, [
would like to give my special thanks to the program committee for their help in reviewing the submissions.

I would also like to thank the members of the executive program committee for their help in making acceptance
decisions in some more difficult cases. Jorg Ziegenhirt, one of my colleagues at the Infarmatik Centrum Dertmund, was
an invaluable help in handling all the organizational details conngcted with the management of a submission and review
procedure involving 208 papers, 87 reviewers, and 1248 review forms. He faced this challenge in the most reliable and
precise form [ could imagine.

The conference committee members handled all the other aspects of the conference organization, and [ would like
to emphasize that it was a real pleasure for me to work with them. Erik Goodman (Conference Chair), Bill Punch (Lecal
Arrangements Chair), Gil Syswerda (Financfal Chair), Dave Schaffer (Publications Chair), [an Parmee (Publicity Chair),
Marc Schoenauer (Tutorials Chair), and Dave Levine (Workshops Chair) have done excellent jobs in organizing the
details of this confersnce.

For the publishing process at Morgan Kaufmann, Marilyn Uffner Alan was again responsible for the proceedings,
and it was a pleasure to cooperate with her on this project,

Finally, the conference committee would like to thank the following instinutions for their financial support:

Office of Naval Research

Maval Research Laboratory

Philips Laboratories, Philips Elecronics North America Corporation
International Society for Genetic Algorithms

Genetic Algorithms Research and Applications Group (MSU GARAGe)

And now: Enjoy the proceedings! You will find plenty of material both for the interest of practicians and
theoreticians, reflecting a strong progress of our knowledge about evolutionary computation.

Thomas Biick, Program Chair
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Option Pricing with Genetic Algorithms: The Case of
European-Style Options
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AI-ECON Research Group
Department of Economics

National Chengehi University
Taipei, Taiwan 11623
E-mail: chchen@ee.nceu.edu.tw

Abstract

The cross-fertilization between artificial in-
telligence and computational finance has re-
sulted in some of the most active research
areas in financial engineering. One direction
is the application of machine learning fech-
niques to pricing financial products, which
is certainly one of the most complex issues
in finance. In the literature, when the in-
terest rate, the mean rate of return and the
volatility of the underlying asset follow gen-
eral stochastic processes, the exact solution is
usually not available. In this paper, we shall
illustrate how genetic algorithms (GAs), asa
numerical approach, can be potentially help-
ful in dealing with pricing. In particular, we
test the performance of basic genetic algo-
rithms in the determination of prices of Eu-
ropean call options, whose exact solution is
known from Black-Scholes option pricing the-
ory. The selutions found by basic genetic al-
gorithms are compared with the exact solu-
tion. The results show that GAs can be a
powerful tool for option pricing.

1 Introduction

One of the most difficult issues in finance is the valu-
ation of complex finaneial producte, such az financial
derivatives.! This valuation usually requires knowl
edge of the statistics of the underlying security, such as
the mean refurn and stendard deviation of the return
(the volatdity), Given that these parameters as well
as the interest rate are constant, Elacl: and Scholes
(1973) established a formula (an exact solution) for de-

YA financial derivative is a financial instrument that ia
based on another more elementary financial instrument.
The value of this financial derivative obviously depends on
the price of the instrument on which the derivative iz based.
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termining the value of European-style options.® How-
ever, if these parameters are not constant and other
styles of opticns, such as American-style options, are
considered, then the exact solution may not be feasi-
ble. For the latter case, several numerical techniques
based on massive computation have been developed.”
Recenlty, techniques from machine learning, such as
artificial newral networks [ANNsg), have also been
used to derive exact numerical solutions to option
pricing. For example, Barucci, Cherubini and Landi
(1995) and Chen and Lee {1997a) used ANNs as a
semi-nonparametric technique to approximate prices
of European-style options.t

To our best knowledge, this paper is one of the first few
applications of the evolutionary computation paradigm
to option pricing.® The particular style of evolution-
ary computation considered in this paper is genetic
clgonithms. As we learned from the recent discus-
sion on the no-free-lunch [NFL) theorem [Wolpert
and Macready, 1995), when comparing two machine
learning tecniques, instead of asking “Which technique
15 better?", the right question should he ® When 15
each fechnigue at ifs beat?". Motivated by the NFL
theorem, thiz paper makes an initial aftempt to Lest
whether we can benefit more by using genetic algo-
rithms instead of artificial neural networks to solve

*The solution is obtained from the equation known as
the Black-Scholes partial differentiol equation.

?For a review of these techniques, see Freeman and Di
Giorgie [1996).

“For those whe are not familiar with option pricing, the
price referred to in this fisld is the price defined by a no-
arbitrage parfial differential equation. Whether this price
reflects the true value of the asset or whether the assump-
tions used to derive this partial diferential equation hold
in the real world iz a philosophical isaue known as the ef
ficient market hypothesis in Gnance. We shall not dwell on
this topic here. For recent reflections on this hypothesis,
the interested reader is referred to Chen and Yeh [1996),
Chen and Tan (1998}, and Dowe and Korb (1996).

*The only paper we know in this area iz Trigueros
(1997). The technique employed by Trigueroa [IQ'B'J"] is
genetic programming.
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the option pricing issue. As there is no standard way
to apply ANNs to option pricing, the way to apply
genetic” algorithms to option pricing is also varied.®
Thus, by “initial attempt®, we mean that this work
is just a straightforward application of GAs to option
pricing. At the end of this paper, some thoughts on
enriching this initial attempt are provided. The rest of
the papaer is organized as follows. Section 2 briefly re-
views the Black-3choles option pricing model. Section
3 shows the relevance of genetic algorithms to option
pricing by means of the function approzimation the-
grem. Section 4 discusses the parameters set in this
study and describes the simulations based on GAs.
The results are compared with the exact solution from
the Black-Scholes partial differential equation. Limi-
tations of this application of GAs and its possible ex-
tensions, along with concluding remarks, are given in
Section 5.

2 Option Pricing Theory: A Brief
Review

2.1 Terminology

The two most common types of option contracts are
puts and ealls. A eall is an option to buy, and a put
is an option to sell. Ownership of a call option (put
option) gives the awner the right to buy (sell) a par-
ticular good at o certain price, with that right lasting
until & particular date. The cerfain price is known as
the ezercise price, strike price or the selling price. The
particular date is known as the maturity or the ezpi-
ration dote. The option has no validity after its expi-
ration date. The options that can be exercised at any
time before or on the expiration date are callad Amer-
ican options. The options that can only be exercised
at their maturity are called Furopean options.

Consider a call option with a striking price of E on a
stock price of 5. If the stock price is above the striking
price {§ > E), the call optien is 2aid to be in-the-
money, but if the stock price is below the striking price
(§ < E), the option is said to be ouf-of-the-money.
If the striking price is closest to the current value of
the underlying stock (5§ = E), the option is at-the-
money. When options are first written, the striking
price usually is set at-the-money, Prior to expiration,
an in-the-money option will normally be worth mare
than § = E. This difference (§ = E), known as the
intringic value of the option, is sometimes called the
when-ezercized value, For a call, the intrinsic value is
MAX(5 — E,0). For a put, the intrinsic value is the
MAX(E-S5,0). The intrinsic value of the option does
not measure its market value, Typically, an option
salls for more than its intrinsic value.

*For variants of using ANNa to option pricing, see

Hutchinaon, Lo and Poggie (1994), Lajbcygier, Boek, Flit-
man and Palaniswami {1996) and Liu (1908).

706 Shu-Heng Chen and Woh-Chiang Lee

2.2 The Black-Scholes Option Pricing Madel

Black and Scholes {1973) were the first to provide a
closed-form sclution for the valution of European op-
tions, The Black-Scholes option pricing model is based
on the principle known as the no-grbitrage condition
in economics, Given a few asumptions’, Black and
Schaoles recognized that it iz possible to form a risk-
free hedge portfolio consisting of a long position in the
stock and a short position in the European call written
on that stock. If the stock Fri-ce :l‘iang‘es over time,
the risk-free hedge can be maintained by continuously
readjusting the proportions of stock and calls. In the
fnlh:ming, we shall b.riuﬂy review the derivation of the
famous Block-Schole partial differential equation.

Let Qs denote the number of shares of a stock, 5 the
price per share, and Qg the quantity of calls and
the price per call, then Vg, the value of the hedge
portfolio, i3 simply,

Vg = 5Qs + CQe. (1)

The change in the value of the hedge portfolio is the
total derivative of Equation (1}

dVy = @sdJ + QedC. (2)

We assume that the stock price follows a geometric
Browniasn maolion process, i.e., its rate of return can
be described as

% = pdt + odz (3)

where u is the instantaneous expected rate of return
(driff), o the instantanecus standard deviation of the
rate of return (volatility), 4t denotes a small increment
of time, and dz is 2 Wiener process. Since the option's
price is a function of the stock’s price, its movement
over time must be related to the stock’s movement
over time. To make this relation explicit, we shall,
sometimes, use the notation O 5, 7] to denote the price
of the call, where r is time to maturity. Employing
Ito's Lemma, C(§,r) can be expressed as the following
stochastic differential equation:

8B 80 188
= EE&S'FEJL-[- EFF S4dt |:4:|

Replacing dC in Equation (2) with the RHS of Equa-
tion (4], we can rewrite Equation (2] as follows.

"The derivation of the original version of Black-Schaoles
model rests on six well-known assumptions. However, sub-
gaquent modifications of the basic model have shown that
it is guite robust with respect to relaxations of many of
these assumptiona.
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3 ., 18°C ,
dVy = Q,dS —d!.‘j‘ e+ 5 350
= QuiS5gds + J 8+

5%t (5)
One of the most important insights revealed by Black-
Scholes option pricing model is that it can be nsed as
a hedmng vehicle, i.e., it is possible to continuously
adjust the hedge portfolio, Vi, so that it becomes
risk free. More precisely, the relation in Equation (6)
should sustain in the riskless situation.

dVg = Q,d5 + Q. dC =10 (6)

Without loss of generality, we can normalize Equation
6) by setting Q< = 1 and derive Equation (7) from
6).

a5
dc
The risk-free hedge portfolio will earn the risk-free rate

in equilibrium if capital markets are efficient and the
equilibrium relationship is expressed as Equation (8).

Qo =~Qs g2 =~ (7)

dVy

Substituting Equations {8) and (7) into Equation (5},

we obtain

dVg

ryVidt (9)
as ac g #c
' = : o §%di|

B TGLF il it i vy

Equation (9) can be rearranged as follows.

Substituting equation (1) for Vi ,we have

ac 13 c
E = rf':sQ-ﬁ' + CQCH 3.5‘:' 2 352 eSS
ach rrC—r_;SI:—g - %g%gazﬂz (11)

Equation (11) is the famous Black-Scholes partial dif-
ferential equation. This partial differential equation
can be salved with the following two boundary condi-
tions:

C(8,0) = MAX(S - E,0) (12)

and
C(§=0,7)=0 (13)

Equation (12) simply says, at expiration (¢ = T',r = 0),
a call option must have a value that is equal to zero or
to the difference between the stock price and the exer
cise price whichever is greater; otherwise there will be
arbitrage opportunities awaiting exploitation. Equa-
tion (13) says that the call option price is worthless
when § = 0 even if there i3 a long time to expiry.®
Black-Scholes(1973) transforms the equation into the
heat exchange equation from physics to find the fol-
lowing solution:

C = §N(d)) — Ee~""" N(da) (14)
where dy = EEEUT 4 Lo 7 4y = d) — o /F, and

N(d) is t.h-e cumuht.we distribution function for the
standardized normal distribution. Equation (14) says
that the price of an option on a stock without cash
dividends depends on only five directly observable vari-
ables:

= the stock’s price (8]

» the exercise price (E)

s the time to maturity (r)

o the riek-free rate of interest ry}
s the volatility of the stack (o)

Furthermore, it can be shown that
ac ac ac ac

ac
m— ﬂi — .
e T B g S d e

3 TUse GAs to Solve OPM

Assuming that an asset price § follows a stochas-
tic process with v[5)5® dencting the diffusion term
and rS the risk-adjusting drift, the partial differential
equation characterizing all the contingent claims de-
fined on the asset price is

ac, ac

I
L{C[5,7)) = 2't.l{S_!S 357 + 7 SES + — e (16)
with the boundary conditions

C|5,0)= MAX[S - E,0), C(0,t)=0. (17)
For example, to satisfy the no-arbitrage condition, the
price of a European call, is given by

L(C(S. 1)) - rC(8,7) =0, (18]

where r = T =t is the time to expiration of the call.

The call price ' can be approximated by C,,°

N
CalS,7) = Col8,7) + 3 wilr)ilS),  (19)

im]

*These conditions were originally proven rigorously by
Merton (1973).

*Here, the weight residuals method extensively used in
the numerical partial differential equation iz applied. For
reference, see Barucei et al. (1995).
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where
Co[S,r) =8 —Ee™"™"

Or, alternatively, C, can be written as fallows.

N
CalSyr) =5 - B~ 43 wilr)éi(S)  (20)

i=1

¥y and &, i=1,...,N, are known analytic functions and
are called trial funetions, Cp(5, r) is a function chosen
properly to satisfy the boundary and initial conditions.

The trial functions chosen to approximate C[5, 1) in
this paper are the linear functions for ¥;(r) and sig-
moid functions with slope 3.5¢ for functions $;(5).1"
More precisely,

¥ilr) = air (21)
and :
#i(5) = ERPE T (22)

In addition to the boundary and initial conditions, it
iz desirable to have O, which can also satisfy the signs
of the five partial derivatives in Equation (15). Among
them, the most important one is 1'2 > 0. ﬁg iz called
the Eiq.:.i: Scholes delta or hedyge ﬂlhn It :ells us how
the call price will change in response to the change in
the stock price. In the Black-Scholes model, the hedge
ratio is N(d1), which iz between 0 and 1.

Given the choices of Equations (21) and |:22], ﬁ im-
plies,

a'l:'.; —3.51520
I+E"ﬂ" o fmcr o gprp . Ak (23)

Based on the no-arbitrage condition, i.e.,

L(C(S, 1)) - rC(5,7) =0, (24)

we shall define the error of our approximation R in
terms of the linear operator L,

R = L{C,(5,7)) — rCal5, 7) (25)

By the chosen trial functions, R can be derived ana-
lytically as follows.

1" The choice of the trial functions and the signoid func-
tions can have effect on the performance of genetic algo-
rithma. In earlier studies (Chen and Lee, 1997h,c), we also
choosa the second-order polynominal functiona for fi(r)
and trigometric functions for $:(5), but the result seams
to be inferior to the one given in khis paper.

Sg5) + 3 lr1/2)(3)5°

Sza":{sl

N
B w R
=1

 24(5)
as?

=

-l"l'
= E wilr)gi(8) +2rEe™""

=1

=zﬁ,

[3.5i)2e3 545 (] + £2545)2
|Z“‘t" (1+ e255)8

+(1/2)9(85)5*

e3-Bi5

N . : :
=23 5131 + 3505 (3.59)2
ZE'T { }“[4. E::ii.’:?}i}{s ) | +
i=1
—3.553548
5
i EE' :1+¢"‘5‘5] Ea‘rl_}_e;g.
+ 2rEe™"
(26)

In the next section, genetic algorithms are applied to
the search for {a;}

im]e

4 Simulation Description and Results

Table 1: The Setting of Controlling Parameters

ITEM SETTING
Number of chromosome 25000
Population size 50
Length of string 15

roulette-wheel selection
two=point crossover

Selection mechanism
Crossover style

Crossaver rate 0.8
Mutation rate 0.001
Interval of parameters  [0,5]
Fitness function (1) AN,

Fitness function (2) 3k =&:ﬂl_'ﬂ'nr_5- - Cas.s)
The interval of parameters {a; }5, is set to satisfy the con-
dition %‘ > 0O given that the interval of stock price is set
to be [0.8,5] {See Table 2)

The software used in this paper is GENESIS 5.0, writ-
ten by John Grefenstette (Grefenstette, 1990) to pro-
mote the study of genetic algorithmas for function opti-
mization. The package is a set of rountines written in
C. It requires users to have some programming abil-
ity to link it with a rountine of the fitness function
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provided by the user. The chosen parameters to run
Cenesis 5.0 are shown in Table 1.

Natice that there are two fitness functions considered
in this study. The first one is based on the residuals
defined by the Black-Scholes partial differential equa-
tion under different stock prices, i.e., the one defined in
Equation (25). We shall denote these residuals by Rs
where § are stock prices. The second one is simply
based on the residuals defined by the difference be-
tween the approximating price C, and the true price
(the Black-Scholes price) Cs. The second one is also
frequently used in the application of ANNs to option
pricing. The difference between these two measure-
ments is that to have the former one, we must know
the true model, e.g., the Black-Scholes model, while
the latter does not require this knowledge. Therefore,
by taking both fitness functions into account, we can
evaluate the pricing performance of GAs not only for
the case when the true model is known but also for
the case when it is unknown. Given these two de-
fined residuals, our chosen fitness functions are simply
the sum of squared errors (SSE), namely, 3. R and

L s(Cus — Crs.5)? (Table 1).

Table 2: The Setting of Controlling Parameters

ITEM SETTING
Stock price (S) [0.6, 5]
Exercize pirce {E] i
Time to maturity (1) 1
Risk-free rate of interest [r;) 0.1
Volatility of stock (o) 0.1

Table 3: Coefficient Estimates of the Trial Functions:
Fitness Function 1

PARA. oy ag a3 dy a5

GAs [N=1) 2.30
GAs [N=3 2.30 2.30 23028

GAs (N=5] 2.30 230 230 2.30 2.3158

Table 4: Coefficient Estimates of the Trial Functions:
Fitness Funection 2

PARA. ay g as 24 oy
GAs [N=1] 2.8727
GAs (N=3] 26167 2.30 2.30

GAs (N=5) 26114 2.30 230 2.30 2.3026

The test problem iz European call options with the five

parameters described in Table 2. In this study, GAs
are applied to apporximating the continuous call price
function Cgs(5) given that the other four parame-
ters are fixed. The domain of 5 is set to be |0.6,5]
Rﬂrpruehiaiiw pl_'ﬁ.nu {S',-}E=1 are a-a.m.pllrd from this
dormain in the following manner:5; = 0.6, 5,41 — 5 =
0.1, Si=4s = 5,¥:. Given E, 1,1y o, the no-arbitrage
prices can be obtained directly from Equation (14)
for each 8; (¢ = 1,...,45) and they are depcited as
the solid line in Figures 1 and 2. The performance of
genetic algorithms is tested with the number of trial
functions increasing from 1 to 3 and then to 5. The
Cas computed from the five trial functions with the
fitness functions 1 and 2 are depicted as a dash line
in Figures 1 and 2 respectively. The coefficients esti-
mated from different numbers of trial functions with
the fitness functions 1 and 2 are also exhibited sepa-
rately in Tables 3 and 4.

From Tables 3 and 4, we can see that the coefficient
estimates under different fitness functions are pretiy
close, When the number of trial functions increases
from one to three, the SSE derived from both fitness
functions drops quite significantly (See Table 5). How-
ever, further increase in N may not help very much. In
terms of the absolute error, the GA can approximate
the function Cps(5) pretty well under both ftness
functions (Figures 1 and 2). In fact, the call prices es-
timated by the GA are difficult to distinguish visually
from the true Black-Scholes values.

Table 5: Fitness of the GA Option Pricing

N E.s R.?s Es{'ﬂmﬁ i CHLSJE
GAs ([N=1) 8.8x10"% 5533x10°4
GAs (N=3] 3.0x10"? 4.805x 104
GAs (N=5) 208x10"% 4873x10°*

Nevertheless, since the call price goes down with the
stock price, the same error experienced under differ-
ent stock prices cannot be treated equally. Therefore,
in addition to the absolute error, we consider a rela-
tive measure, the absolute percentage error (APE), is

o taken into account. The APE is defined to be
Cus=Cnpsl The APEs under the fitness functions 1
and 2 are depicted in Figures 3 and 4 respectively. It is
clear from these two figures that the APE distribution
5 asymmetric. When the option price is in-the-money
(§ = E), the APE is almost nil, and when the option
price is out-of-the-money (5 < E), the APE is high
up to 70% to B0% (Figure 4). This asymmetric dis-
tribution may be due to the chosen ftness functions,
which are guadratic; hence, errors are penalized asym-
metrically. The asymmetric phenomenon can also be
found in ANNs and GP applications to option pric-
ing (Hutchinzon, et al, 1994, Figure 5-¢; Barucci, et
al, 1905, Figure 1; Triguercs, 1997, Table 10.).
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In addition to G[S), it is alsa intereating to see how
well GAs perform in terms of the hedge ratio [delta)
and the daily rate of erosion of the call price (6], Le.,
22 and —32. By Equation (7), the hedge ratio is
the risk-free portfolio of stocks and call options, Owver-
estimating or underestimating this ratio will put in-
vestors in a risky position. I[n Figures 5 and 8, the
correct hedge ratio (the Black-Scholes hedge ratio) is
plotted against 5 as the solid line. Associated with
the solid line is the G A hedge ratio derived from the
case of using five trial functions (the dash line). From
these figures, we can see that, while the hedge ratio is
estimated rather accurately when the option is in-the-
money, it is underestimated when the option is at-the-
money (% = 1) and overestimated when the option is
deep out-of-the-money.

Given Equations (20)-(22), the time derivative of the
call price — %fi: can be derived as follows.

ac o = A lr) 1
2 =rEe™ "+ it 2L, i . PO 27
il gl: dr 14355 (27)

By an appropriate choice of the coeficients in ilr),
%’%‘ iz positive, which says that the longer the time
to maturity, the higher the call price. Since the daily
rate of erosion § is defined as the negative of %";‘. &
is negative, which means that a decrease in time te
maturity decreases the call price. For example, if the
call option has a ¢ of —0.05, then each day the call
price should erade by 0.05. ¢ iz a very usefull tool for
measure the potential varitions of options prices and
iz generally employed by options traders.

In Figures T and 8, the Black-Scholes # is depicted as
the solide line, and the GA # is in the dotted line.
Agian, we see that, when the option 15 in-the-money,
the GA f fits the Black-Scholes § precty well. How-
ever, when option price is out-of-the-maney, # is gen-
erally underestimated and it could be further under-
estimated when the option ia deep out-of-the-money.

5 Concluding Remarks

While genetic algorithms seem to be 4 promising tool
for option pricing, there are several issues deserving
serious work to bring this approach to maturity.

First of all, it is not clear how to add boundary con-
ditions to our approximating function. In this paper,
the boundary conditions is arbitrarily imposed and it
can only satisfy the case when § > E. When § < E
at the expiration date, this imposed condition fails to
hold and the call price can be negative, which is cer-
tainly not acceptable. There should be better ways te
handle this issue. For example, the penalty methods
extensively applied in conatrained optimizetion or the
niched Pareto method in multiobjective genetic algo-

rithms may be a good substitutes, '*

Secondly, representation, in particular, the represen-
tation of trial functions needs to be improved., The
Black-Scholes model has an analytical solution, but
there are lots of derivatives whose analytical function
is unknown. Therefore, to facilitate option pricing,
a more flexible approach to handling trial functions
ghould be considered. In thizs study, GAs are used
with a fized set of sigmoid functions, As a general-
ization, one may consider using eveluttondary artificeal
neural networks {E.ﬁma] to tackle more difficult is-
sues, such as the Amertcan-style options, convertible
bonds, and fixed-income securities.
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