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Absatract

By separating the case out-of-the-money from the
case in-the-money, this paper extends the study of
Chen and Lee [1997) in the application of gemetic
algorithms to option pricing. The boundary com-
dition for the call price in terms of the expiration
date iz alse carefully formulated. With this mod-
ification, the GA's performance is improved in the
outeof-the-money case, more precisely, the deep out-
of-the-money case.

1 Motivation

Recent applications of artificial nevral networks, ge-
netic algorithms and genetic programming to option
pricing reveal an asymmetric result, namely, in terms
of the absalute percentage error, these toals generally
performs worse in the out-of-the-money case than in
the in-the-money case.! This result may lead to the
suggestion that the out-of-the-money case shouald be
separated from the in-the-money case when we ap-
ply those tools, This separation can also be mo-
tivated by a geometric inspection of the call price
eurve at its expiration date. At the expiration data,
the call price curve has a kink at the place where the
stock price (5) equals to the strike price (E). There-
fore, one can expect that the curvature of the call
price curve can change abraptly at § = E2 Tak-

‘Far example, see Hutchinson, et al. [1804), Figure $-c;
Barucd, & al. (1985}, Figure 1. Trigueras {1597), Table 10;
Chen smd Lee (1867), Figures % and 4.

¥The general reader la referred o Wilmott ot ol [18595).
The picture mentioned above can be found in the fgures 5.6+
4.7 of this bask.
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ing this abrupt change into account, we may improve
the GA's performance by separating the out-of-the-
money case from the in-the-money case.

The rest of the paper iz organmzed as follows, In
Section 2, we give a brief review on the mathemat-
ical model of option pricing. Section 3 will show
how GAs can be applied to option pricing. Section
4 presents the experiment design and the simulation
results. The results are also compared with those in
Chen and Les [1997). Section § leaves the concluding

remarks.

2 The Mathematics of Option
Pricing

For general readers’ convince, a brief review of the
mathemnatics of the Black-Schools option pricing i
provided here. For details, the interested reader 1=
referred to Chen and Lee (1997). Black and Seholes
(1973) was the first to provide a closed-form solution
for the valuation of European opfions. The Black-
Scholes option pricing model is based on the princ-
ple known as the no-arbilrege condition in sconomics.
Let Q5 denote the number of shares of a stock, 5 the
price per share, and Q¢ the quantity of calls and ©
the price per call, then Vi, the value of the hedge
portfalio, is simply,

Vi = 5Qs + CQc. (1)

The change in the value of the hedge portfolio is
the total derivative of Equation (1)

dVg = QsdS + QedC. (z)

= 0=



We assume that the stock price follows a geametric
Brownian mofion process, Le., its rate of return can
be described as

% = it + ot )

where g iz the instantaneous expected rate of return
{drift), o the instamtaneons standard deviation of the
rate of return |volatility], dt denctes a small incre-
ment of time, and dz is 2 Wiener process. Since the
option's price iz a function of the stock’s price, its
movement over time must be related to the stock's
movemant over time. To make this relation explicit,
we shall, sometimes, use the notation O[5, 7} to de-
note the price of the eall, where = is time to maturity.
Employing [to’s Lemma, O[S, v} can be expressed as
the following stochastic differential equation:

_ 18 ,

dg = asd.ﬁ' d:+ T e (4)
Replacing dC in Eqmm {2] with the RHS of
Equation [4), we can rewrite Equation (2] as follows.

ac 13¢C ,
tadltagE

Omne of the most important insights revealed by
Black-Scholes option pricing model is that it can be
used as a hedging wehicle, Le., it is possible to contin-
uously adjust the hedge porifolio, Vg, so that it be-
comes risk free. More precisely, the relation in Equa-
tion (6) should sustain in the riskless situation.

iVy = Q.sﬁlgﬁ §de (5)

dVy = Q,d5 +Q.4C =0 (6)

Without loss of generality, we can normalise Equa-
tion (8] by setting Qg = 1 and derive Equation [7)
from (8).

L .g 8 _ 48
Qe = G‘sdc— ic (7

The risk-free hedge portfolin will earn the risk-free
rate in equilibrinm if capital markets are efficient and
the equilibrium relationship is expressed as Equation
(8]

v,
F—: =rydt (8)

Substituting Equations (&) and (7] inte Equation
(5), we obtain

Vg = rVydt (9)
a5 EC' E'U lﬂtﬂ
d5 - —| .'E 35 ﬂ:?dﬂ
Equation (9) can be rearranged as follows.
ac -3C 18%C ,_,
=gy Tyt )

Bubstituting equation (1) for Vip ,we have

ac ac., 1dc
5 = (59 +CQc)(-351 - Emﬂzﬁ”'
ac 18
= iyl ag - 233"25: (11)

Equation (11) is the famous Black-Scholes partial
differential eguation. This partial differential equa-
tion can be solved with the following two boundary
conditions:

(5,0} = maz(§ = E,0) (12)

and
Cl§=0,7)=0 [13)

Black-Scholes(1973) transforms the equation into
the heat exchange equation from physics to find the
following sohation:

C=5N|(d)) - Ee"r" N{dy) (14)

where dy = 2ELERUT L g /7 4y = dy —0y/7, and
N{d) iz the cumulative distribution function for the
standardized normal distribution. Equation (14) says
that the price of an option on a stock without cash
dividends depends on only five directly observable
variahles: '

the stock's price (5)

o the exercise price (E)

» the time to maturity (r)

o the risk-free rate of interest (r;)
# the volatility of the stock (7]
Furthermare, it can ba shown that

oI S Y S T
35 2035 <05 > 05 >0,==>0. (15)

= 1=’



3 Use GAs to Solve OPM

Azsuming that an asset price § follows o stochas.
tic process with u[5)5% denoting the diffusion term
and rS the risk-adyusting drift, the partial differen-
tial equation characterizing all the contingent claims
defined on the asset price is

ac  ac

1 #c
LElS,r)) = JuSIS s +rS s+ 5= (16)

with the boundary conditions
C[8,0) = maz(§ - B,0), C[0,4)=0. (17)
By Equation (11}, to satisfy the ne-arbitrage condi-
tion, the price of a Earopean call, is given by
L{C[8,7])) = rCI8,r} =0, [18)

where r = T — 1 is the time to expiration of the call.
The call price € can be approximated by C, 2

ColS,7) = ColS,r) + 3 wlrlgelS),  (19)

i=]
whers

5> E
i<k

S—FEe ™,
e { e
Or, alternatively, €, can be written as follows.

Cal8,7) =5~ B + ¥ dulr)éul ),

(20)

if the call option is tn-the-money (5 > E} and

N
Cal8, T] o Z L ["]'&i (5)

=l

if the call option is sui-of-the-money (5§ < E), where
¥y and ¢, i=1,...N, are known analytic functions
and are called trial functions, Col5,7) is a function
chosen properly to satisfy the boundary and initial
conditions.

Notice that the choice of Cy(S5, 7] here is different
from the one used in Chen and Lee (1997). There,
they did not disntigunish the case sn-the-money and
ouf-of-the-momey. The failure to distinguish these
two cases may be responsible for the overestimation

*Here, the ookt residusly method extenaivaly usad in the mu-

merical partial differential equation is applied. For referencs,
e Baruce et ol (1995),

(21}

of the call price in the cut-of-the-money case.® Far-
thermore, if we only consider the in-the-money case
for Cu(S,7), Le, Co(S,7) = § = Ee™™ and suppose
qM{I] 0, then in the oput-of-the-money case Cy (5, 0)
Bi-E raﬂu‘ than 0. Therefore, the boundary con-
dition [17) is mot satisfied.

The trial functions chosen to approximate C(5, r}
in this paper remain unchanged, i.e.,

wlr) =arr (@)
and "
#(8) = T35 (23)

In addition to the boundary and initial conditions,
it is desirable to have O, which can also satisfy the
signs of the five partial derivatives in Equation [13).
Ameng them, the most important one is %,'? =0,
ﬂ% is called the Black-Scholes deltn or hedge ratio.
It tells us how the call price will change m response
to the change in the stock price. In the Black-Scholes
mode], the hedge ratio is N(d1), which is between 0
and 1.

Given the chaices of Equations (21) and (22), 45
implies the following restriction,

-3.5i8%
—HEMJ e o T
Based om the no-arbitrage condition, i.e.,
L{CI8, 7)) - rC(8,7) =1, (28)

we shall define the error of our approximation R in
terms of the linear operator L,
B =L{C.{8,r)) —rCal5,r] (28)

By the chosen trial funetions, B can be derived
analytically as follows.

S Eaﬂméltshzﬁtfiltlﬂ]wES‘JS‘
i=] t'-l
X #4(s 345
E ;'! 1 E ¢[ ]

=]

N
= rE ilr)gilS) + 2rEe"

im]
s Zqﬁ-&{lfﬂ]u[-ﬁ'!gi-

*See Figures 3 sad 4 of Chen and Lee (1097),
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(27)

In the next section, genetic algorithms are applied
%o the search for {a;},.

4 Simulation Description and
Results

Table 1: The Setting of Controlling Paramaters

Number of chromosame | 25000

Population size 50

Length of string 15

Selection mechanism roulstte-wheel selection
Crossover style two-point erossover
Crossover rate 0.6

Mutation rate 0001

Interval of parameterss -5,5]

Fitness function (1) aa Rt

Fitness function (2) ¥ ugolCos — Cas.s)®

Tha interval of parametes {a;}00  Ia st to sokisfy the condi
tion %8 > 0 given that the intarval of stock price is set to be
{0,5] (See Table 2)

The software nzed in this paper is GENESIS 5.0,
written by John Grefenstette [Grefenstetie, 1990) to
promote the study of genetic algorithms for function
optimization.

Like Chen and Lee (1897}, two fitness fanctions ars
considered in this study. The first one is based on the
residuals defined by the Black-Scholes partial differ-
ential equation under different stock prices, i.e., the
one ‘defined in Equation (26). We shall denote thess
residuals by Rg where § are stock prices. The second
one iz simply based on the residuals defined by the
difference betwesn the approximating price ', and
the troe price (the Black-Scholes price) Cps. The
second one is also frequently used in the application
of ANNs to optien pricing. The difference between
these two measurements is that to have the former

one, we must know the iroe model, e.g., the Black-
Scholes model, while the latter does not require this
knowledge. Therefore, by taking both Btness fune-
tions inio account, we can evaluate the pricing per-
formance of GAs not ealy for the case when the trus
model is known but also for the case when it is un-
known. Given these two defined residuals, our chossn
fitness functions are simply the sum of squared errors
[SSE), namely, } ¢ B and F5(Ca s ~Cas.5)* (Tar
ble 1).

Table 2: The Parumeters of the Buropean Call Op-

tion i
Stock prics (8] [0,5]
Exercise price (E] ° 1
Time to maturity [r] 1
Risk-free rate of interest [r;] | 0.1
| Volasility of stock (o) 0.1

Table 3: Estimated Coefficients of the Trial Fune.
tions |out-of-the-money): Fitness Function 1

parameter a1 g @y ay a5
GAs N=1} -3.42

GAs (N=3) | -1.05 | 500 |-3.56

GAs [N=5) | 0.001 | -0.002 | 0.01 | 0.002 | -D.01

Tahle 4: Estimated Coefficients of the Trial Fune-
tions (out-of-the-money): Fitness Function 2

parameter | a4y [ o3 | an [ ay o
GAs [N=1] | -3.43

GChs (N=3) 188 | 5 |-3.56

GAs (N=5) [ 0.001 | 0.001| © |-0.001 | -0.001

The test problem is the European call option with
the five parameters described in Table 2. In this
study, GAs are applied to approximate the continn-
ous call price function Cpg(5) given that the other
four parameters are fixed. The domain of S is set to
be [0,5]. This domain s also different from that in
Chen and Lee (1997). In Chen and Lee (1997), the
domain was restricted to [0.5,5] and the case of deep
out-of-af-money [0,0.6) was excluded, while in this
paper, this part in included. Representative peints

=i -~



{5}, are sampled from this domain in the follow-
ing manner:§; = 0.1, 8, — 8 = 0.1, Sjupo = 5, %5,
Given E, 1, rp,o, the no-arbitrage prices can be ob-
tained directly from Equation (14) for each & (i =
1,...,50) and they are depicted as the solid line in Fig-
ores 1 and 2. The performance of genetic algorithms
is tested with the number of trial functions increas-
ing from 1 to § and then to 5. The Cys computed
from the Bve trial functions with the finess func-
tions 1 and 2 are depicied as a dash line in Figures
1 and 2 respectively. The coefficients estimated from
different numbers of trial functions with the ftness
functions 1 and 2 are exhibited separately in Tables
3 and 4 for the out-of-the-money case and in Tables
5 and 6 for the in-the-money case.

Table 5 Estimated Coefficients of the Trial Func-
tions (in-the-money): Fitness Funetion 1

piﬂl‘n:l!r ay oz [:81 G4 s
Gis [N=1] | 2.30

GAs [N=3) | 2.30 | 2.30 | 2.3028

GAs (N=5) | 2.30 [ 230 | 2.30 | 2.30 | 2.3158

Table f: Estimated Coefficients of the Tral Fune-
tions (in-the-money): Fitness Function 2

paramater dy 3 | 83 | oy ay
GAs [N=1] | 2.8727

GAs [N=3) | 2.6167 | 2.30 | 2.30

GAs (N=5) | 2.6114 | 2.30 | 2.30 | 2.30 | 2.3026 |

Table 7: Fitness of the GA Option Pricing

N sBs |3 elCas —Chs.s)
GAs (N=1] [ 75x 1077 THx1077
GAs [N=3) [ 6.5 107" BEx10T
GAs (N=5) [ 4.5x 1077 475 107

One of the distinctive feature of this paper is to
take into account the asymmeiric effect on C,[5, 1)
between the case fn.the-money and the case out-gf-
the-money. In Chen and Lee (1997] and Trigueros
(1997), this separation is neglected and the poor fit-
ness of GAs and GP for the out-of the-money sce-
nario is well known. Hence, we consider an efective

way to overcome this problem is to take advaniage
of this domain-specific knowledge and put them ex-
plicitly into the design of GA. As a matter of fact,
comparing the estimated coefficients in Tables 3 and
4 and Tables 5 and 6, we can see the significant differ-
ence in the Ca[8, r) between the cases in-the-money
and out-of-the-money. Nevertheless, different fitness
functions seems to have negligible effect on the esti-
mated coefficients, This can be sesn by comparing
Tables 3 with 4 and comparing Tables 5 with &,

The ftness performance is summarized in Table 7,
When the number of trial functions inerenses fram
one to three and further to five, the SSE derived
from both ftness functions drops continuonsly. [n
addition to the absolute emror, & relative measure,
the absolute percentage error (APE), is also taken
into aceount. The APE s defined to be E‘r{;ﬁﬁﬂ
The APEs under the fitness functions 1 are depicted
in Figure 3. [t is clear that the APE distribution is
still asymmetric. When the option price is dn-the-
money (5 > E), the APE iz almest nil, and when
the option price is oui-of-the-money (5§ < E), the
APE is high up to 100% (Figure 3).

To evaluate the sffectiveness of seperating cut-of-
the-money from in-the-moeny, Figure 3 in Clien and
Lee (1997) is replicated in Figure 4 here. By compar-
ing Figure 3 with Figure 4, we can see that this paper
make an significant improvement over Chen and Lee
(1957) in the out-of-the-money case, more precisely,
the deep out-of-the-money case, Take 5 = 0.6 as an
example, which means that the slock price slumps
into only & half of fis original price on which the
strike price (E] 15 bosed. The APE of Chen and
Lee (1997) in this case is high up to 243%, whils it is
only 100% in this paper. Moreover, if we extend the
& = (1.6 further down to § = 0.1, we can ses that the
APE in Chen and Lee (1507) can increase exponen-
tially, while it is quite stable and i around 100% in
this paper. Therefore, it confirms us the belief that
an improvement can be made if we take the asym-
metric preperties of the call price function explicitly
into account.

5 Concluding Remarks

In this paper, we apply genetic algorithms to op-
tion pricing by separating the out-of-the-money case
from the sn-the-money case. Some preliminary re-
sults on the improvement in terms of the APE are
observed in the deep out-of-the-money case. How-
ever, the question which has not been addressed seri-
onsly is where the cotoff paint is. Clearly, the answer

- 14 -



is definitely not always one. In fact, we suspect that
before the expiration date, the cutoff point should be
lezs thon one. A rigorons study to confirm this is left
for the further studies.
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