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Abstract

The cross-fertilization between artificial intelligence
tnd computational finance has resulted tn some of the
most gchime resesrch oregs 48 financial engineering.
One direction i3 the application of machine learning
techniques fo pricing financial products, which u cer-
tainly one of the most comples (ssnes in finance, [n
the literature, when the inforesi rate, the meon rate of
return and the wolatility of the underlying asset follow
general stochastie procesaes, the analytical solution iz
wsually not avatlable. Ower the lost twe years, ariifi-
cial newral nets have been applied to solve option prec-
ing numerically. However, so for, there 12 no applica-
tions based on evolutionary computation in thus area,
In this paper, we shall sllustrate how genetic algorithms
{GAs), os an aiternative fo noural nets, can be poten-
tially helpful in dealing with option pricing. [n parficu-
lar, we teat the performance of base genetic algorithma
by using it to the determination of prices of European
call options, whose ezact solufion 1 known from Black-
Scholes option pricing theory. The solutions found by
basic genetic algorithms are compared with the esact
golution, and the performance of GAS 13 evaluated oc-
cordingly.

1 Introduction

One of the most difficult tssues in finance is the val-
uation of complex financial products, such as finaneval
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derivatives.’ This valuation wsually requires knowl
edge of the statistics of the wnderlying security, such
as the mean retwrn and standard demiation of the re-
turn (the volatilsty), If these parameters are constont,
and if the inferest rate is conatant, then Black and Se-
holes (1975) has established a formula (an exact solu-
tion) for determining the value of the European-style
optsan.® However, if these parameters are not constant
and other styles of optiona, such as the American-style
aption, are considered, then the exact solution may not
be feasible. In this case, several numerical techniques
based on massive computation have been developed.
Recenlty, techniques from machine learning, sach as ar-
#ificial neural networks (ANNa), have also been used
to derive exact numerical solutions to option pricing
{Hutchinson, et al, 1994; Baracci, et al, 1905, Lajbey-
gier, et al, 1996, Lin, 1996; White, 1996).”

This paper, to our best knowledge, is the fiest appli-
cation of esolutionary computation peradigm, to option
pricing. The particular style of evolutionary computa-
tion considered in this paper is gensiie algorithma. As
we learned from the recent disenssion on no-free-lunch
[NFL) theorem (Wolpert and Macready, 1935), when

£ & fnancial derivative is a Enandal (nstrument that i based
an smother more elementary Brancial instrument. The valoe of
ihis fAnaneinl derivative obviously depends on the price of the
imstrument on which the derlvative (s basad

The solution & obtsined from the equation known sa the

APar those who sre mot familior with the field aphion prising,
we shall make & remark here, The pries referred in this flald
is the price defined by & no-orllrage partial aifferenisal equation.
Whether this price reflects the trus valuoe of the sset of whether
the sssumptions ased to derive this partisl differential squation
hald in the real world it a philsophieal issue known as the eficent
rerket Agpothenia in Enance. We shall not dwell on this issus here.
Far recent reflections on this hyposhesis, the imterested reader is
refarred to Cher and Yeh (1906), snd Chen and Tan (1956].



eomparing twe machine learning tecniques, instead of
asking *Which ternhique is beat?™ the right question
to ask should be * When ds ezch fecknigue af ste best?™,
Motivated by the NFL theorem, this paper provides an
wnitial attempl Lo Lhe test whether we can benefit more
by using genetic algorithms, instead of using artificial
nearal networks, to solve option pricing issue. As there
is mo unique way to apply ANNs to option pricing, the
way to apply genetic algorithms to option pricing is also
not unigue. So, by “inital attempt™, we mean that this
work is just a straighiforward applications of GAs to op-
tion pricing. At the end of this paper, some thoughts on
enriching this initial attempt are provided. The rest of
the papaser is organized as follows. The Black-Scholes
option pricing model is briefly reviewed in Section 2.
In Section 3, the relevance of genetic alporithme to op-
tiom pricing, by means of the function spprosimation
theorem, iz shown. Section 4 discasses the parameters
set in this study and describes the simulations based on
(GAs, The results are compared with the exact solution
from the Black-Scholes partial differential equation.

2 The Black-Scholes Option Pricing
Model

Black and Scholes (1973) were the frst to provide
a closed-form solution for the valuticn of Enropean op-
tions, The Black-Scholes opticn pricing model is based
pn the principle known as the no-arbitrage condition in
economics. Given a few asumptions, Black and Scholes
recognised that it is possible to form a risk-free hedge
portfolic consisting of a long position in the afock and
# short position in the Ewropean call written on that
stock, and that derives the fallowing Block-Sehole par-
ticl differential equation.

ac
e (1
where 5 the price per share, € the price per call, t the
time to buy call option, vy the risk-free rete. and # the
volatility of the stock price |#),

Equation {1) can be solved with the following two
boundary canditions:

€(8,7) = MAX(S - E,0) (2)

and
E‘S = 'I:I,-r]. = [3}
Equation (2) simply says, at expiration [t = T, =
D), a call option must have 2 value that is equal to

gero or bo the difference between the stock price and
the mttbepﬂoeumlluthetim;quﬂuﬂtyr

whichever is greater; otherwise there will be arbitrage
n’par!um'-ﬁﬂ awailing ﬂpluil.nliﬂl. Equation tﬂ} says
that the call option price is worthless when § = 0 even
if there is a long time to expiry. Black-Scholes(1973)
transforms the equation into the heat exchange equa-
tion from physics to find the following solution:

€= SN(d) - Be™""" N{dy) (4)
v = BB 4 o/ 0y by - o,

N(d) is the cumulative distribution function for the
etandardized normal distribution. Equation (4] says
that the price of an option on a stock without cash
dividends depends on only five directly observable vari-
ables: (1) the stock's price (5], (2) the exercise price
[E}, (3) the time to maturity (r), (4} the risk-free rate
of interest (ry), (B) the volatility of the stock price (#).

3 Use GAs to solve OPM

Followlug Baueeh {1095), we ¢can approximate the
calling price O by C,.

N
Cal8,7) = MAX(S = E,0)+ ) wul+)a(8) (5)
=]
¥ and 4, 1 = 1,.., N, are known analytic fume-
tions and are called ¢rial functions, Cyl§,7) s a fume-
tion chosen properly to satisfy the boundary and initial
conditions. The trial functions chosen to approximate
€5, 7) in this paper are the polvnomial functions for
(7] and trigometric functions for #(5)*

i
Wlr) =30, (&)
and
#|8) = biain(ing) + yeos(inS). (7]
Based on the no-arbitrage condition, i.e.,

L‘G[SI f]] i "{“[Sl r] =0, {B:I

where
Licys, r:l:l = %HS’% + rﬁ'g - aac—r, {9

We shall define the error of our approximation B in
terms of the linear operater L,

R=L{Cﬁ[ss1-”"rcltslr' {lﬂ]

By the chosen trial functions, B can be derived
analytically®, and we should use B? as the fitness fune-
tion in the following G As simulations.

“For other choiees, renders are referred to Chen and Li [1998)

“For detadls, tee Chen and Lee [1996)



4 Simulation Description and Results

Table 1: The Setting of Controlling

Par
| Number of chromesomes | 2500, 5000, T500
10000,12500

Population size 25,50, 75, 100, 125
Number of trial functions | 1,2, 3 4, §
Length of string 15, 30, 45, 60, 75
Selection mechanism roulette-wheel selection
Crossover style two-poink crossover
Crossover rate 0.6
Mutation rate 0.001
Interval of parameter l-nif
Fitness function

The software used in this paper is GENESIS 5.0,
written by John Grefenstette (Grefensteste, 1990) to
promote the stady of genetic algorithms for function
optimization. The chosen parameters to ran Geneais
5.0 are shown in Table 1. The number of chromosomes
is adapted for the expanding search space when the
number of trial functions increases. Without this ada-
patation, Chen and Lee (1096) foond that the result
usually gets worse when N goes up. The teat prob-
lem is the Enropean call option with those parameters
indciated in Table 2.

Table 2: The Parameters of the European

Call Option
Stock price (3 05,09 11,12
m‘?’lw 1
Time to maturity (r] 1
Risk-free rate of intersst [r/) | 0.1
Volatility of stock o) 0.1

There are 100 GA runs for sach number of trial fanc-
tions, and there are 100 generations for each GA ran.
The distribution of the GA-based call prices calculated
by the best chromosome in Ceneration 100 is depicted
in Figures 1-4. The vertical line appearing in each fig-
ure indicates the corresponding theoretical price based
on the Black-Scholes formula. There are two statistics
provided for each Sgure, namely, median and mean.
In addition, mede can also be found by looking at the
peak of each figure. There are some good signs of thess
simulation results. First of all, we can see that the true
price is always covered by the distribution. Further-
mare, the distribution has a tendency to shrink as N
goes up® Thirdly, in spite of the limited number of
trial functions, for some cases, such as § = 0.8 and

“For the case N=4 and 5, and the momants scatistics of thess
dastributions, ses Chen and Lee [1598).

§ = 1.2, the true prices can be well approximated by
the mean, median or mode of the distribution. Given
that the GAs applied in this study are very simple,
these good signs are emcouraging enough for further
exploitation of this technique in future studies.
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