
Fundamental Issues in the Use of Genetic
Programming in Agent-Based Computational

Economics
Shu-Heng Chen

AI-ECON Research Center
Department of Economics

National Chengchi University
Taipei, Taiwan 11623

E-mail: chchen@nccu.edu.tw

Abstract. This paper provides a review of some fundamental issues of the applications
of genetic programming to agent-based computational economics. The issues under
review covers four aspects of genetic programming, namely, primitives, semantics,
genetic operators, and architecture. The paper surveys the technical issues encoun-
tered in each of these four aspects, and some proposed solutions to them.

1 Motivation

Genetic programming has been applied to agent-based computational economics for more
than half a decade. This line of research is currently challenged by several non-trivial tech-
nical issues. This paper will give a full account of them, including their significance and
solvability.

Genetic programming is designed to grow (evolve) a population of evolving hierarchies of
building blocks (subroutines), the basic units of learning and information, from an immense
space of them. There are three key words in this brief definition, namely, building blocks,
hierarchies, and evolving population of hierarchies. A building block is a class of decision
rules defined by some specific characteristics which can perform certain kinds of functions. In
genetic programming, building blocks are initially randomly generated by a set of primitives,
known as the function set and terminal set. Here comes the first issue: the choice of primitives.

Once a set of primitives is given, hierarchies are derived by some production rules (gram-
mar). Given the grammar, any hierarchy which is syntactically valid is a legitimate species.
Its appearance and popularity will be crucially dependent on its fitness, which is basically
driven by three genetic operators, namely, reproduction, crossover, and mutation. Issues en-
countered at this stage are two-fold: the semantic restrictions of derived hierarchies and the
use of genetic operators.

Finally, those hierarchies are not static, but dynamically adapted to the environment which
is either exogenously given or endogenously change with the agents. The dynamics generated
by GP is a sequence of sets of programs (parse trees, subroutines, ideas, strategies). This
sequence can be interpreted as the evolution of an artificial society as a whole. In other words,

2 Shu-Heng Chen

a society of adaptive agents has a one-to-one and onto relation to a population of programs.
Alternatively, this sequence can also be interpreted as the adaptation of a single agent. In this
case, a society of agents consists of many populations of programs. The first interpretation
is often referred to as single-population GP (SGP), whereas the second is dubbed multi-
population GP (MGP). Which interpretation is appropriate? We will address this issue at the
end of the paper.

2 Selection of the Function Set and Terminal Set

This issue is crucial because the algorithmic complexity (minimal description length) of any
decision rule depends on the choice of the function set and terminal set. Algorithmic com-
plexity is relevant because the chance of discovering a specific decision rule in a finite number
of generations is a decreasing function of its algorithmic complexity.

Example 1: [12]
We shall exemplify the assertion above based on [12]. [12] employed GP to discover the
underlying law of motion for some simple chaotic time series. They considered the following
three chaotic laws of motion.

xt+1 = 4xt(1 − xt), xt ∈ [0, 1] ∀t (1)

xt+1 = 4x3
t − 3xt, xt ∈ [−1, 1] ∀t (2)

xt+1 = 8x4
t − 8x2

t + 1, xt ∈ [−1, 1] ∀t (3)

These three laws of motion are different in algorithmic size, i.e., the length of the LISP sym-
bolic expressions. To see this, we rewrite each of the equations above into the corresponding
LISP S-expressions.

(∗ (4 ∗ (xt (− 1 xt)))) (4)

(− (∗ 4 (∗ xt (∗ xt xt))) (∗ 3 xt)) (5)

(+ (− (∗ 8 (∗ xt (∗ xt (∗ xt xt))))

(∗ 8 (∗ xt xt))) 1) (6)

The length of a LISP S–expression is determined by counting from the leftmost to the right-
most position the number of elements (atoms) in the string that makes up the S–expression.
From Equations (4) to (6), the length of the LISP S-expression is 7, 11, and 16 respectively.
Therefore, in terms of algorithmic complexity, Equation (1) is the simplest, while Equation
(3) is the most complex. [12] then examined how this difference might affect the performance
of GP.

By setting the initial value x0=0.213, a time series composed of fifty observations was
generated for Equations (1)-(3) respectively. Call them Time Series 1, 2, and 3. These time

Genetic Programming in Agent Based Computational Economics: Issues 3

series served as the training data for GP. Four experiments were implemented for each series.
For each experiment, they let GP run for 1,000 generations. For Series 1 and 2, GP was able
to discover the underlying law of motion in all four experiments. However, the number of
generations required for this discovery was different. For Series 1, it took 7, 12, 14 and 19
generations respectively, whereas for Series 2, it took 29, 37, 37, and 70 generations. As for
series 3, GP failed to discover the law of motion in three out of the four simulations, and in the
only successful case the law of motion was discovered at the 151th generation. These experi-
ments demonstrated the effect of the length of the LISP S-expression (algorithmic complexity
of the program) on discovery.

The function set originally employed by [12] is {+,−,×, %}, and the terminal set is
{xt,R}, where R is the ephemeral random constant1. If we add the function “cubic” to the
function set, then the minimal description of Equation 2 is simply

(− (∗ 4 (cubic xt)) (∗ 3 xt)), (7)

and the program length of it is only 8. Alternatively, if we add x3
t to the terminal set, then the

minimal description becomes

(− (∗ 4 x3
t) (∗ 3 xt)). (8)

In this case, the program length of Equation 2 is even shorter–7, to be exact, which is the
same as that of Equation 1. It is, therefore, likely to discover the hidden law of Series 2 as
fast as to discover that of Series 1. Thus, a mathematical function can have different program
lengths, depending on the user-supplied function set and terminal set.2

Formally speaking, let T be the terminal set and F be the function set, and denote their
cardinality by | T | and | F |.

Prob(f ∗ ∈ Gn) = P [K(f ∗ | F
⋃

T)], (9)

and

∆Prob(f ∗ ∈ Gn)

∆K
|F ⋃

T ≤ 0, (10)

where f ∗ is a targeted decision rule, say, the optimal decision rule, Gn is the nth generation
of population, and K(f ∗ | F

⋃
T) refers to the algorithmic complexity of the decision rule

of f ∗ given the functional set F and the terminal set T .
Since a larger function set and terminal set will help abbreviate the representation of a

decision rule, the algorithmic complexity of a function can only be non-positively related to
| F | and | T |, i.e.,

∆K

∆ | F | ≤ 0, and
∆K

∆ | T | ≤ 0 (11)

Back to Equation (10). It seems that a larger terminal set and function set can enhance
search efficiency. In fact, there are empirical evidence suggests that this is indeed the case

1See [23] for details of the ephemeral random constant.
2While the assertion and example given above are based on deterministic functions, we believe that it also

holds for the stochastic cases. For example, see [22].

4 Shu-Heng Chen

([21]). Still, the influence of search space and population size also has to be taken into con-
sideration. Let S be the search space, which is a collection of all potential species. The size
of it, | S |, shall grow exponentially with | F | and | T |. Therefore, if population size does
not grow exponentially with | F | and | T |, then

lim
|∆F|,|∆T |→∞

s = 0, (12)

where

s =
| G |
| S | . (13)

To take into account the effect of s, let us rewrite equation (9) into a conditional density,

Prob(f ∗ ∈ Gn | s) = P [K(f ∗ | F
⋃

T)]. (14)

Equation (14) says that the probability of finding f ∗ in a finite number of generation n is
conditional on population size ratio s. Since in practice the population size cannot grow
in proportion to the size of function and terminal set, reducing algorithmic complexity of a
decision rule by enlarging terminal and function set may help gain little efficiency. Therefore,
constrained by the population size ratio, the size of F and T have to be economized.

What is popular among GP users is to incorporate some known decision rules (benchmark
rules) into F and T . For example, in their study of option pricing formula, [15] included the
Black-Scholes model, as an existing subroutine, in their function set. The formulas generated
by genetic programming for the equity options were hence adaptations of the Black-Scholes
model. Examples are

C(S, X, τ, r, σ) = CB−s + Constant ∗ τ (15)

where, CB−S is the Black-Scholes formula and τ is the option’s time to maturity.
Another solution to this problem is to make the terminal set or function set adaptive. For

the former, [29] showed that how to distinguish relevant terminal sets from irrelevant ones
via their adaptation mechanism.3 For the latter, automatic define functions (ADFs) provide a
promising approach.

3 Semantic Restrictions

Given a function set and terminal set, genetic programming can automatically generate a
series of decision rules. While all these decision rules are syntactically correct, they may not
be semantically valid or sensical at all if there are no restrictions on grammar (production
rules). Let us illustrate it with a few examples.

Example 1: [16]

[16] used genetic programming as a means of inferring the strategies that were played
by subjects in economic decision-making experiments. The game that interested them is the

3But, the empirical evidence demonstrated in the paper shows that even regular GP is able to distinguish
those “good” terminals from those “bad” ones. Nonetheless, it did this in a less efficient way.

Genetic Programming in Agent Based Computational Economics: Issues 5

well-known two-player, repeated ultimatum game. Given their F and T , it is possible to
generate a decision rule like
(IF((>(A0)(7))))(0)(1)),
which means that if the offer from the proposer (player A) to the responder (player B) is
greater than 3, then B will accept it; otherwise she will reject it. This is a typical decision rule
which one can expect from the ultimatum game, and hence is sensible. However, their F and
T can also produce a decision rule like
(IF((<(T)(10)))(B1)(1)),
which means if T is less than 10, the responder will repeat the action taken in the previous
period; otherwise she will always unconditionally accept the offer. This decision rule implies
that before period 10, the responder will either accept or reject the offer, and after period 10,
she will always accept it. In other words, she would not base her decision on the actual offer
no matter how attractive it can be. Such decision rules barely make sense.

Example 2: [7]

[7] discussed the semantic issue of using regular GP in technical analysis. Without seman-
tic restrictions, regular GP can generate a decision rule using a comparison between a price
and a volatility term, a logical ANDing of a Boolean variable and a price term, or an IF func-
tion specifying just a moving-average price term in the condition. None of these expressions
make sense.

Example 3: [11]

Using genetic programming, [11] proposed agent-based computational modeling of dou-
ble auction (DA) markets, i.e., a DA market is modeled as an evolving market of autonomous
interacting traders (automated software agents). Given his F and T , regular GP can generate
a bargaining strategy like
(* (sin (sin (sin (sin (sin (RLog (If-Then-Else (sin (+ Time2 NT)) Time1 (sin (sin (+
Time2 NT)))))))))) (If-Then-Else Pass (sin (sin (sin (Max PAvg HT)))) Pavg))).
The frequent use of the function sin makes this decision rule barely comprehensible and one
can hardly get any useful insights from it.

Since genetic programming is frequently expected to simulate human reasoning processes
in agent-based computational economics, generating semantically invalid solutions is some-
what disappointing. There are a few solutions to this problem. The first solution is not to do
anything and let the problem be solved by natural forces, i.e., the survival of the fittest prin-
ciple. However, there is no guarantee that natural forces can make these nonsensical decision
rules extinct. The reason is simple. Since GP is designed to implement the survival-of-the-
fittest principle, GP would remain loyal only to the fitnees function provided to it. Unless
users’ preference are well articulated in the fitness function, there is no magic that GP can
figure it out what they are. For example, if fitness is only a function of profits or utilities, then
a fair evaluation of GP should be only based on the examination of the profits or utilities of
the GP-derived decisions, rather than anything not mentioned in the fitness function, such as
the simplicity or semantic validity.4

4Therefore, the common criticism to GP, “the regular GP representation and operators often lead to overly
complex solutions,” is indeed not a fair criticism to GP, and certainly cannot be an acceptable argument to reject

6 Shu-Heng Chen

Based on what has just been said, the second solution to semantically invalid decision
rules is to incorporate into the fitness function the preference for simplicity or comprehen-
siblity. [20] is an example of illustrating the idea of penalizing complex behavior via the
well-known minimum description length (MDL) principle, and chose MDL as the fitness
function. By using the MDL principle, one may trim down the complexity of evolved behav-
ior, and, hopefully, may make them easier to understand. However, simplicity and semantic
validity are not the same thing, and simpler solutions can still be semantic invalid as the ex-
ample of [16] shown above. So, how should we modify our regular fitness function to reduce
the probability of having semantically invalid solutions? The answer is that we simply do not
know. There is no fitness function which can represent the preference for semantic validity,
like what MDL does for the preference for simplicity. It is hard to have such kind of fitness
function because measuring semantic validity is a very prohibitive task.

Instead of expressing our preference into the fitness function, alternatively, one can can
also put direct restriction to the production rule (the grammar). The third solution proposed
by [25] is known as strongly typed genetic programming (STGP). “Strongly typed GP is an
enhancement to regular GP where (i) all the functions know what data types they take as
arguments and what data type they return, and (ii) the routines for tree generation, mutation,
and crossover all ensure that data types are consistent.” ([26], p.334) In economics and fi-
nance, STGP is now the major approach to dealing with the semantically invalid solutions.
Examples are abounded ([7]; [27]; [8]; [16]).

For example, [7] focused on a special class of non-sensible solutions, i.e., symmetric
trading models in the foreign exchange market. Regardless of the sign of state variable, sym-
metric trading models always give the same recommendations to buy or sell, and hence is
useless for generating effective trading signals. It is easier to characterize this special class of
non-sensible solutions with STGP, and that is what had been done in [7].

Maybe the most profound application of STGP to economic and finance is a series of
studies done by Hitoshi Iba and his colleagues. One of their specific application domains,
which is also relevant to agent-based computation economics, is the above-mentioned sym-
bolic regression. In symbolic regression, one key solution to the choice of primitives is to
take a function approximation approach. Different series expansion has been considered over
the past few years, including power series, Fourier series, and some combined series. In this
approach, the choice of primitives is simply a choice of a basis (Fourier polynomials, trigono-
metric polynomial), and the mathematical properties of this choice, such as convergence and
density, are well known in functional analysis.

Currently, there are at least two methods of applying the idea of function approximation
to symbolic regression. The first one is more straightforward and puts no restriction to the
tree structure. So, it behaves like regular GP except that the primitives are selected by the
chosen polynomials and the polynomial coefficients are solved by projection. Versions like
this can be found in [30] and [31]. The other approach delicately uses a hierarchical mul-
tiple regression analysis method, known as Group Method of Data Handling (GMDH), to
add more structure to GP trees. An algorithm called STructured Representation On Genetic
Algorithms for NOn-linear Function Fitting (STROGANOFF) was pioneered by Hiotoshi
Iba and his colleague on a series of studies. In [27] STGP was used to generate Kolmogorov-

GP.

Genetic Programming in Agent Based Computational Economics: Issues 7

Gabor Polynomial,

f(x1, x2, ..., xd) = ω0 +
∑

j∈S,∀S∈P (1,2,...,d)

ωjΠj∈Sxj . (16)

By their STGP, all GP-derived solutions will automatically be Kolmogorov-Gabor polyno-
mial, and hence all semantically invalid solution will be avoided.

But STGP has its limitation too. The limitation comes from the fact that there exists
no universal algorithmic description of nonsensical decision rules. To some extent, even an
objective line separating sensible rules from nonsensical ones is difficult to draw. Therefore, it
is hard to know the kinds of restrictions to be added a priori. Weak restrictions may help little,
but strong restrictions may generally diminish adaptation flexibility, which is the essence
of agent-based computational economics. Therefore, at its best, STGP can only serve to
generate a particular class of decision rules, rather than as a general solution to avoiding
semantically invalid rules.

Absence of well-defined fitness is by no means unique to computational economics. Other
GP application areas such as criminal suspect search, graphic art, music, architecture design
aid, and speech processing also have such problems. When a well-defined fitness function
is not available, human evaluation seems to be necessary, and this leads to our next point of
discussion: interactive genetic programming (IGP).

IGP is a kind of regular genetic programming except that the fitness function is replaced
by human evaluation. This approach seems to be the only choice when the fitness function
cannot be explicitly defined and is heavily dependent upon the user’s implicit preference.
While this idea has been extensively used in other areas, the application of IGP to economics
and finance is all but virgin territory. The only example known to the author is EDDIE ([32]).
EDDIE (Evolutionary Dynamic Data Investment Evaluator) is an interactive tool, designed
by the University of Essex, to help analysts to search the space of decision trees and make
financial decisions. Under this system, the user (expert) may initialize her interaction with
the EDDIE by suggesting a terminal set and function set. The EDDIE would then generate
decision rules genetically by using GP. The human user may approve or reject these rules
based on their experience. This generate-and-approve/reject cycle continues until the user is
satisfied. Such a process enhances the semantic validity of solutions.

4 Genetic Operators

In the literature, the EC (Evolutionary Computation) society in particular, a related issue
which has attracted researchers’ attention is the design of genetic operators. Most of the
studies in this area were motivated by optimization problems. While the results obtained are
suitable for engineering designs, they may be less relevant to agent-based economic model-
ing.5

4.1 The Election Operator

The first study that pointed out the significance of genetic operators to agent-based economic
modeling is [1]. [1] introduced the election operator, and showed that without this operator

5However, as we shall see later, economists did frequently refers to computer scientists’ studies from the
optimization perspective without carefully checking their applicability.

8 Shu-Heng Chen

strict convergence to the rational expectations equilibrium cannot be attained in her cobweb
model.6 The idea of the election operator is to “force” well-performing agents to survive for
extended periods of time. By doing that, it can prevent evolution from the disturbing effects
of crossover and mutation, or the dark side of innovation.7

The pioneering works by Arifovic popularized a standard procedure, also known as the
augmented genetic algorithms, to evolve a population of agents, namely,

reproduction → crossover → mutation → election,

or, written in composite function,

Election (Mutation (Crossover (Reproduction))).

However, other variants also exist. [9] treated imitation (reproduction) and innovation (crossover
and mutation) as two separate learning processes, and run a parallel procedure on both of
them. Each process will produce one decision rule, and adaptive agent will decide which she
should follow by the election operator. Therefore, their procedure is

Election ((Reproduction), (Mutation (Crossover))).

We see no particular reason why these two procedures could result in different outcomes.
In particular, in both procedure, the election operator used as the last step gives the same
protection against the disturbance from innovation.

While the election operator was eloquently defended and was extensively used in many
applications, sometimes, we see the necessity of not using it. For example, in their study of en-
dogenous take-off model, i.e., an endogenous transition from the era of pre-industrialization
to industrialization, [5] did not use the election operator as a final step to protect undesir-
able disturbance. The exclusion of the election operator plays a vital role in explaining why
take-off shall eventually happen, “these systems will eventually be attracted to a neighbor-
hood of the high-income steady state with probability 1.” (p. 199) The key is that mutation
and crossover without further election will allows agents experiment with positive amounts
of training. Since there is no depreciation rate on human capital, this experimentation with
positive amount of training ensures that the stock of human capital rises over time. The rising
in the stock of human capital will help the economy pass a threshold and take off. How-
ever, before passing the threshold, since the return (fitness) from investing in human capital
is dominated by the return from investing in physical capital, the election operator, had it
been used, would kill off all decision rules who call for investing positive amount of time
in training. Consequently, the stock of human capital will remain to be zero and a transition
from a low-income steady state to a high-income steady state is impossible. So, here, we see
the necessity of not using the election operator. Therefore, no matter how eloquently it has
been argued before, the use of the election operator still seems somewhat arbitrarily.

6This is also true in [2], where strict convergence to a perfect-foresight inflation equilibrium can fail without
the election operator.

7A similar idea of the election operator was proposed by McCain ([24]), which he called it teleological
conservatism. But, McCain’s origin contribution is not acknowledged by users of the election operator. [28] is
the only one who cites [24] together with [1].

Genetic Programming in Agent Based Computational Economics: Issues 9

4.2 Selection Schemes

In addition to the election operator, the importance of the selection scheme was also noticed
by economists . In the GA society, there are two selection schemes being extensively used.
One is the roulette-wheel selection scheme, and the other is the tournament selection scheme.
The performance difference between these two schemes was well evidenced in the context
of optimization problems. While one may expect that their differences can also be observed
in agent-based economic models, the motivation would not be the same. Because in the con-
text of agent-based economic model, these two selection schemes can represent two different
communication networks. Roulette-wheel selection is feasible only in a global network which
allows for imitation among a large number of peoples, whereas tournament selection is sup-
ported by a local network where imitation is permissible only in a small group of people.8 As
a result, the performance comparison of these two schemes can be useful in addressing the
issues related to the network effects.

The first paper who showed that the selection scheme can matter is [6]. The paper is
based on the model of a signaling game, developed in [17]. The Eaton-White model is a two
person game. Each player has a type. In a match, the payoff of player j depends on the action
she takes and the action her opponent takes. In a case if both players take the appropriate
action, then they both receive the highest payoffs. Anyone who take an inappropriate action
can hurt not only her opponent but also herself. The appropriate action is determined by the
type of agent, which is not directly observable. The player can, however, send a signal to her
opponent regarding her type with the hope that the opponent can gauge the type of the player
based on the signal received. Of course, there is a risk: if the player’s signal is misinterpreted,
then the action taken must also be inappropriate. An interesting issue arose is whether players
are able to perfectly decode the signals received and hence can take appropriate actions, or,
in brief, coordinate to a Pareto-preferred signaling equilibrium.

[6] simulated this game with genetic algorithms, and they found that the result of con-
verging to the signaling equilibrium crucially depends on the difference in payoffs between
“appropriate action” and “neutral action”. Their argument was built upon the roulette-wheel
selection scheme.

There has to be larger difference in the payoffs between ‘appropriate action’ and
‘neutral action’ chromosomes in order for the former to obtain more copies during
reproduction. Only a large difference in payoffs can offset the large number of neu-
tral chromosomes on a roulette wheel that generates copies of chromosomes. (p.193.
Italics added)

Now, one can see why the employment of the roulette-wheel selection scheme can matter: it is
not able to distinguish the well-performing chromosomes when fitness between the good and
bad is close. This can further make it hard to implement the survival of the fittest principle.
They did not proceed further to show how their results would changed if the tournament
selection scheme is used instead. Nonetheless, in a separate paper, [3] did show how these
two selection schemes can result in different results.

The first paper who made a formal remark on the superiority of the tournament selection
scheme is [9]. The remark is based on a long discussion on selection schemes among com-
puter scientists, who tended to concluded that the tournament selection scheme is preferred

8This is true because tournament size usually used in the tournament selection is very small.

10 Shu-Heng Chen

to the roulette wheel selection. Nonetheless, what is not sure is whether this evidence de-
rived mainly from computer scientists is relevant for agent-based economic modeling. As we
mentioned above, in social sciences, these two selection schemes can be connected to two
different social networks. This connection may, however, not interest computer scientists in
their optimization problem.

[10] showed that, relative to the survival of the fittest principle, genetic operators only play
a secondary role. Specifically, in a context of the overlapping generations model, [13] found
that their simulation results on inflation rates are quite robust to the genetic operators used.
However, if the survival of the fittest principle is abandoned, the behavior generated changed
dramatically and was quite different from the observations based on human subjects.

4.3 Influence from Computer Scientists

What have been summarized above can be considered as economists’ contributions to some
thoughts on genetic operators. They are not imported from computer science. This shows that
the distinction between the GA as an function optimizer and the GA as a simulator of social
evolution may calls for different methodologies on the study of genetic operators. However,
economists did also received some insights from computer scientists on their application of
genetic operators.

For example, on the population size, [4] justifies her choice of “30” as follows: “...which
is usually taken as the minimum number of strings required for effective search.” (p. 7. Ital-
ics added.) Effective search is meaningful when the target to search is clear, and hence is
meaningful when we take the GA a function optimizer. But, in agent-based economic mod-
eling, we are not searching for anything in particular. We are simply watching evolution. It
is, therefore, not certain whether our experimental designs should be motivated by “effective
search”.

In addition to sample size, the usual argument to justify the specific control parameters
values, such as crossover rate and mutation rate, is something like “These values are those
that are recommended by Back (1986) and Michaelwicz (1996)” (Ibid, p.8), or “These param-
eter values are consistent with those suggested by Grefenstette (1986) and Goldberg (1989)”
([9], p. 194). But, this “computer scientists say so” argument helps us little in answering the
following question: can those control parameters have relevant empirical values when agent-
based economic modeling is actually used to simulate experiments with human subjects or to
replicate some econometric properties from real observations.

5 Architecture

The last issue concerns the economic interpretation of a population of building blocks (hier-
archies, subroutines, programs or strings). [19] provided the following two interpretations.

Depending upon the model, an agent may be represented by a single string, or it may
consist of a set of strings corresponding to a range of potential behaviors. For example,
a string that determines an oligopolist’s production decision could either represent a
single firm operating in a population of other firms, or it could represent one of many
possible decision rules for a given firm. (p.367.)

Genetic Programming in Agent Based Computational Economics: Issues 11

The first interpretation is often called the single-population design, and the second is called
the multi-population design. [1] is probably the first study which compares these different de-
signs of GAs in agent-based economic modeling. In terms of convergence, converging to the
rational expectations equilibrium (REE), the single-population GA and the multi-population
GA behaves the same, namely, they both converged to the REE when the election operator
was used, and failed to converge otherwise. Since then Arifovic no longer considered the
MGA in her subsequent studies, and other researchers also did not care too much on whether
their simulation results are robust to these two designs. To run the GA within either design
turns out to be an arbitrary decision made with almost no qualification.

By saying that “The difference between these two approaches to modeling learning is
often neglected...(p.2)” [33] is the first one to give a thorough analysis of the consequences of
this choice. In [33], the difference between the SGA and the MGA is more than just a matter
of coding. They can be different in the interaction level at which learning is modeled. For the
MGA, learning is modeled at the individual level, i.e., agents learn exclusively on the basis
of their own experience, whereas for the SGA, learning is modeled at the population level,
i.e., agents learn from other agents’ experiences as well. It is due to this distinction that the
SGA is also called social learning and MGA individual learning. [33] then argued that there
is an essential difference between individual and social learning, and the underlying cause
for this is a so-called spite effect. The spite effect may occur in a social learning GA, but
can never occur in an individual learning GA. To see how the spite effect can influence the
outcome of the evolutionary process, [33] used the two different GAs to simulate the learning
process of a oligopoly game. The simulation results show that while the individual learning
GA moves close to the Cournot-Nash output level, the social learning GA converges to the
competitive Walrasian output level. As a result, unlike what was observed in [1], the SGA
and MGA generally can lead to non-trivial different results.

[18] pointed out a fundamental flaw of the architecture of SGP in agent-based economic
modeling. A solution to Harrald’s criticism is proposed in [14]. Due to the size limit of this
paper, the interested reader is referred to [14].

6 Concluding Remarks

A list of four fundamental issues of GP in agent-based economic modeling is given in order.
Unless these questions are answered, genetic programming is not well grounded in consid-
eration of human behavior, and it would be premature to claim that we have a model for
a population of agents learning over time. The four issues addressed in this paper concern
primitives, grammar, genetic operators and architecture. Later breakthroughs in GP such as
automatically defined functions, adaptive GP, strongly-typed GP, interactive GP, and distribu-
tive GP, can be seen as a series of efforts to cope with these issues.

References

[1] Arifovic, J. (1994) Genetic algorithms learning and the cobweb model, Journal of Economic Dynamics
and Control 18(1), 3–28.

[2] Arifovic J. (1995) Genetic algorithms and inflationary economies, Journal of Monetary Economics 36(1),
219–243.

12 Shu-Heng Chen

[3] Arifovic J. (1997) Strategic uncertainty and the genetic algorithm adaptation, . In: Amman H., Rustem B.,
Whinston A. (Eds.), Computational Approaches to Economic Problems. Kluwer Academic Publishers,
Dordrecht, 225–236.

[4] Arifovic J. (1998) Stability of equilibria under genetic–algorithm adaptation: an analysis. Macroeconomic
Dynamics 2(1), 1–21.

[5] Arifovic J., Bullard J., Duffy J. (1997) The transition from stagnation to growth: an adaptive learning
approach. Journal of Economic Growth 2(2), 185-209.

[6] Arifovic J., Eaton B. C. (1995) Coordination via genetic learning. Computational Economics 8(3), 181–
203.

[7] Bhattacharyya S., Pictet O., Zumbach G. (1998) Representational semantics for genetic programming
based learning in high-frequency financial data. In: Koza J. R., Banzhaf W., Chellapilla K., Deb K., Dorigo
M., Fogel D. B., Garzon M. H., Goldberg D. E., Iba H., Riolo R. (Eds.), Genetic Programming 1998:
Proceedings of the Third Annual Conference. Morgan Kaufmann, 11–16.

[8] Bhattacharyya S., Mehta K. (2001) Evolutionary induction of trading models. In: S.-H. Chen (Ed.), Evo-
lutionary Computation in Economics and Finance, Physica-Verlag.

[9] Bullard J., Duffy J. (1998) A model of learning and emulation with artificial adaptive agents. Journal of
Economic Dynamics and Control 22, 179–207.

[10] Chen S.-H. (1997) On the artificial life of the general economic system (I): the role of selection pressure.
In: Hara F., Yoshida K. (Eds.), Proceedings of International Symposium on System Life, 233–240.

[11] Chen S.-H. (2000) Toward an agent-based computational modeling of bargaining strategies in double
auction markets with genetic programming. In: Leung K.S., Chan L.-W., Meng H. (Eds.), Intelligent Data
Engineering and Automated Learning- IDEAL 2000: Data Mining, Financial Engineering, and Intelligent
Agents, Lecture Notes in Computer Sciences 1983. Springer, 517–531.

[12] Chen S.-H., Yeh C.-H. (1997) Toward a computable approach to the efficient market hypothesis: an appli-
cation of genetic programming. Journal of Economic Dynamics and Control 21(6), 1043–1063.

[13] Chen S.-H., Yeh C.-H. (1999) Modeling the expectations of inflation in the OLG model with genetic
programming. Soft Computing 3(2), 53–62.

[14] Chen S.-H., Yeh C.-H. (2001) Evolving traders and the business school with genetic programming: a new
architecture of the agent-based artificial stock market. Journal of Economic Dynamics and Control 25,
363–393.

[15] Chidambaran N., Lee C.-W. J., Trigueros J. (1999) Option pricing via genetic programming. In: Abu-
Mostafa Y. S., LeBaron B., Lo A. W., Weigend A. S. (Eds.), Computational Finance – Proceedings of the
Sixth International Conference. MIT Press, Cambridge, MA.

[16] Duffy J., Engle-Warnick J. (2001) Using symbolic regression to infer strategies from experimental data.
In: S.-H. Chen (Ed.), Evolutionary Computation in Economics and Finance, Physica-Verlag.

[17] Eaton C., White W. D. (1992) Image building. Manuscript, Simon Fraser University and University of
Illinois at Chicago.

[18] Harrald, P. (1998) Economics and Evolution. The panel paper given at the Seventh International Confer-
ence on Evolutionary Programming, March 25-27, San Diego, U.S.A.

[19] Holland J., Miller J. (1991) Artificial adaptive agents in economic theory. American Economic Review
81(2), 365–370.

[20] Iba H., de Garis H., Sato T. (1994) Genetic programming using a minimum description length principle.
In: Kinnear K. Jr. (Ed.) Advances in Genetic Programming, Vol. 1, The MIT Press: Cambridge, MA,
265-284.

[21] Johnson H. E., Gilbert R. J., Winson K., Goodacre R., Smith A. R., Rowland J. J., Hall M. A., Kell D. B.
(2000) Explanatory analysis of the metabolome using genetic programming of simple, interpretable rules.
Genetic Programming and Evolable Machines 1(3), 243-258.

Genetic Programming in Agent Based Computational Economics: Issues 13

[22] Kaboudan M. A. (1999) A measure of time series’s predictability using genetic programming applied to
stock returns. Journal of Forecasting 18, 345–357.

[23] Koza J. (1992), Genetic Programming: On the Programming of Computers by Means of Natural Selection.
The MIT Press.

[24] McCain R. A. (1994) Genetic algorithms, teleological conservatism, and the emergence of optimal demand
relations: the case of stable preferences. Computational Economics 7(3), 187–202.

[25] Montana D. J. (1995) Strongly typed genetic programming. Evolutionary Computation 3(2), 199-230.

[26] Montana D. J., Czerwinski S. (1996) Evolving control laws for a network of traffic signals. In: Koza J.,
Goldberg D., Fogel D., Riolo R. (Eds.), Genetic Programming 1996: Proceedings of the First Annual
Conference. MIT Press, Cambridge, MA, 333-338.

[27] Nikolaev N.I., Iba H. (2000) Inductive genetic programming of polynomial learning networks. In: Yao X.
(Ed.), Proceedings of the IEEE Symposium on Combinations of Evolutionary Computation and Neural
Networks. IEEE Press, 158-167.

[28] Novkovic S. (1998) A genetic algorithm simulation of a transition economy: an application to insider-
privatization in Croatia. Computational Economics 11(3), 221–243

[29] Ok S., Miyashita K., Nishihara S. (2000) Improve performance of GP by adaptive terminal selection. In:
Proceedings of the 6th Pacific Rim International Conference on Artificial Intelligence.

[30] Rodrigruez-Vazquez C., Fonseca M., Fleming P. J. (1997) An evolutionary approach to non-linear poly-
nomial system identification. Im: Proceedings of 11th IFAC Symposium on System Identification, 2395-
2400.

[31] Rodriguez-Vazquez, K. (2000) Identification of non-linear MIMO systems using evolutionary computa-
tion. In: Genetic and Evolutionary Computation (GECCO’2000), Late Breaking Papers, 411-417.

[32] Tsang E., Li J., Markose S., Er H., Salhi A., Iori G. (2001) EDDIE in financial decision making. Journal
of Management and Economics 4.
http://www.econ.uba.ar/www/servicios/publicaciones/journal4/contents/contents.htm

[33] Vriend N. J. (2000) An illustration of the essential difference between individual and social learning, and
its consequences for computational analyses. Journal of Economic Dynamics and Control 24, 1–19

