A Functional Modularity Approach to
Agent-based Modeling of the Evolution of
Technology

Shu-Heng Chen! and Bin-Tzong Chie?

1" AI-ECON Research Center, Department of Economics, National Chengchi
University, Taipei, 116, Taiwan chchen®@nccu.edu.tw

2 AI-ECON Research Center, Department of Economics, National Chengchi
University, Taipei, 116, Taiwan chie@aiecon.org

Summary. No matter how commonly the term innovation has been used in eco-
nomics, a concrete analytical or computational model of innovation is not yet avail-
able. This paper argues that a breakthrough can be made with genetic programming,
and proposes a functional-modularity approach to an agent-based computational
economic model of innovation.

Key words: Agent-Based Computational Economics; Innovation; Functional
Modularity; Genetic Programming.

1 Motivation and Introduction

No matter how commonly the term “innovation” or “technological progress’
has been used in economics, or more generally, in the social sciences, a concrete
analytical or computational model of innovation is not yet available. Studies
addressing specific technology advancements in different scientific and engi-
neering fields are, of course, not lacking; however, the general representation
of technology, based on which innovation can be defined and its evolutionary
process studied, does not exist.

While direct modeling of innovation is difficult, economists’ dissatisfaction
with the neo-classical economic research paradigm is increasing, partially due
to its incompetence in terms of producing novelties (or the so-called emergent
property). We cannot assume in advance that we know all new goods and
new technology that will be invented in the future. Therefore, in our model,
we must leave space to anticipate the unexpected. Recently, [2, 3] introduced
Zabell’s notion of unanticipated knowledge to economists [11]. This notion is
motivated by population genetics. In probability and statistics it is referred to
as the law of succession, i.e. how to specify the conditional probability that

2 Shu-Heng Chen and Bin-Tzong Chie

the next sample is never seen, given available sets of observations up to now.
However, the Ewens-Pitman-Zabell induction method proposed by Aoki is
still rather limited. Basically, the nature of diversity of species and the nature
of human creativity should not be treated equally [5].

This paper proposes genetic programming as a possible approach leading to
simulating the evolution of technology. Our argument is based on two essential
standpoints. First of all, as regards the innovation process, we consider it
to be a continuous process (evolution), rather than a discontinuous process
(revolution). According to the continuity hypothesis, novel artifacts can only
arise from antecedent artifacts. Second, the evolution can be regarded as a
growing process by combining low-level building blocks or features to achieve
a certain kind of high-level functionality. In plain English, new ideas come
from the use (the combination) of the old ideas (building blocks). New ideas,
once invented, will become building blocks for other more advanced new ideas.
This feature, known as functional modularity, can be demonstrated by GP,
and that will be shown in this paper.

2 Background

The idea of functional modularity is not new to economists. For example, Paul
Romer has already mentioned that “Our physical world presents us with a
relatively small number of building blocks—the elements of the periodic table—
that can be arranged in an inconceivably large number of ways.” (Romer,
1998). That GP can deliver this feature has already been well evidenced in
a series of promising applications to the scientific, engineering, and financial
domains.

A decade ago, financial economists started to apply the functional-modular-
ity approach with GP to discover new trading rules. [9] and [1] took moving
average rules and trading range break-out rules as the building blocks (prim-
itives). GP was employed to grow new trading rules from these primitives.
Hence, GP has already demonstrated the evolution of trading technology:
combining low-level building blocks (MA, filter, or break-out rules) to achieve
a certain kind of high-level functionality (profitable performance).

John Koza’s application of GP to Kepler’s law is another striking example.
Here, not only did GP rediscover the law, but also, as the system climbed
up the fitness scale, one of its interim solutions corresponded to an earlier
conjecture by Kepler, published ten years before the great mathematician
finally perfected the equation [8, 4]. A further application of GP by John Koza
to analog circuits shows that GP-evolved solutions can actually compete with
human ingenuity: the results have closely matched ideas contrived by humans.
Koza’s GP has produced circuit designs that infringe 21 patents in all, and
duplicate the functionality of several others in novel ways [10].

Agent-based Modeling of the Evolution of Technology 3

Commodity I Commodity 2 Commodity 3 Commodity 4 ~ Commodity 5 Commodity 6 ...

Fig. 1. A Functional-Modularity Representation of Commodities.

Commodities are associated with their respective production processes which, when
written in LIST programming language, can be depicted as parse trees as shown
here.

3 Commodities and Production

Commodities in economic theory are essentially empty in terms of content.
Little attention has been paid to their size, shape, topology, and inner struc-
ture. A general representation of commodities simply does not exist in current
economic theory. In this paper, each commodity is associated with its produc-
tion process. Each production process is described by a sequence of processors
and the materials employed. In general, each sequence may be further divided
into many parallel subsequences. Different sequences (or subsequences) define
different commodities. The commodity with the associated processor itself is
also a processor whose output (i.e. the commodity) can be taken as a material
used by an even higher level of production. With this structure, we can ascer-
tain the two major elements of GP, namely, the function set and the terminal
set. The former naturally refers to a set of primitive processors, whereas the
latter refers to a set of raw materials. They are denoted respectively by the
following,

Function Set:= = {F1,Fs,...,F}, (1)
Terminal Set: X = {X1, Xo, ..., X }. (2)

Each sequence (commodity, processor) can then be represented by a LISP
S-expression or, simply, a parse tree (Fig. 1). The evolution of production
processes (commodities) can then be simulated by using standard GP. The
knowledge capital of the society at a point in time can then be measured by
the complexity and the diversity of its existing production processes.

4 Commodity Space

Before introducing the functional-modularity approach to preferences, let us
start with a brief review of the utility function used in conventional economic

4 Shu-Heng Chen and Bin-Tzong Chie

theory. The utility function U(.) is generally a mapping from non-negative
real space to real space R.
U:R" - R (3)

This above mapping is of little help to us when what we evaluate is a sequence
of processors rather than just a quantity. In our economy, what matters to
consumers is not the quantity they consumed, but the quality of what they
consumed. Therefore, the conventional commodity space R} is replaced by
a new commodity space which is a collection of sequences of processors. We
shall call the space). The representation of the commodity space) can be
constructed by using the theory of formal language, for example, the Backus-
Nauer form (BNF) of grammar. So) is to be seen simply as the set of all
expressions which can be produced from a start symbol A under an application
of substitution rules (grammar) and a finite set of primitive processors (X') and
materials (£). That is,) represents the set of all commodities which can be
produced from the symbols X' and =.

y={y|A=Y} (4)

While, as we saw in Fig. 1, each Y (Y €)) can be represented by the
language of expression trees (ETs), a more effective representation can be
established by using Gene Expression Programming (GEP) developed by [7].
In GEP, the individuals are encoded as linear strings of fixed length (the
genome or set of chromosomes) which are afterwards expressed as nonlinear
entities of different sizes and shapes, i.e. different expression trees. As [7]
showed, the interplay of chromosomes and expression trees in GEP implies an
unequivocal translation system for translating the language of chromosomes
into the language of ETs. By using GEP, the commodity space can then be
defined as a subset of the Kleene star, namely,

Yy={Y,|Y, e (XUE)"NGEP}, (5)
where Y, is a string of length n,
Y. =viy2..yn, yi € (XUZT),Vi=1,..,n. (6)

We have to emphasize that, in order to satisfy the syntactic validity, J is
only a subset of the Kleene star (¥ U Z)*. To make this distinction, the Y
described in (5) is referred to as the strongly-typed Kleene star. Each Y,, can
then be translated into the familiar parse tree by using GEP. This ends our
description of the commodity space.

5 Preferences

Unlike a commodity space, a preference space cannot be a collection of finite-
length strings, since they are not satisfied by the non-saturation assumption.

Agent-based Modeling of the Evolution of Technology 5

Fig. 2. Preference: The Parse-Tree Representation
What is shown here is only part of the potentially infinitely large parse tree, i.e.
only U' of [U"].

Economic theory assumes that consumers always prefer more to less, i.e. the
marginal utility can never be negative. Even though we emphasize the quality
dimension instead of the quantity dimension, a similar vein should equally
hold: you will never do enough to satisfy any consumer. If consumers’ prefer-
ences are represented by finite-length strings, then, at a point, they may come
to a state of complete happiness, known as the bliss point in economic theory.
From there, no matter how hard the producers try to upgrade their existing
commodities, it is always impossible to make consumers feel happier. This is
certainly not consistent with our observation of human behavior. As a result,
the idea of a commodity space cannot be directly extended to a preference
space.

To satisfy the non-saturation assumption, a preference must be a string of
infinite length, something like

U Uy = U (7)

However, by introducing the symbol co, we can regain the finite-length rep-
resentation of the preference, i.e.

ooU Us...up00 = colloo = [Ul]. (8)

First of all, as we mentioned earlier, consumers may not necessarily know what
their preferences look like, and may not even care to know. However, from
Samuelson’s revealed preference theory, we know that consumers’ preferences
implicitly exist. Equation (8) is just another way of saying that consumers’
preferences are implicit. It would be pointless to write down the consumers’
preferences of the 30th century, even though we may know that these are
much richer than what has been revealed today. To approximate the feedback

6 Shu-Heng Chen and Bin-Tzong Chie

14 X3 (12 (171 X2 X3 I-‘)(Z FO XS X11) (F12 X3 lf9X3X8jCX3 I
T

2 X3 (F5 X3 (19 X5 Xll/)b)

Fig. 3. Modular Preference: The LISP Representation

relation between technology advancements and preferences, it would be good
enough to work with local-in-time preferences (temporal preferences).

Secondly, Equation (8) enables us to see the possibility that preference
is adaptive, evolving and growing. What will appear in those oo portions
may crucially depend on the commodities available today, the commodities
consumed by the consumer before, the consumption habits of other consumers,
and other social, institutional and scientific considerations.

6 Utility Function

Given the preference [U!], let U | [U'] be the utility function derived from
[UY. U | [UY is a mapping from the strongly-typed Kleene Star to R .

UlU7:Y— Ry (9)

Hereafter, we shall simply use U instead of U | [U!] as long as it causes no
confusion.

The modular approach to preference regards each preference as a hierarchy
of modular preferences. Each of these modular preferences is characterized by
a parse tree or the so-called building block. For example, the preference shown
in Fig. 2 can be decomposed into modular preferences of different depths. They
are all explicitly indicated in Fig. 3. Consider .S; to be the set of all modular
preferences of depth i. Then Table 1 lists all modular preferences by means
of these S;. From both Fig. 3 and Table 1, it is clear that each subtree at a
lower level, say S, can always find its parent tree, of which it is a part, at a
higher level, say S; where i > j. This subsequence relation can be represented
as follows:

S; 3 Sj. (10)

A commodity Y,, is said to match a modular preference S; of U if they
are exactly the same, i.e. they share the same the LISP expression and the
same tree representation. Now, we are ready to postulate the first regularity
condition regarding a well-behaved utility function, which is referred to as the
monotonicity condition.

Agent-based Modeling of the Evolution of Technology 7

Table 1. Modular Preferences Sorted by Depth

D (d)|Subtrees or terminals
1 X2, X3, X5, Xs, Xo, X11 1
Sa2 = (FoX5X11)
Sa,3 = (FoX3X3)
Sa4 = (FoX5X11)
3 53,1 = (F12X3(F9X3X8)) 4
(
(

S3,0 = (F5 X3(FoX5X11))
4 Sa1 = (Fo(FoX5X11)(Fi12X3(FoX3X3))) 8
Sa,2 = (FoX3(F5 X3(FoX5X11)))
5195 = (FoXs(FaXs(Fs X3 (FoX5X11)))) 16
6 Se¢ = (FQ(FQ(F9X5X11)(F12X3(F9X3 32
X)) (Fo X3 (Fo X3 (F5 X5 (Fo X5 X11)))))
7 S7 = (Fa(Fr X2 X3) (Fo(Fa(Fo X5 X11) (F12
X3(FoX3Xs))) (Fo X3 (FaX3(Fs X3 64
(FoX5X11))))))
8 |Ss = (FaXs(Fa(FrX2X5)(FoFa(FoXsX11)|128
(F12X3(FoX3X3)))(FsXs3(F2X3(F5X3
(F'9X5X11)))))))

Given a preference [U!], the associated utility function is said to satisfy
the monotonicity condition iff

U(Y,) > UYs,) (11)

where Y,,, and Y,,; are the commodities matching the corresponding modular
preferences S; and S; of U' and S; and S satisfy Equation (10).

The monotonicity condition can be restated in a more general way. Given
a preference [U'] and by letting {h1, ha,...h;} be an increasing subsequence
of Ay, then the associated utility function is said to satisfy the monotonicity
condition iff

U(Yn,) > U(Yn,) > o > U(Ye,) > U(Yay) (12)

where Y, , ..., Yy, are the commodities matching the corresponding modular
preferences Sh, , ..., Sp; of U, and

Sh; 3Sh;y 3. 2Shy 3 5h,- (13)

If S) is a subtree of S; as in Equation (10), then Sy is called the largest
subtree of S; if Sy is a branch (descendant) of S;. We shall use “S; < S;” to
indicate this largest-member relation. Depending on the grammar which we
use, the largest subtree of S; may not be unique. For example, each modular
preference in Fig. 2 has two largest subtrees. In general, let Sy, , Sh,, ...Sn; be
all the largest subtrees of .S;, denoted as follows:

8 Shu-Heng Chen and Bin-Tzong Chie

Sz' = uZiSkﬂ{Shl,Shz,...Shj}, (14)

where {hi,hs,...h;} is a non-decreasing subsequence of N. Notice these
largest trees may not have sub-relationships (10) among each other. How-
ever, they may have different depths, and the sequence {hq, hg, ...h;} ranks
them by depth in an ascending order so that Sj, is the largest subtree with
minimum depth, and Sj; is the one with maximum depth.

The second postulate of the well-behaved utility function is the property
known as synergy. Given a preference [U!], the associated utility function is
said to satisfy the synergy condition iff

V) =3 U, (15)
k=1

where Yy, and {Y,,,;k = 1,...,j} are the commodities matching the corre-
sponding modular preferences S; and {Sy,;k = 1,...,5} of [U'], and S; and
{Sh,; k=1,...,j} satisfy Equation (14). 4

For convenience, we shall also use the notation LI} _,Y;,, as the synergy of
the set of commodities {Y,, ;& = 1, ..., j}. Based on the New Ozford Dictionary
of English, synergy is defined as “the interaction or cooperation of two or more
organizations, substances, or other agents to produce a combined effect greater
than the sum of their separate effects.” “The whole is greater than the sum
of the parts” is the fundamental source for business value creation. Successful
business value creation depends on two things: modules and the platform to
combine these modules. Consider the consumer characterized by Fig. 2 as an
example. To satisfy him, what is needed are all of the modules listed in Table
1. Even though the technology has already advanced to the level S7, knowing
the use of processor Fj; to combine X3 and S7 can still satisfy the consumer
to a higher degree, and hence create a greater business value.

A modular preference may appear many times in a preference. For exam-
ple, S5 4 in Table 1 appears twice in Fig. 2. In this case, it can simultaneously
be the largest subtree of more than one modular preference. For example, S5 4
is the largest subtree of both S5 and S4 ;. Let S be the largest subtree of
ShysShys---, and Sy, . Denote this relation as

Sk = M, Sh, > {Shys Shys ---Sh, }- (16)

Given a preference [U'], the associated utility function is said to satisfy
the consistent condition iff

U(Yni | Sk > Shl) =..= U(Yni | Sk > Shj), (17)

where Y,, | Sk > Sp, is the commodity which matches the corresponding
modular preference Sy, in the designated position, Sj > Sp,. The consistency
condition reiterates the synergy effect. No matter how intensively the com-
modity Y, may significantly contribute to the value creation of a synergy
commodity, its value will remain identical and lower when it is served alone.

Agent-based Modeling of the Evolution of Technology 9

Given a preference [U'], the associated utility function U is said to be
well-behaved iff it satisfies the monotone, synergy and consistency condition.
It generates a sequence of numbers {U(Y,,)}2_, where Y,,, matches the respec-
tive modular preference Sy ;. Sg,; is the jth modular preference with depth
d. The utility assigned in Table 1 is an illustration of a well-behaved utility
function derived from the preference shown in Fig. 2. In fact, this specific
utility function is generated by the following exponential function with base
2.

U(Say) =24 (18)

Utility function (18) sheds great light on the synergy effect. Thus, prim-
itive materials or rudimentary commodities may only satisfy the consumer
to a rather limited extent. However, once suitable processing or integration
takes place, their value can become increasingly large to the consumer. The
exponential function with base 2 simply shows how fast the utility may be
scaled up, and hence may provide a great potential incentive for producers to
innovate. Of course, to be a well-behaved utility function, U can have many
different functional forms.

7 Firms and Production

On the production side, the economy is composed of ny producers, each of
which is initially assigned an equal operating capital, K.

KI,O = Kgyo == R0 = K. (19)

With this initial capital, the producers are able to buy materials and pro-
cessors from the input markets up to the amount that they can afford. There
are two types of input markets at the initial stage, namely, the raw-material
market and the rudimentary processor market. For simplicity, we assume that
the supply curves of the two markets are infinitely elastic with a fixed unit
cost (¢) for each raw material and for each rudimentary processor:

Cx,=Cx, =...=Cx, =Cp, =Cp, = .. =Cp, =c. (20)

With the materials and the rudimentary processors purchased from the
input market, the producer can produce a variety of commodities, defined by
the associated sequence of processors. The cost of each commodity is then
simply its total amount of materials and the number of processors, or, in
terms of GP, the node complezity of the parse tree. However, to allow for the
scale effect, each additional unit of the same commodity produced by the pro-
ducer should be less costly. This can be done by introducing a monotonically
decreasing function 7(¢) (0 < 7(¢) < 1), where ¢ is the gth unit of the same
commodity produced. The cost of each additional unit produced is simply
the cost of the previous unit pre-multiplied by 7(g). With this description,

10 Shu-Heng Chen and Bin-Tzong Chie

Fig. 4. EvolTech: Preferences Initialization

the capacity constraint for a fully-specialized producer i (i € [1,...ny]), i.e. the
producer who supplies only one commodity, should be

q
Ko >, (21)
q=1

where Cy = 7(¢)C} is the unit cost of the ¢gth unit and 7(1) = 1. For a fully-
diversified producer, i.e. the producer who produces a variety of commodities
and one for each, the capacity constraint is

Ko> Y Cpn, (22)
m=1

where C,, 1 is the cost of the first unit of commodity m. In general, the
capacity constraint for the producer i is

m
Ko > Z
m=1

=

Cm.q, (23)
1

q

where Cp, g = T (¢)Cr 1

In Equation (23), the strategic parameters are m, ¢ and C,,. To survive
well, producers have to learn how to optimize them. m can be be taken as a
measure of the degree of diversification, whereas g can be taken as the degree
of specialization. Cy,, i.e. the node complexity of the commodity m, is also a
behavioral variable. Given the capacity constraint, the producer can choose
to supply a large amount of primitive commodities (a quantity-oriented strat-
egy), or a limited amount of highly delicate commodities (a quality-oriented
strategy). Therefore, the choice of C), can be regarded as a choice of the level
of quality.

8 Demonstration

The idea presented above has been written into a computer program called
EvolTech, which stands for “Evolution of Technology.” In this section, we

Agent-based Modeling of the Evolution of Technology 11

Generation 0
Producer Products (Ko =25, ¢=10.5) Net Profit
m0.5 ml m:-0.5

: o’%o’bo’bo’bo’bo’b@%

n:-0.5 m-0.5 m:-1.5

C AfRda

1:0.5

A

Fig. 5. EvolTech: Generation 0

demonstrate a wvanilla version of EvolTech. What we mean by wvanilla will
become clear as we give the demo.

First, as in all computational economic models, we start with a simple
description of initialization. The initialization in EvolTech includes the gener-
ation of preferences. Based on the formulation given in Sections 5 and 6, the
preferences of three consumers are randomly generated, as shown in Figure
4. The complexity of the preference has been severely restricted to a depth
of 5 and is fixed throughout the entire evolution.®> Notice that these prefer-
ences are characterized by colorful nodes. Each different color is refereed to a
different primitive, sampled from a given primitive set.

In addition to the three consumers, there are three producers in the econ-
omy. Based on the same given primitive set, commodities are also randomly
generated by these producers, as shown in Figure 5. Notice that the three
dimensions of production behavior, i.e. quantity, quality, and diversity, are all
randomly determined as long as they together satisfy the capacity constraint
(23). The initial capital capacity Ky is set to 25, and the unit cost ¢ is set to
0.5. The scale effect is ignored. Each of the commodities is then served to the
consumers whose preferences are displayed in Figure 4.

Without the details about how trade actually proceeds, it is not easy to
describe how the final price and hence the profit is determined. Therefore, in
this vanilla version of EvolTech we simply take the highest reservation price
as the market price.*

3In other words, we do not consider the general preferences as discussed in Equa-
tion (8), neither the evolution of preferences in this vanilla version.

4We have proposed an algorithm to compute Equation (9) for a well-behaved util-
ity function U, as defined in Section 6. This algorithm, called the module-matching

12 Shu-Heng Chen and Bin-Tzong Chie

Generation 1
Producer Products (K; =25,¢=0.5) Net Profit

n:0.5m0.5m0.5m0.5 n:1.5

C RRRAaRaxARA M

n:0.5 w1 n:-0.5 m-0.5 n:2

RS ASAS

n:05m05mw05 w15 m:0.5

; &&!@M‘{'}é@b&m

Fig. 6. EvolTech: Generation 1

This simplification will facilitate our calculation of profits, 7. In Figure 5,
7 is shown on the top of each commodity. We can see that most commodities
have negative profits. This is not surprising because at this initial stage all
commodities are randomly designed, and the chance of meeting consumers’
needs to any significant degree is naturally low with the given combinatoric
complexity.

Sophisticated commodities may be even worse than those simple designs
because they induce higher production costs, and can only satisfy consumers
to a very limited degree. So, as evidenced in Figure 5, commodities that suf-
fer great economic losses tend to be those with sophisticated designs, i.e.
trees with a large degree of node complexity. By summing the profits over all
commodities, we get aggregate profits for each firm, which are shown on the
right-hand side of the figure. In this specific case, all three firms make a loss.
This finishes our description of the initial generation.

While moving to the next market period (next generation), firms start to
learn from experience. Their profit profiles provide them with fundamental
clues on how to re-design their products for the next generation. What is
shown in Figure 6 is the result of their adaptation. It is interesting to notice
that these new-generation commodities seem to become simpler compared
with those of the previous generation (Figure 5). This is mainly because so-
phisticated designs do not contribute to profits but losses. Therefore, firms
tend to replace those sophisticated designs with simpler ones. The economy
as a whole can be described as a quantity-based economy, since all firms choose

algorithm, is very intuitive. It looks for the projection of the commodity Y; to [U'],
i.e. a measure of distance between a commodity Y; and the preference [U']. Once
the operational meaning of Equation (9) becomes clear, it is possible to infer the
reservation price which a consumer would like to pay for commodity Y; from [U'].

Agent-based Modeling of the Evolution of Technology 13

Generation 10

Producer Products (Ko =25, ¢ =0.5) Net Profit
m:0.5 m:0.5
1 II1=11
él CE izﬁli Cﬁl bE 5;§I5

n:0.5 m:2.5

7:0.5
2 %@ I1=10
o 1)
7:0.5 :0.5 m:9.5
®

Fig. 7. EvolTech: Generation 10

to produce a large number of rudimentary commodities (i.e. they repeat doing
simple standard things).

However, this strategy turns out to work well. While each simple commod-
ity can earn a firm a tiny profit, summing them together is still quite notice-
able. So, in the end, the profits of all three firms improve quite significantly.
This process is then further reinforced, and in the coming generations, more
resources are devoted to rudimentary commodities. Sophisticated designs are
almost entirely given up. However, since there are not too many rudimentary
commodities to develop in the market, when all firms concentrate on produc-
ing rudimentary commodities, the limited number of rudimentary-commodity
markets become highly competitive, and the profits from producing these
commodities decline as a result of the keen competition. At this point, the
economy actually moves toward an era of zero profit.

Once producing primitive commodities is no longer profitable, the selection
bias towards it also becomes weaker. Some sophisticated designs occasionally
coming out of the crossover and mutation operators may find it easier to sur-
vive. That improves the chances of satisfying consumers to a higher degree.
When that indeed happens, not only do firms make a breakthrough by suc-
cessfully having a sophisticated (delicate) design, but the lucrative profits also
attract more resources that can be devoted to quality products. While this
does not always happen and the process is not always smooth, the process
may be reinforcing. So, commodities with more delicate designs and higher
profits may come one after the other. In the end, the economy is gradually

14 Shu-Heng Chen and Bin-Tzong Chie

transformed into a quality-based economy, as shown in the 10th generation of
our simulation (Figure 7).°

9 Concluding Remarks and Future Work

In this paper, commodities, production and preference, those fundamentals of
economic theory, have been re-formulated in light of functional modularity.
We believe that this re-formulation work is original and productive. It lays the
foundation upon which one can build and simulate the evolution of technology,
more specifically, within the context of agent-based computational economic
(ACE) models. A full picture of this ACE model has not been presented in
this paper, partially due to the limitations of size imposed on the paper. We,
therefore, can only give a sketch of some other essential ingredients, and leave
a more detailed account to a separate paper.

References

1. Allen, F. and R. Karjalainen, (1999). “Using Genetic Algorithms to Find Tech-
nical Trading Rules,” Journal of Financial Economics, 51(2) 245-271.
2. Aoki, M., (2002a). “Open Models of Share Markets with Two Dominant Types
of Participants,” Journal of Economic Behavior and Organization, 49 199-216.
3. Aoki, M., (2002b). “Applications of Ewens—Pitman—Zabell Inductive Methods
in New Economic Dynamics,” Proceedings of the Sizth International Conference
on Complex Systems, 29-35.
4. Banville, J., (1993). Kepler: A Nowvel (Vintage International). Vintage Books.
. Basalla, G., (1988). The Fvolution of Technology. Cambridge University Press.
6. Chen, S.-H. and B.-T. Chie, (2004) “Functional Modularity in the Test Bed
of Economic Theory— Using Genetic Programming,” in R. Poli, et al. (eds.),
GECCO-2004: Proceedings of the Genetic and Evolutionary Computation Con-
ference, June 26-30, 2004, Seattle, Washington, USA.
7. Ferreira, C., (2001). “Gene Expression Programming: A New Adaptive Algo-
rithm for Solving Problems,” Complex Systems, 13 (2), 87-129.
8. Levy, S., (1992). Artificial Life: A Report from the Frontier Where Computers
Meet Biology, Vintage, New York.
9. Neely, C., P. Weller, and R. Dittmar, (1997). “Is Technical Analysis in the For-
eign Exchange Market Profitable? A Genetic Programming Approach,” Journal
of Financial and Quantitative Analysis, 32(4) 405-426.
10. Willihnganz, A., (1999). “Software that Writes Software,” salon.com, WWW
Article.
11. Zabell, S., (1992). “Predicting the Unpredictable,” Synthese, 90 205-232.

ot

5The progress may not be smooth. Severe fluctuations can happen. The progress
may not be sustained long enough either. The economy may stagnate after a short
but fast take-off, and consumers are only supplied with some “basic needs.” For a
more detailed demonstration of the complex variety, see Chen and Chie (2004).

